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Abstract: Smartphones have been shipped with multiple wireless network interfaces in 
order to meet their diverse communication and networking demands. However, as 
smartphones increasingly rely on wireless network connections to realize more functions, 
the demand of energy has been significantly increased, which has become the limit for 
people to explore smartphones’ real power. In this paper, we first review typical 
smartphone computing systems, energy consumption of smartphone, and state-of-the-art 
techniques of energy saving for smartphones. Then we propose a location-assisted Wi-Fi 
discovery scheme, which discovers the nearest Wi-Fi network access points (APs) by using 
the user’s location information. This allows the user to switch to the Wi-Fi interface in an 
intelligent manner when he/she arrives at the nearest Wi-Fi network AP. Thus we can meet 
the user’s bandwidth needs and provide the best connectivity. Additionally, it avoids the 
long periods in idle state and greatly reduces the number of unnecessary Wi-Fi scans on the 
mobile device. Our experiments and simulations demonstrate that our scheme effectively 
saves energy for smartphones integrated with Wi-Fi and cellular interfaces. 
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1. Introduction 

Smartphones are becoming increasingly intertwined with people’s daily lives. They are now 
equipped with more powerful processors, more memory, multiple network interfaces, and more 
powerful operating systems such as Windows Phone, Google Android, Apple iOS, and so forth. 
Furthermore, the cellular networks of smartphones have grown from GSM networks to the current 3G 
networks, which have greatly increased the bandwidth for smartphones. 

Today’s smartphones are capable to support a large spectrum of applications from stock tickers to 
city-wide social games [1]. There are many new innovative applications about using smartphones as 
mobile sensors to recognize user state [2], sense urban space [3, 4], sense location [5], monitor 
environment conditions [6], monitor traffic [7], sense people’s health states [8], and so on. 

However, many applications such as mobile gaming and real-time location-based tracking 
applications [9] consume significant battery energy because of the requirement of continuous internet 
connection [10]. However, the increased size of battery hasn’t kept up with the increased demand for 
energy. Advances in battery technology are growing slowly and have not kept pace with rapidly 
growing energy demands [11]. Thus the power consumption has become an important problem of the 
energy management of smartphones. Furthermore, energy saving for smartphones has become an 
urgent matter, which is beneficial to extending smartphones’ standby time and battery’s lifetime as 
well as reducing the number of times of battery recharging.  
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Many wireless network technologies, such as Bluetooth, Wi-Fi, and GPRS, have become popular 

in the market. Wi-Fi and GPRS have different characteristics in terms of power, range and bandwidth 
[12, 13]. GPRS has low transfer power efficiency1, wide range, and low bandwidth. On the contrary, 
Wi-Fi has high transfer power efficiency, narrow range, and high bandwidth. However, Wi-Fi has high 
power consumption in idle state and brings a high overhead when scanning for new networks. 

Mobile devices, such as smartphones, are equipped with multiple network interfaces that have 
complementary characteristics, as mentioned before. This brings a new challenge to the choice the 
most suitable network interface to connect to the network. Therefore we should leverage the 
complementary characteristics of these network interfaces to meet the user’s bandwidth needs, provide 
the best connectivity and minimize the power consumption at the same time. Many researchers (e.g. 
[14, 15]) have worked on saving energy by reducing the energy costs of network interfaces. 

In this paper, we address this challenge by presenting a simple scheme that discovers the nearest 
Wi-Fi network access point (AP) by using the user’s location information. Thus users can switch to the 
Wi-Fi network when they approach it, which greatly reduces the number of unnecessary Wi-Fi scans 
on the mobile devices. As a result, much energy can be saved. 

Currently, many location sensing technologies, such as GPS, GSM and ZigBee, have been 
developed for mobile devices. GPS, GSM and ZigBee have widely different characteristics in terms of 
power and accuracy (see Table 1) [15, 16]. GPS has high positioning accuracy, but it is power-
demanding and can be used only in outdoors. GSM is power efficient, but it is highly inaccurate. 
ZigBee is energy efficient and has high positioning accuracy, but mobile devices with ZigBee 
interfaces is still very scarce and expensive. In addition, ZigBee is mostly used in indoors. Assisted 
GPS (A-GPS for short) is the same as GPS in terms of accuracy and cost less power, and only used in 
outdoors. Considering energy-accuracy trade-off and restrictions of different location sensors, we 
adopt A-GPS in outdoors and ZigBee in indoors to get user’s location information. 

In terms of contributions, we make efforts in the following aspects. First, we review typical 
smartphone’s sensing applications and systems. Second, we analyze and test the energy consumption 
of smartphones. Third, main approaches of energy saving for smartphones are summarized. Finally, we 
propose a location assisted Wi-Fi discovery scheme that greatly reduces the number of unnecessary 
Wi-Fi scans on mobile devices. Our simulations and experiments demonstrate that it is effective. 

Table 1. Characteristics of various location sensing technologies. 

Sensor Average power consumption (mW) Approximate accuracy (m) 
GPS 400 10 
GSM 60 400 
ZigBee 1 5 

The rest of the paper is structured as follows. Section 2 describes the “power” of smartphones: 
smartphones as sensors in typical sensing applications and systems. The “power”/energy consumption 
of smartphones and their diverse wireless network interfaces is analyzed and tested in Section 3. We 

                                                
1 Power efficiency: with the same power to use, the more data that can be transferred under a scheme, the higher power efficiency it has. 

Here we mean that, with the same energy consumption, GPRS transfer less data than Wi-Fi, so the Wi-Fi has higher power efficiency 

than GPRS. 
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summarize the main energy-saving techniques for smartphones in Section 4.  Section 5 shows the key 
components and operation workflow of our proposed system. In Section 6, we evaluate the power 
consumption of our five outdoor schemes, and the evaluation of five indoor schemes is done in Section 
7. We conclude the paper in Section 8. 

2. Smartphones as Sensors 

Mobile phones not only serve as the key computing and communication mobile device of choice, 
but also come with a rich set of embedded sensors, such as accelerometer, compass, GPS, gyroscope, 
microphone, and camera. Recently, sensors have become much more prevalent in mobile devices like 
smartphones. Smartphones serve our life across a wide variety of domains, such as health monitoring, 
social networking, environmental monitoring, traffic monitoring, and human behavioral monitoring, 
and give rise to a new area of research called phone sensing. Many mobile phone sensing systems have 
been developed in the literature. In this section, we survey these systems according to their application 
domains, as outlined in Table 2. 

Table 2. Mobile sensing systems. 

Area System Type(s) of Sensors Application(s) 

Health 
Monitoring 

SPA [17] Biomedical sensor, GPS Healthcare suggestions  
UbiFit Garden 
[18] 3D accelerometer UbiFit Garden’s interactive 

application 
BALANCE [19] Accelerometer, GPS BALANCE 
CONSORTS-S 
[20] 

Wireless sensor, MESI RF-
ECG Healthcare service 

Environmental 
Monitoring 

PEIR [21] GPS 
Carbon impact, Sensitive site 
impact, Smog exposure, etc 

NoiseTube [22] Microphone, GPS  Mobile sensing  

MobGeoSen [23] Camera, GPS, Microphone Sound level monitoring 

Laemometer [24] Microphone, GPS  
Noise map creation and 
visualization 

Traffic 
Monitoring 

V-Track [25] GPS  
Detecting and visualizing 
hotspots, route planning 

NeriCell [26] 
Microphone, Accelerometer, 
GSM Radio, GPS, Camera 

Bump, breaking and honking 
detection 

Human 
Behavioral 
Monitoring 

Emotion  
Sense [27] 

Microphone, Accelerometer 
Emotion and speaker 
recognition 

Activity 
Recognition [28] 

Accelerometer Activity recognition 

Social 
Networking 

CenceMe [29] 
Microphone, Camera, GPS, 
Radio, Accelerometer, etc 

Bicycling, Weight lifting, Golf 
swing analysis 

Party 
Themometer [30] 

Microphone, Camera, GPS  Party Themometer 
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2.1. Health Monitoring 

Sha et al. [17] proposed a smartphone assisted chronic illness self-management system (SPA), 
which aided the prevention and treatment of chronic illness. The SPA can provide continuous 
monitoring on the health condition of the user and give valuable in-situ context-aware 
suggestions/feedbacks to improve the public health. To address the growing rate of sedentary lifestyles, 
Jarvinen et al. [18] developed a system, called UbiFit Garden, which uses small cheaper sensors, real-
time statistical modeling, and a personal mobile display to encourage regular physical activity. It 
resides on the background screen or wallpaper of a mobile phone to provide a subtle reminder 
whenever and wherever the phone is used. UbiFit Garden relies on the Mobile Sensing Platform 
(MSP). 

2.2. Environmental Monitoring 

Mun et al. [21] presented the Personal Environmental Impact Report (PEIR) that uses location data 
sampled from everyday mobile phones to calculate personalized estimates of environmental impact 
and exposure. It uses mobile handsets to collect and automatically upload data to server-side models 
that generate web-based output for each participant. One feature that distinguishes PEIR from existing 
web-based and mobile carbon footprint calculators is its emphasis on how individual transportation 
choices simultaneously influence both environmental impact and exposure. NoiseTube [22] is a new 
approach for the assessment of noise pollution involving the general public. The goal of this project is 
to turn GPS-equipped mobile phones into noise sensors that enable citizens to measure their personal 
exposure to noise in their everyday environment. Thus each user can contribute by sharing their geo-
localized measurements and further personal annotation to produce a collective noise map.  

2.3. Traffic Monitoring 

Thiagarajan et al. [25] proposed a system, called VTrack, for travel time estimation using this 
sensor data. It addresses two key challenges: energy consumption and sensor unreliability. VTrack 
performs map matching, which associates each position sample with the most likely point on the road 
map, and produces travel time estimates for each traversed road segment. VTrack compiles a database 
of historic travel delays on road segments. Nericell [26] is a system that performs rich sensing by 
piggybacking on smartphones that users carry with them in normal course. Nericell addresses several 
challenges including virtually reorienting the accelerometer on a phone that is at an arbitrary 
orientation, and performing honk detection and localization in an energy efficient manner. The system 
could be used to annotate traditional traffic maps with information such as the bumpiness of roads, and 
the noisiness and level of chaos in traffic.  

2.4. Human Behavioral Monitoring 

EmotionSense [27] is a mobile sensing platform for social psychological studies based on mobile 
phones. The key characteristics of this system include the ability of sensing individual emotions as 
well as activities, verbal and proximity interactions among members of social groups. This can be used 
to understand the correlation and the impact of interactions and activities on the emotions and behavior 
of individuals. Kwapisz et al. [28] described and evaluated a system that uses phone-based 
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accelerometers to perform activity recognition, a task which involves identifying the physical activity 
a user is performing. The activity recognition model allows to gain useful knowledge about the habits 
of millions of users passively just by having them carry cell phones in their pockets. Applications of 
this system includes automatic customization of the mobile devices behavior based upon a user’s 
activity  and generating a daily/weekly activity profile to determine if a user is performing a healthy 
amount of exercise. 

2.5. Social Networking 

Miluzzol et al. [29] presented a system called CenceMe, a personal sensing system that enables 
members of social networks to share their sensing presence with their buddies in a secure manner. 
Sensing presence captures a user’s status in terms of his activity (e.g., sitting, walking, meeting 
friends), disposition (e.g. happy, sad, doing OK), habits (e.g. at the gym, coffee shop today, at work) 
and surroundings (e.g. noisy, hot, bright, high ozone). CenceMe injects sensing presence into popular 
social networking applications such as Facebook, MySpace, and IM (Skype, Pidgin) allowing for new 
levels of connection and implicit communication between friends in social networks. Party 
Thermometer [30] is a human-query application, where queries are directed to users who are at parties. 
In addition to location, (party) music detection is also employed using the microphone sensor to 
establish the users’ context more precisely.  

3. Energy Consumption of Smartphones 

In order to achieve our purpose of energy saving for smartphones, necessary information about 
energy consumption of smartphones, such as the composition of energy consumption, the energy 
consumption of different parts of smartphone, and so forth, is needed. We discuss the energy 
consumption of smartphones in this section. 

3.1. Energy Consumption in Operating Mode 

In [31], Anand et al. evaluated the individual power consumption of the main hardware components 
(e.g., processor, Wi-Fi interface, backlight) of iMate KJam smartphones shipped with Lithium Polymer 
1250mAh battery, 128MB memory, 195 MHz OMAP processor, and Windows Mobile 5.0 operating 
system. Table 3 illustrates the hardware component distribution of power consumption. As we can see, 
the processor consumes the most of the power, followed closely by the Wi-Fi interface and the GSM 
radio. The Bluetooth and backlight cause less power consumption. However, Bluetooth is still a 
significant cause of power losing because users typically keep it on most of time. 

Carroll and Heiser [32] discussed the significance of the power drawn by different components, and 
analyzed the energy impact of dynamic voltage and frequency scaling of the device’s application 
processor. They depict the power consumed by the display backlight over the range of available 
brightness levels on Android-based smartphones in operating mode. The minimum backlight power is 
approximately 7.8 mW, and the maximum is nearly 414 mW. 

Table 3. Energy consumption for typical use of smartphone.  

Component Average power consumption percent (%) 
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CPU 35 
GSM 25 
Wi-Fi 25 
Backlight 3 
Bluetooth 7 
Other 5 

3.2. Energy Consumption in Sleep 

For sake of energy saving, smartphones should power off the radio interface and turn on the radio 
only when there is on-going traffic. This saves energy for smartphones based on the fact that wireless 
radios consume much less energy in idle or suspend mode than in active or operating mode. Zhang et 
al. [33] examined the energy consumption of the Wi-Fi radio interface in idle state. 

The measurement shows that Wi-Fi requires 1.4260W [34] to scan available networks and requires 
0.890W [35] for active transmission. However, it only needs 0.256W in the idle state. The cell radio 
burns about 2-4mAh in idle state, and costs about 250-300mAh of battery in active state [31]. While 
Bluetooth consumes 0.01W in idle state, and it costs 0.12W for scanning [13]. We can see that Wi-Fi 
needs lowest power for data transfer among various network interfaces. However, it consumes 
significant energy in idle state and incurs a high overhead when scanning. Smartphone costs 268.8mW 
in the idle state with backlight off, and consumes 68.6mW in the suspended state [32]. 

3.3. Power Consumption of Networks 

We conduct a measurement on power efficiency of enhanced data rate for GSM evolution (EDGE) 
and Wi-Fi radio of ZTE V880 smartphone. As shown in Fig. 1(a), with the increase of bandwidth, 
sending data requires considerable more energy than receiving. That is, the energy efficiency of 
receiving is higher than sending in all the cases, and the gap of energy efficiency between receiving 
and sending is larger when using EDGE to transfer data. 

As we can see from Fig. 1(b), with the increase of bandwidth, the energy efficiency of receiving 
becomes higher than sending in all the cases when Wi-Fi is used to transfer data. However, there is 
little increase in energy efficiency when the bandwidth is near 50 KB/s, as shown in the Fig. 1(b). 

 
(a)                                                                              (b) 
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Figure 1. Consumed energy on ZTE V880 with different bandwidths and methods in use. (a) 
EDGE is in use. (b) Wi-Fi is in use. 

 

4. State-of-the-art Techniques for Smartphone Energy Saving 

A lot of research efforts have been made on reducing energy consumption of smartphones. 
Depending on the component of smartphone considered, smartphone energy-saving methods can be 
mainly divided into the following facets. 

4.1. Battery Modeling 

Most smartphones use rechargeable batteries as their mobile power sources, which need to take 1.5 
to 4 hours to be fully charged [11]. To use batteries efficiently, we consider them as extremely 
important resources for the operating system and applications. Battery discharge behavior is affected 
by various factors, such as discharge rate, temperature [36], and number of charge cycles, etc. 

Due to the nonlinearities of battery, it is essential to understand battery discharge behavior, and 
features for battery designers. Many researches have been done on battery modeling to address this 
issue. In [37], Fuller et al. presented an electrochemical model to describe the charge and discharge of 
battery. They use concentrated solution theory to model the galvanostatic charge and discharge of a 
dual lithium ion insertion (rocking-chair) cell. However, it is slow to produce prediction of battery 
features, and provides limited analytical help for battery designers. Chiasserini and Rao [38] developed 
a stochastic battery model to represent charge recovery processes. But they just concentrate on charge 
recovery, and can not account their model for other battery nonlinearities, temperature, and capacity 
fading, to name a few. 

In [39], Manwell and McGowan proposed a kinetic battery model to be used for charging and 
discharging. They consider the apparent change in capacity as a function of charge and discharge rates. 
The drawback of this model is that it is not useful for the types of batteries used in mobile computing 
[40]. Rakhmatov et al. [41] presented a diffusion model for battery-aware scheduling algorithm in real-
time embedded systems. Briefly, battery designers and programmers should choose different battery 
models depends on their actual circumstances to better model batteries. 

4.2. Energy-efficient Communications 

Energy-efficient communications have been hot research topic in recent years. Communication 
components may enter standby or sleep modes to save power. In [33] Zhang et al. took advantage of 
idle state to save the energy consumption of Wi-Fi radio interface. Although this will save the energy 
consumption, it is hard to estimate the idle state precisely. Shih et al. [42] suggested that systems 
completely turn off the radio interface and turn on the radio only when there is on-going traffic. 
Nevertheless, this will cause the user completely lose connection to the wireless LAN. In [14] Rozner 
et al. proposed NAPman, a network-assisted power management for Wi-Fi devices, which can 
leverage AP virtualization and a new energy-aware scheduling algorithm to minimize Wi-Fi devices 
power consumption. 
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Bluetooth’s energy consumption is very low. Pering et al. [35] proposed a scheme that switches 

between Bluetooth and Wi-Fi interfaces to save battery energy. However, this scheme needs to modify 
the infrastructure. In [34], Wu et al. used the GSM signal to get the location information to estimate 
the Wi-Fi network AP. The GSM’s energy consumption is very small, but its positioning accuracy is 
unsatisfactory. Blue-Fi [13] uses a combination of Bluetooth contact-patterns and cell-tower 
information to predict the availability of the Wi-Fi connectivity, and it does not need any modification 
to the existing infrastructure. However, many mobile devices with Bluetooth radio interfaces change 
their positions. Bluetooth has a much lower range compared to other network technologies. Therefore, 
mobile devices with Bluetooth can not be used for our problem.  

In [15] Zhou et al. utilized ZigBee radios to identify the existence of Wi-Fi networks through 
unique interference signatures generated by Wi-Fi beacons. They incur extra fees to buy or employ 
ZigBee cards, even though they detect Wi-Fi network APs with high accuracy, short delay and little 
computation overhead. 

There is an idea of using a separate low-powered radio to wake up a high-powered radio. Like [42] 
Wake-on-Wireless uses a low power radio to serve as a wake-up channel for a Wi-Fi radio. However, 
it needs significant modifications to existing mobile devices. While On-Demand-Paging [43] builds on 
this idea to use the widely available Bluetooth radios as the low-powered channel, it also requires 
substantial infrastructure support in the form of specialized APs that have both Wi-Fi and Bluetooth 
interfaces. Cell2Notify [44] uses the cellular interface to wake up the Wi-Fi interfaces on an incoming 
VOIP call using specialized servers. 

4.3. Energy-efficient Computation 

We describe two basic approaches, including putting processor into sleep mode and computation 
offloading, to save CPU’s energy in this section.  

Brakmo et al. [45] present an energy reduction technique, called uSleep, for handheld devices, 
which is most effective when the device’s processor is lightly loaded. They try to put the processor in 
sleep mode rather than in idle mode to save energy. However, it is not effective when the device’s 
processor is highly loaded. 

With computation offloading, the mobile device does not perform the computation; instead, 
computation is performed somewhere else, such as on a server, thereby extending battery lifetime. In 
[46], Pathak et al. designed and implemented an event-tracing-based profiling tool, called XRay. The 
tool identifies methods of an application that can be offloaded to a remote server, and determines 
whether and when the methods are offloaded to server will save energy. Needing a priori knowledge of 
input parameters and network conditions is the drawback of the tool. Xian et al. [47] performed 
offloading at the level of applications. They execute the program initially on the mobile client with a 
timeout, and offload the program to the server when it is not completed after the timeout. However, 
many applications that we can not offload entirely are just fit for offloading parts of applications to 
server. Kumar and Lu [48] applied computation offloading from a remote server to cloud platform. It 
is new to apply computation offloading in cloud, and more exploration needs to be done. 

4.4. Energy-Efficient Mobile Sensing 
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Mobile device based sensing can provide rich contextual information for mobile applications such 

as social networking and location-based services. However, the sensors on mobile devices consume 
too much energy. It will limit the continuous functioning of the mobile applications on mobile devices 
because of these devices’ limited battery capacity. Consequently, energy-efficient mobile sensing [2, 
16, 49-51] has become a hot topic in mobile computing. 

Abdesslem et al. [49] proposed to use less energy-consumption sensors more often instead of more 
energy-consumption sensors. By choosing when to use more energy-efficient sensors, it is possible to 
reduce the energy consumption of mobile sensing applications. Constandache et al. [16] proposed a 
location sensing adaptive framework called EnLoc. The framework characterizes the optimal 
localization accuracy for a given energy budget and developed prediction-based heuristics for real-time 
use. By taking into account the accuracy-energy trade-off of different location sensors available in 
mobile phones, EnLoc selects the energy-optimal sensor and reduces energy consumption. Kang et al. 
[50] proposed a scalable and energy-efficient monitoring framework called SeeMon for sensor-rich 
and resource-limited mobile environments. The authors explored the hierarchical sensor management 
concept which achieves energy efficiency by only performing context recognition when changes occur 
during the context monitoring. Priyantha et al. [51] designed a novel system architecture called Little 
Rock at the hardware level for energy-efficient sensing. They proposed to add a low power 
microcontroller or an additional low power core in the multi-core processor responsible for managing 
sensors. This kind of modification enables phones to enter a low power sleep state while the low power 
sensor processor is continuously sampling and processing sensor data. Wang et al. [2] presented a 
novel design framework for an Energy-Efficient Mobile Sensing System (EEMSS). EEMSS uses 
hierarchical sensor management strategy to recognize user states as well as to detect state transitions. 
By powering only a minimum set of sensors and using appropriate sensor duty cycles the device 
energy consumption can be significantly reduced. 

Energy-efficient mobile sensing has been studied for a long time but there are still some unresolved 
issues. Activity recognition needs more effective matching algorithm to improve the recognition 
accuracy. With the increasing number of sensors, how to manage them in an energy-efficient manner is 
a problem. In addition, privacy should be paid much attention to because lots of user information in 
mobile sensing system might be used illegally. 

4.5. Other Energy Saving Approaches 

There are many research efforts [52-54] focusing on reducing the energy of display and memory. 
The code involving graphical user interface (GUI) usually accounts for 48 percent of the total code of 
an application [55]. As GUI always invokes display to show what the application does, display also 
consumes a large amount of energy. Zhong and Jha optimized GUIs for energy consumption in [52]. 
They present the first GUI energy characterization methodology, improve GUI platforms, and design 
GUIs in an energy-efficient way. However, the power consumption of display is highly depends on 
users’ activity patterns that are hard to predict. Therefore, it’s difficult to save display’s energy.  

Aho et al. [54] reduced the number of memory operands to save memory’s energy. They optimally 
allocate temporaries and globally register for the most frequently used variables during compile phase. 
Although this approach can save energy, it incurs the overhead of longer compilation time and 
compiler complexity, especially for commercial software. 
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5. Location-assisted Wi-Fi Discovery 

5.1. System Overview 

This section presents the key components and operation workflow of the proposed solution to 
improve the energy efficiency of smartphones, see Fig. 2. Our system includes three modules: rate 
monitor module, switching decision engine module and switching module. On the mobile devices, we 
use rate monitor module to measure cellular data rates (both uplink and downlink) at a chosen interval 
Tmeasure (see Table 4) periodically. Based on the collected information, the switching decision engine 
module decides whether the users need to switch to Wi-Fi network: if yes, then it invokes the 
switching module to discover the nearest Wi-Fi network AP, and users switch to Wi-Fi network when 
they arrive at it. Below we will describe the three modules in detail. 

 

Figure 2. Workflow of the system. 

Table 4. List of notations. 

Variable Description 
Tmeasure The data rate collect interval 
Ruser The data rate of the user 
Bt The threshold of bandwidth that is set by the user 
Pnear The nearby Wi-Fi network AP’s location 
Puser The user’s location 
Latuser The latitude of the user’s location 
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Lonuser The longitude of the user’s location 
Pap The nearest Wi-Fi network AP’s location 
Latap The latitude of the nearest Wi-Fi network AP’s location 
Lonap The longitude of the nearest Wi-Fi network AP’s location 
d The distance between user and the nearest Wi-Fi network 

AP 
R The radius of the earth 
vuser The speed of the user 
tswitch The time needed for user to go from his/her location to the 

nearest Wi-Fi network AP 

5.1.1. Rate Monitor Module 

To adapt to condition changes, our system must monitor the conditions of the mobile device and the 
wireless network. In [56] Yan et al. used available bandwidth, packet loss, received signal strength, 
energy consumption, operator requirements, user preferences, etc. to guide the selection of the best 
network. In [57] Chamodrakas and Martakos proposed a novel network selection based on TOPSIS [58] 
that takes into account both network conditions and user preferences as well as QoS and energy 
consumption to select the best network. In this paper, in order to simplify the situation and reduce 
unnecessary cost in those points, we just use the data rate of the user to guide switching decision 
making. Whenever some significant change happens (for example, a large data rate of the user 
fluctuation occurs), the switching decision engine decides whether to trigger switching. This rate 
monitor module is designed to monitor the data rate of users, which is used to guide switching decision 
making for our system. 

5.1.2. Switching Decision Engine Module 

To perform switching decision engine, our system examines the data collected by rate monitor 
module. It then decides whether to trigger switching module according to user’s switching goals. If so, 
it decides what level of Ruser to use on mobile device, that is, how much bandwidth the user needs. We 
use a simple threshold-based approach to decide whether to trigger switching module. If the Ruser is 
more than or equal to the threshold Bt, then the switching decision engine module triggers switching 
module and switches to a wide bandwidth Wi-Fi network. To adapt to the user preferences, the user 
can set different thresholds and chooses the appropriate threshold. 

5.1.3. Switching Module 

In this module, our system decides when and how to switch to Wi-Fi networks. Fig. 3 shows the 
workflow of switching module of our proposed system, and it is discussed below. 
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Figure 3. Workflow of switching module. 

When the switching module is triggered, it takes four steps to complete the switching process. In the 
first step, it uses location sensors to get the user’s location. We use different location sensors in 
different environments. As we have already mentioned, considering energy-accuracy tradeoff and 
restrictions of different location sensors, we adopt A-GPS in outdoors and ZigBee in indoors to get 
user’s location information. Thus the switching module consists of two submodules, that is, the 
outdoor switching submodule and the indoor switching submodule.  

In the second step, it finds the nearest Wi-Fi network AP’s location Pap by calculating the distance 
between the user’s location Puser and the nearby Wi-Fi network AP’s location Pnear. In the third step, it 
calculates the distance d between the user and the nearest Wi-Fi network AP.  

In the last step, we assume that the user moves towards the nearest Wi-Fi network AP at a constant 
speed vuser and there are no obstacles between the user and the nearest Wi-Fi network AP. We then use 
(1) to calculate the time needed for the user to go from his/her location to the nearest Wi-Fi network 
AP. After the time tswitch, the user begins to scan and connect to the Wi-Fi network.  

switch usert d v  (1)  

5.2. Outdoor Switching Submodule 

Here we describe an A-GPS assisted network switching scheme (A-GPS switching for short) in 
outdoors. We will compare the power consumption of this scheme with other four schemes, which will 
be discussed later. 

The operational workflow of this scheme is shown in Fig. 4. Our system uses A-GPS to locate the 
user in outdoors. Then it discovers the nearest Wi-Fi network AP by calculating the distance between 
the user’s location and the nearby Wi-Fi network AP’s location and gets its location. We can calculate 
the distance between user and nearest Wi-Fi network AP by using (2), and use (1) to calculate the time 
needed to switch to Wi-Fi network. In (2), Latuser, Lonuser, Latap and Lonap are expressed in radians, and 
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the units of d and R are kilometer. Finally, we start to scan and connect to the nearest Wi-Fi network 
AP after the time tswitch. 

 

Figure 4. Workflow of A-GPS assisted network switching scheme. 

We assume that we already know the distribution of the Wi-Fi network around the user, and this 
distribution is relatively stable. In a nutshell, we discover the Wi-Fi network by periodically scanning 
its signal. When a mobile device discovers a Wi-Fi network, it logs this Wi-Fi network in a log L, 
locally. The log entries are in the form of (Timestamp, {Wi-Fi network}, Location, Range). Wi-Fi 
network is identified by its SSID/BSSID, and location is identified by Wi-Fi network AP’s location 
which is got by the Wi-Fi sensors. Range represents how far the Wi-Fi network signals reach. Given a 
user’s location, we check the log whether the user is in the range of a Wi-Fi network: if yes, then we 
consider the user can connect to the Wi-Fi network.  

2 22arcsin sin cos cos sin
2 2

user ap user ap
user ap

Lat Lat Lon Lon
d Lat Lat R

 
    

 
(2)  

5.3. Indoor Switching Submodule 

A ZigBee assisted network switching scheme (ZigBee switching for short) is presented in this 
submodule for indoors. Fig. 5 shows the workflow of this scheme. If switching module is triggered, 
our system adopts ZigBee to get the user’s location in indoors. Then it calculates the distance between 
the user’s location and the nearby Wi-Fi network AP’s location to find the nearest Wi-Fi network AP’s 
location. Thus it can get the distance between user and nearest Wi-Fi network AP. Finally, it calculates 
the time needed for user to go from his/her location to the nearest Wi-Fi network AP by using (1). 
After that, the user begins to scan and connect to the Wi-Fi network. 
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Figure 5. Workflow of ZigBee assisted network switching scheme. 

6. Experiments for Outdoor Scenarios 

In this section, we use the log L to evaluate five outdoor schemes with appropriate thresholds and 
energy efficiency for different users.  

6.1. Experimental Setup 

The experiments are based on a scenario that a user lives in a suburban school area, as shown in Fig. 
6, where each circle represents the approximate coverage area of each network. We use ZTE X876 
smartphone for our data collection. It is a Google Android 2.2 smartphone with integrated Wi-Fi 
interface and is capable of EDGE data connectivity. It has a battery capacity of 1500mAh at 3.7 volts. 
We have implemented our system, called SwitchR. The red circle represents a Wi-Fi network and the 
blue one represents the user. We also developed other three software tools, which will be discussed in 
the following three parts, to record our experimental data with minimal intrusion to the normal 
smartphone operation. 

 

Figure 6. Networks used in experiments.  
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6.1.1 Log Collection 

Our first software, called Log Collector, records the Wi-Fi network around the user. We discover 
the Wi-Fi network by periodically scanning its signal. We go around the suburban school area, and 
when we discover a Wi-Fi network, the Log Collector logs this Wi-Fi network in the log L, locally. 
Therefore, given a user’s location, we can easily know whether the user is in the range of a Wi-Fi 
network by checking the log L. 

6.1.2 Rate Collection 

We use the second software, called Rate Collector, to measure different users’ data rates every 30 
seconds, as shown in Fig. 7(a). As we can see from the figure, the data rate of the user in a continuous 
60 minutes experiment jitters seriously and changes from 0KB/s to 60KB/s. When the experiment 
starts, it begins to record user’s data rate periodically. The first version of Rate Collector records user’s 
data rate every 10 seconds, which is too frequent to represent the user’s average data rate.  

 

                          
(a)                                                                  (b) 

Figure 7. (a) Data rate of the user in a continuous 60 minutes. (b) Remaining capacity of 
battery in a 4-hour time period experiment. 

6.1.3 Measuring Phone Power Consumption 

We have developed software based on our previous work [59], called PowerUsage, to measure the 
power consumption of our smartphone under controlled conditions. We use battery interface provided 
by Google APIs to record the current percent of the whole battery every minute. We carried out an 
experiment to use it to get the data from a 4-hour time period between 13:15 and 17:15. Fig. 7(b) 
shows the remaining capacity of battery changes from 97 percent to 43 percent in the 4-hour time 
period experiment. 

6.2. Schemes for Comparison 

Here we describe other four experimental schemes, which are compared to the A-GPS switching 
scheme in this section. Two switching schemes are considered. In the first scheme, called GSM 
assisted network switching scheme (GSM switching for short), we use GSM to get the user’s location. 
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Then we get the nearest Wi-Fi network AP in the log L by using the user’s location information. 
Therefore, we can calculate the distance between user and nearest Wi-Fi network AP, and the time 
needed to switch to Wi-Fi network. In the second scheme, called scanning assisted network switching 
scheme (Scanning switching for short), we do not use the user’s location information. When the 
switching module is triggered, the user scans for Wi-Fi networks. The user connects to Wi-Fi network 
when he or she discovers one. We assume that the user moves towards the nearest Wi-Fi network AP, 
that is, we measure the lower bound of power consumption. 

In addition, two non-switching schemes will also be examined. In the first (non-switching) scheme, 
called always use GPRS (GPRS non-switching for short), we do not switch and always use GPRS to 
access the internet. While in the second scheme, called always use Wi-Fi (Wi-Fi non-switching for 
short), we always use Wi-Fi to surf the internet and do not switch as well. Moreover, in these two non-
switching schemes, GPRS and Wi-Fi are always available for us, and there is no need to switch 
between networks. 

In order to compare the five schemes, we divide users into four categories according to their 
behaviors (see Table 5). We will evaluate the five schemes in four thresholds (see Table 6) for 
different users. 

Table 5. Various user characteristics. 

User Application(s) Bandwidth 
U1 Text message Low 
U2 Text message and Web browsing Medium 
U3 Text message and Video streaming High 
U4 Text message and File downloading Very High 

Table 6. Different thresholds. 

Threshold Value 
B1 5 kb/s 
B2 10 kb/s 
B3 15 kb/s 
B4 20 kb/s 

6.3. Energy Consumption 

We evaluate the energy consumption of five outdoor schemes for different users under different 
thresholds. Using the full battery capacity of the smartphone, we measure the power consumption of 
different schemes before the phone runs out of power (total capacity of 19980 J). 

Fig. 8(a) shows the energy efficiency of five outdoor schemes for the user U1 under different 
thresholds B1, B2, B3 and B4. We observe that our A-GPS switching scheme is close to other two 
switching schemes. Ideally, they are the same in terms of energy efficiency due to the user U1 does not 
need switch from GPRS to Wi-Fi network. Our scheme consumes a little more power than the best 
scheme of five outdoor schemes because of the overhead of our system itself and high power 
efficiency for data transfers of the Wi-Fi network. As we can see from Fig. 8(a), the user U1 does not 
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need high bandwidth. Thus the bandwidth of GPRS is enough for U1, and the user U1 does not need 
any threshold. 

 

 
(a)                                                                     (b) 

 
(c)                                                                     (d) 

Figure 8. Energy efficiency in experiments. (a) U1. (b) U2. (c)U3. (d) U4. 

We plotted the energy efficiency of five outdoor schemes for the user U2 under different thresholds 
B1, B2, B3 and B4 in Fig. 8(b). As we can see from the figure, our scheme is the best among the three 
switching schemes under the threshold B1. There are two reasons behind this. First, A-GPS provides 
arguably the best combination of energy and accuracy for location sensing compare with GPS and 
GSM. Second, our scheme greatly reduces the numbers of unnecessary Wi-Fi scans on the mobile 
devices compare with other switching schemes. We observe that the user U2 does not need switch to 
Wi-Fi network under the thresholds B2, B3 and B4. Therefore, the three switching schemes are close, 
and the appropriate threshold for the user U2 is the threshold B1. 

As shown in Fig. 8(c), our scheme is always the best among the three switching schemes. The 
reasons behind this have been discussed previously. As we can see from Fig. 8(c), the user U3 always 
switches from GPRS to Wi-Fi network under the different thresholds. Our scheme also consumes a 
little more energy than the best scheme of five schemes due to the overhead of our system itself and A-
GPS. Fig. 8(c) shows the user U3 needs high bandwidth, and the appropriate threshold for the user U3 
is the threshold B4. 

The user U4 downloads a 50MB file from the Internet. Fig. 8(d) shows the energy efficiency of five 
schemes for the user U4 under different thresholds B1, B2, B3 and B4. In our experiments, our scheme is 
always the best of three switching schemes. Because of many unnecessary Wi-Fi scans of the scanning 
switching scheme, it wastes too much energy. Due to the high inaccuracy of GSM positioning, the 
GSM switching scheme also does many unnecessary Wi-Fi scans on the mobile devices. This leads to 
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its bad performance. Our scheme also consumes a little more energy than the best scheme, i.e. the 
Wi-Fi non-switching scheme. As we can see from Fig. 8(d), the user U4 needs very high bandwidth 
and the appropriate threshold for the user U4 is also the threshold B4. 

As shown in Fig. 9, the GPRS has a better performance than the Wi-Fi network under the user U1. 
However, under the users U2, U3 and U4, the Wi-Fi network has a much better performance than the 
GPRS. We observe that there is an approximate exponential increase in the average energy efficiency 
ratio of Wi-Fi to GPRS. It can be concluded that Wi-Fi provides the best combination of bandwidth 
and power efficiency for data transfers in the examined scenarios. 

 

Figure 9. Average energy efficiency ratio of Wi-Fi to GPRS. 

7. Simulations for Indoor Scenarios 

We use OMNeT++ to evaluate the five indoor schemes with appropriate thresholds and energy 
efficiency for different users in this section. 

7.1. Simulation Setup 

The simulations are based on a scenario that a user lives or works in a building. We deploy several 
ZigBee nodes, which are used to locate the user, in the building, and its approximate positioning 
accuracy is set to 5 meters. We also randomly deploy forty Wi-Fi network APs in the rectangle, of 
which the length is 2000 meters and width is 340 meters, around the building. The coverage area of 
each network is 100 meters. We assume that the user goes to the nearest Wi-Fi network AP at a 
constant speed of 1m/s, when he or she finds one. We also use the ZTE X876 smartphone as the 
mobile client for our simulations.  

We will compare other four schemes, which are introduced in Section 6.2, to the ZigBee switching 
scheme and evaluate the energy consumption of five indoor schemes in four thresholds (see Table 6) 
for different users (see Table 5). 

7.2. Energy Consumption 

We compare the energy consumption of five indoor schemes for different users under different 
thresholds. The results of simulations are shown in Fig.10. As we can see from the figure, the results of 
indoor simulations with different bandwidths under different schemes are similar to that of outdoor 
experiments. Consequently, we skip here the detailed analysis for the sake of simplicity.  
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(a)                                                                     (b) 

 
(c)                                                                     (d) 

Figure 10. Energy efficiency in simulations. (a) U1. (b) U2. (c)U3. (d) U4. 

8. Conclusions 

In this paper we have reviewed some typical smartphone applications, and discussed the power 
consumption of smartphones. We have conducted a measurement on power efficiency of EDGE and 
Wi-Fi radio of ZTE V880 smartphone. We have also summarized basic techniques of energy saving 
for smartphones. Furthermore, we have proposed a location-assisted Wi-Fi discovery scheme that uses 
user’s location information to discover the nearest Wi-Fi network AP. We leveraged complementary 
characteristics of Wi-Fi and GPRS to meet the user bandwidth needs and minimize the power 
consumption of smartphones. The proposed scheme allows the user to switch to the Wi-Fi interface 
intelligently when he or she arrives at the nearest Wi-Fi network AP. Thus it considerably reduces the 
number of unnecessary Wi-Fi scans on non-connected state. Our experiments and simulations show 
that it effectively saves energy for smartphones in certain scenarios.  

However, we simply used the data rate of the user to make switching decision. We did not take 
other factors, such as network conditions and QoS, into account to select the best network. Therefore, 
our switching decision making procedure is not flexible enough to handle various conditions. As we 
can see from our experiments, different users have different appropriate thresholds. Thus our system 
must be adaptable to different users. Further research is necessary in this regard. In addition, we will 
upload every mobile device’s log L and offload the matching computations to the cloud computing 
platform in future work. 
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