Skip to main content
Log in

Dynamic watermarking scheme for quantum images based on Hadamard transform

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 17 September 2014

Abstract

In this paper, a novel watermarking scheme for quantum images based on Hadamard transform is proposed. In the new scheme, a unitary transform controlled by a classical binary key is implemented on quantum image. Then, we utilize a dynamic vector, instead of a fixed parameter as in other previous schemes, to control the embedding process. The dynamic embedding vector is decided by both the carrier quantum image and the watermark image, which is only known by the authorized owner. The proposed scheme is analyzed from visual quality, computational complexity, and payload capacity. Analysis and results show that the proposed scheme has better visual quality under a higher embedding capacity and lower complexity compared with other schemes proposed recently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang, F., Zhang, X., Zhang, H.: Digital image watermarking capacity and detection error rate. Pattern Recogn. Lett. 28, 1–10 (2008)

    Article  Google Scholar 

  2. Yaghmaee, F., Jamzad, M.: Estimating watermarking capacity in gray scale images based on image complexity. EURASIP J. Adv. Signal Process. (2010). doi:10.1155/2010/851920

    MATH  Google Scholar 

  3. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum image for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2010)

    Article  MathSciNet  Google Scholar 

  5. Venegas-Andraca, S.E., Boss, S.: Storing, processing and retrieving an image using quantum mechanics. Proc. SPIE Conf. Quantum Inf. Comput. 5105, 137–147 (2003)

    Google Scholar 

  6. Latorre, J.I.: Image compression and entanglement. arXiv:quant-ph/0510031 (2005)

  7. Sun, B., Le, P.Q., Iliyasu, A.M., Adrian Garcia, J., Yan, F., Dong, J.F., Hirota, K.: A multi-channel representation for images on quantum computers using the RGB α color space. In: Proceedings of the IEEE 7th International Symposium on Intelligent Signal Processing, pp. 160–165 (2011)

  8. Zhou, R.G., Wu, Q., Zhang, M.Q., Shen, C.Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. (2012). doi:10.1007/s10773-012-1274-8

    Google Scholar 

  9. Zhang, Y., Lu, K.,Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Google Scholar 

  10. Simona, C., Vasile, M.: Image representation and processing using ternary quantum computing. Adapt. Nat. Comput. Algorithms. 7824, 366–375 (2013)

    Google Scholar 

  11. Zhang, Y., Lu, K., Gao, Y.H., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)

    Google Scholar 

  12. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inform. Sci. 186, 126–149 (2011)

    Article  MathSciNet  Google Scholar 

  13. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Fast geometric transformations on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Zhang, W.W., Gao, F., Liu, B., Wen, Q.Y., Chen, H.: A watermark strategy for quantum images based on quantum fourier transform. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0423-6

    Google Scholar 

  15. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    Article  Google Scholar 

  16. Vedeal, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1966)

    Google Scholar 

  17. Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  18. Barenco, A., Ekert, A., Suominen, K.-A., Torma, P.: Approximate quantum Fourier transform and decoherence. Phys. Rev. A 54, 139 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61301099, 61100187, 11201100), Heilongjiang Province Educational Department Funds of China (12521107), Heilongjiang Province Science and Technology Agency Funds of China (A201213), and the Youth Foundation at the Harbin University of Science and Technology (2011YF009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Wang.

Additional information

Communicated by T. Plagemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, X., Wang, S., A. Abd El-Latif, A. et al. Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimedia Systems 20, 379–388 (2014). https://doi.org/10.1007/s00530-014-0355-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-014-0355-3

Keywords

Navigation