Skip to main content
Log in

Learning for classification of traffic-related object on RGB-D data

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

In order to detect and recognize the traffic-related object, a learning-based classification approach is proposed on RGB-D data. Since RGB-D data can provide the depth information and thus make it capable of tackling the baffling issues such as overlapping, clustered background, the depth data obtained by Microsoft Kinect sensor is introduced in the proposed method for efficiently detecting and extracting the objects in the traffic scene. Moreover, we construct a feature vector, which combine the histograms of oriented gradients, 2D features and 3D Spin Image features, to represent the traffic-related objects. The feature vector is used as the input of the random forest for training a classifier and classifying the traffic-related objects. In experiments, by conducting efficiency and accuracy tests on RGB-D data captured in different traffic scenarios, the proposed method performs better than the typical support vector machine method. The results show that traffic-related objects can be efficiently detected, and the accuracy of classification can achieve higher than 98 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhan, W., Ji, X.: Algorithm research on moving vehicles detection. Procedia Eng. 15, 5483–5487 (2011). doi:10.1016/j.proeng.2011.08.1017

    Article  Google Scholar 

  2. Zhou, H., Chen, Y., Feng, R.: A novel background subtraction method based on color invariants. Comput. Vis. Image Underst. 117, 1589–1597 (2013). doi:10.1016/j.cviu.2013.07.008

    Article  Google Scholar 

  3. Liang, R., Yan, L., Gao, P., Qian, X., Zhang, Z., Sun, H.: Aviation video moving-target detection with inter-frame difference. 2010 3rd Int. Congr. Image Signal Process. 3, 1494–1497 (2010)

    Article  Google Scholar 

  4. Kuo, Y.-C., Pai, N.-S., Li, Y.-F.: Vision-based vehicle detection for a driver assistance system. Comput. Math. Appl. 61, 2096–2100 (2011). doi:10.1016/j.camwa.2010.08.081

    Article  Google Scholar 

  5. Evangelio, R.H., Pätzold, M., Sikora, T.: A system for automatic and interactive detection of static objects. In: IEEE Workshop on Person-Oriented Vision—POV, pp. 27–32 (2011)

  6. Gallego, J., Pardàs, M., Landabaso, J.-L.: Segmentation and tracking of static and moving objects in video surveillance scenarios. In: Image Processing, IEEE International Conference—ICIP, 2008, pp. 2716–2719 (2008). doi:10.1109/ICIP.2008.4712355

  7. Zhang, L., Song, M., Liu, Z., Liu, X., Bu, J., Chen, C.: Probabilistic graphlet cut: exploring spatial structure cue for weakly supervised image segmentation. CVPR 2013, 1908–1915 (2013)

    Google Scholar 

  8. Zhang, L., Song, M., Liu, X., Sun, L., Chen, C., Bu, J.: Recognizing architecture styles by hierarchical sparse coding of blocklets. Inf. Sci. (INS) 254, 141–154 (2014). doi:10.1016/j.ins.2013.08.020

    Article  Google Scholar 

  9. Zhang, L., Gao, Y., Hong, C., Feng, Y., Zhu, J., Cai, D.: Feature correlation hypergraph: exploiting high-order potentials for multimodal recognition. IEEE Trans. Cybern. 44, 1408–1419 (2014). doi:10.1109/TCYB.2013.2285219

    Article  Google Scholar 

  10. Zhang, L., Han, Y., Yang, Y., Song, M., Yan, S., Tian, Q.: Discovering discriminative graphlets for aerial image categories recognition. IEEE Trans. Image Process. 22, 5071–5084 (2013). doi:10.1109/TIP.2013.2278465

    Article  MathSciNet  Google Scholar 

  11. Psyllos, A., Anagnostopoulos, C.N., Kayafas, E.: Vehicle model recognition from frontal view image measurements. Comput. Stand. Interfaces 33, 142–151 (2011). doi:10.1016/j.csi.2010.06.005

    Article  Google Scholar 

  12. Lin, L., Luo, P., Chen, X., Zeng, K.: Representing and recognizing objects with massive local image patches. Pattern Recogn. 45, 231–240 (2012). doi:10.1016/j.patcog.2011.06.011

    Article  MATH  Google Scholar 

  13. Juang, C.-F., Chen, L.-T.: Moving object recognition by a shape-based neural fuzzy network. Neurocomputing 71, 2937–2949 (2008). doi:10.1016/j.neucom.2007.07.011

    Article  Google Scholar 

  14. Nanni, L., Brahnam, S., Lumini, A.: Random interest regions for object recognition based on texture descriptors and bag of features. Expert Syst. Appl. 39, 973–977 (2012). doi:10.1016/j.eswa.2011.07.097

    Article  Google Scholar 

  15. Pavel, F.A., Wang, Z., Feng, D.D.: Reliable object recognition using SIFT features. In: 2009 IEEE International Workshop on Multimedia Signal Processing, pp. 1–6 (2009). doi:10.1109/MMSP.2009.5293282

  16. Arróspide, J., Salgado, L., Camplani, M.: Image-based on-road vehicle detection using cost-effective Histograms of Oriented Gradients. J. Vis. Commun. Image R. 24, 1182–1190 (2013). doi:10.1016/j.jvcir.2013.08.001

    Article  Google Scholar 

  17. Wang, T., Zhu, Z., Taylor, C.N.: A multimodal temporal panorama approach for moving vehicle detection, reconstruction and classification. Comput. Vis. Image Underst. 117, 1724–1735 (2013). doi:10.1016/j.cviu.2013.02.011

    Article  Google Scholar 

  18. Kim, D., Rho, S., Hwang, E.: Local feature-based multi-object recognition scheme for surveillance. Eng. Appl. Artif. Intell. 25, 1373–1380 (2012). doi:10.1016/j.engappai.2012.03.005

    Article  Google Scholar 

  19. Tang, H., Yin, B., Sun, Y., Yongli, H.: 3D face recognition using local binary patterns. Sig. Process. 93, 2190–2198 (2013). doi:10.1016/j.sigpro.2012.04.002

    Article  Google Scholar 

  20. Wei, X., Phung, S.L., Bouzerdoum, A.: Object segmentation and classification using 3-D rang camera. J. Vis. Commun. Image R. 25, 74–85 (2014). doi:10.1016/j.jvcir.2013.04.002

    Article  Google Scholar 

  21. Maeda, D., Morimoto, M.: An object recognition method using RGB-D sensor. In: 2013 2nd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 857–861 (2013). doi:10.1109/ACPR.2013.156

  22. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Matching 3D models with shape distributions. In: SMI 2001 International Conference on Shape Modeling and Applications, pp. 154–166 (2001)

  23. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Intell. 21, 433–449 (1999)

    Article  Google Scholar 

  24. Swadzba, A., Wachsmuth, S.: A detailed analysis of a new 3D spatial feature vector for indoor scene classification. Robot. Auton. Syst. 62, 646–662 (2014). doi:10.1016/j.robot.2012.10.006

    Article  Google Scholar 

  25. Sgorbissa, A., Verda, D.: Structure-based object representation and classification in mobile robotics through a Microsoft Kinect. Robot. Auton. Syst. 61, 1665–1679 (2013). doi:10.1016/j.robot.2013.06.006

    Article  Google Scholar 

Download references

Acknowledgments

This paper draws on work supported in part by the following funds: National High Technology Research and Development Program of China (863 Program) under Grant number 2011AA010101, National Natural Science Foundation of China under Grant number 61002009 and 61304188, Key Science and Technology Program of Zhejiang Province of China under Grant number 2012C01035-1, and Zhejiang Provincial Natural Science Foundation of China under Grant number LZ13F020004 and LR14F020003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingmin Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Shi, X. & Zhao, N. Learning for classification of traffic-related object on RGB-D data. Multimedia Systems 23, 129–138 (2017). https://doi.org/10.1007/s00530-014-0427-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-014-0427-4

Keywords

Navigation