Skip to main content
Log in

Motion analytics of zebrafish using fine motor kinematics and multi-view trajectory

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Zebrafish is a useful animal model for studying human diseases such as muscle disorders. However, manual monitoring of fish motion is time-consuming and prone to subjective variations. In this paper, an automatic fish motion analytics framework is proposed. The proposed framework could be exploited to help validate zebrafish models of transgenic zebrafish that express human genes carrying mutations which lead to muscle disorders, thus affecting their ability to swim normally. To differentiate between wild-type (normal) and transgenic zebrafish, the proposed framework consists of two approaches to exploit discriminative spatial–temporal kinematic features which are extracted to represent zebrafish movements. First, the proposed approach studies precise quantitative measurements of motor movement abnormalities using a camera with the capability to record videos with high frames rates (up to 1,000 frames per second). This differs from previous works, which only tracked each fish as a single point over time. Second, the proposed approach studies multi-view spatial–temporal swimming trajectories. This differs from previous works which typically only considered single-view analysis of fish swimming trajectories. The proposed motion features are then incorporated into a supervised classification approach to identify abnormal fish movements. Experimental results have shown that the proposed approach is capable of differentiating between wild-type and transgenic zebrafish, thus helping to validate the zebrafish models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Altman, N.S.: An Introduction to Kernel and nearest neighbors nonparametric regression. Am. Stat. 46, 175–185 (1992)

    MathSciNet  Google Scholar 

  2. Beyan, C., Fisher, R.B.: Detecting abnormal fish trajectories using clustered and labelled data. In: Proceedings of IEEE International Confrence on Image Processing, Sept 2013, Melbourne, Australia, pp. 1476–1480 (2013)

  3. Cachat, J., Stewart, A., Utterback, E., Hart, P., Gaikwad, S., Wong, K., Kyzar, E., Wu, N., Kalueff, A.V.: Three-dimensional neurophenotyping of adult zebrafish behavior. PLoS ONE 6(3), 1–14 (2011)

    Article  Google Scholar 

  4. Cachat, J.M., Stewart, A., Utterback, E., Kyzar, E., Hart, P.C., Carlos, D., Gaikwad, S., Hook, M., Rhymes, K., Kalueff, A.V.: Deconstructing adult zebrafish behavior with swim trace visualizations. Zebrafish Neurobehav Protocols 51, 191–201 (2011)

    Article  Google Scholar 

  5. Cario, C.L., Farrell, T.C., Milanese, C., Burton, E.A.: Automated measurement of zebrafish larval movement. J. Physiol. 589(15), 3703–3708 (2011)

    Article  Google Scholar 

  6. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 1–27 (2011)

    Article  Google Scholar 

  7. Cheng, W., Tian, J., Burgunder, J-M., Hunziker, W., Eng, H-L.: Myotonia congenita-associated mutations in chloride channel-1 affect zebrafish body wave swimming kinematics. PLoS ONE 9(8), e103445 (2014)

    Article  Google Scholar 

  8. Fisher, R.B., Beyan, C.: Detection of abnormal fish trajectories using a clustering based hierarchical classifier. In: Proceedings of British Machine Vision Conference, Bristol, UK, Sept 2013, pp. 21.1-21.11 (2013)

  9. Fontaine, E., Lentink, D., Kranenbarg, S., Muller, U., Leeuwen, J., Barr, A.H., Burdick, J.W.: Automated visual tracking for studying the ontogeny of zebrafish swimming. J. Exp. Biol. 211, 1305–1316 (2008)

    Article  Google Scholar 

  10. Friedman, J.H., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. Ann. Stat. 28, 337–407 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Greena, J., Collins, C., Kyzar, E.J., Pham, M., Roth, A., Gaikwad, S., Cachat, J., Stewart, A.M., Landsman, S., Grieco, F., Tegelenbosch, R., Noldus, L., Kalueff, A.V.: Automated high-throughput neurophenotyping of zebrafish social behavior. J. Neurosci. Methods 210(2), 266–271 (2012)

    Article  Google Scholar 

  12. Liu, T.: A quantitative zebrafish phenotyping tool for developmental biology and disease modeling. IEEE Signal Process. Mag. 24(1), 126–129 (2007)

    Article  Google Scholar 

  13. Martineau, P.R., Mourrain, P.: Tracking zebrafish larvae in group: status and perspectives. Methods 62(3), 292–303 (2013)

    Article  Google Scholar 

  14. McClenahan, P., Troup, M., Scott, E.K.: Fin-tail coordination during escape and predatory behavior in larval zebrafish. PLoS ONE 7(2), 1–11 (2012)

    Article  Google Scholar 

  15. Mikut, R., Dickmeis, T., Driever, W., Geurts, P., Hamprecht, F., Kausler, B.X., Ledesma-Carbayo, M.J., Marée, R., Mikula, K., Pantazis, P., Ronneberger, O., Santos, A., Stotzka, R., Strähle, U., Peyriéras, N.: Automated processing of zebrafish imaging data: a survey. Zebrafish 10(3), 401–421 (2013)

    Article  Google Scholar 

  16. Mitchell, T.M.: Machine Learning. McGraw Hill, Maidenhead (1997)

    MATH  Google Scholar 

  17. Rosemberg, D.B., Rico, E.P., Mussulini, B.H.M., Piato, A.L., Calcagnotto, M.E., Bonan, C.D., Dias, R.D., Blaser, R.E., Souza, D.O., de Oliveira, D.L.: Differences in spatio-temporal behavior of zebrafish in the open tank paradigm after a short-period confinement into dark and bright environments. PLoS ONE 6(5), e19397 (2011)

    Article  Google Scholar 

  18. Schaefer, A.T., Claridge-Chang, A.: The surveillance state of behavioral automation. Curr. Opin. Neurobiol. 22(1), 170–178 (2012)

    Article  Google Scholar 

  19. Serra-Toro, C., Montoliu, R., Traver, V.J., Hurtado-Melgar, I.M., Nunez-Redo, M., Cascales, P.: Assessing water quality by video monitoring fish swimming behavior. In: Proceedings of International Conference on Pattern Recognition, Istanbul, Turkey, Aug 2010, pp. 428–431 (2010)

  20. Shortis, M.R., Ravanbakhsh, M., Shafait, F., Harvey, E.S., Mian, A., Seager, J.W., Culverhouse, P.F., Cline, D.E., Edgington, D.R.: A review of techniques for the identification and measurement of fish in underwater stereo-video image sequences. In: SPIE Conference on Videometrics, Range Imaging, and Applications XII, Munich, Germany, May 2013, pp. 1–10 (2013)

  21. Spampinato, C., Palazzo, S.: Hidden Markov models for detecting anomalous fish trajectories in underwater footage. In: IEEE International Workshop on Machine Learning for Signal Processing, Sept 2012, Santander, UK, pp. 1–6 (2012)

  22. Spampinato, C., Giordano, D., Salvo, S.D., Chen-Burger, Y.-H.J., Fisher, R.B., Nadarajan, G.: Automatic fish classification for underwater species behavior understanding. In: Proceedings of ACM International Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams, Firenze, Italy, Oct 2010, pp. 45–50 (2010)

  23. Spampinato, C., Palazzo, S., Boom, B., Ossenbruggen, J., Kavasidis, I., Salvo, R.D., Lin, F.-P., Giordano, D., Hardman, L., Fisher, R.B.: Understanding fish behavior during typhoon events in real-life underwater environments. Multimed. Tools Appl. 70(1), 199–236 (2014)

  24. Stewart, A.M., Gaikwad, S., Kyzar, E., Kalueff, A.V.: Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test. Brain Res. 1451, 44–52 (2012)

    Article  Google Scholar 

  25. Tian, J., Eng, H.-L.: Stochastic multiple fish tracking using motion and shape consistency. In: Proceedings of IEEE International Symposium on Consumer Electronics, Singapore, June 2011, pp. 268–271 (2011)

  26. Tian, J., Eng, H.-L.: Regularized high temporal resolution fish motion synthesis. In: IEEE Symposium Series on Computational Intelligence, Singapore, April 2013, pp. 37–41 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Satpathy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Satpathy, A., Ng, E.S. et al. Motion analytics of zebrafish using fine motor kinematics and multi-view trajectory. Multimedia Systems 22, 713–723 (2016). https://doi.org/10.1007/s00530-014-0441-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-014-0441-6

Keywords

Navigation