Skip to main content
Log in

3D Object retrieval based on viewpoint segmentation

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

In the last decades, extensive efforts have been dedicated to develop better 3D object retrieval methods. View-based methods have attracted a significant amount of attention, not only because of their state-of-the-art performance, but also they merely require some of a 3D object’s 2D view images. However, most recent approaches only deal with the images’ content difference without the discrepancy of view relative positions. In this paper, we propose a normal method for view segmentation, based on Markov random field (MRF) model, which consider not only the difference between the content of views but also the relative locations. Each view is obtained by projecting at certain viewpoints and angels, therefore, these locations can be applied to depict each view, with content of views. We use the MRF to implement view segmentation and choose the representative views. Finally, we present a framework based on the proposed view segmentation method for 3D object retrieval and the experimental results demonstrate that the proposed method can achieve better retrieval effectiveness than state-of-the-art methods under several standard evaluation measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akgul, C.B., Sankur, B., Yemez, Y., Schmitt, F.: 3d model retrieval using probability density-based shape descriptors. IEEE Trans Pattern Anal Mach Intell 31(6), 1117–1133 (2009)

    Article  MATH  Google Scholar 

  2. Ansary, T.F., Daoudi, M., Vandeborre, J.P.: A bayesian 3-D search engine using adaptive views clustering. IEEE Trans Multimed 9(1), 78–88 (2007)

    Article  Google Scholar 

  3. Bu, S., Liu, Z., Han, J., Wu, J., Ji, R.: Learning high-level feature by deep belief networks for 3d model retrieval and recognition. IEEE Trans Multimed 16(8), 2154–2167 (2014)

    Article  Google Scholar 

  4. Chen, D.Y., Tian, X.P., Shen, Y.T., Ouhyoung, M.: On visual similarity based 3d model retrieval. Comput Gr Forum 22(3), 223–232 (2003)

    Article  Google Scholar 

  5. Daras, P., Axenopoulos, A.: A 3d shape retrieval framework supporting multimodal queries. Int J Comput Vis 89(2), 229–247 (2010)

    Article  Google Scholar 

  6. Daras, P., Zarpalas, D., Tzovaras, D., Strintzis, M.G.: Efficient 3D model search and retrieval using generalized 3D radon transforms. IEEE Trans Multimed 8(1), 101–114 (2006)

    Article  Google Scholar 

  7. Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, D., Jacobs, D.: A search engine for 3d models. ACM Trans Gr 22(1), 83–105 (2003)

    Article  Google Scholar 

  8. Gao, Y., Dai, Q.: View-based 3-d object retrieval: challenges and approaches. IEEE Multimed Mag 21(3), 52–57 (2014)

    Article  Google Scholar 

  9. Gao, Y., Dai, Q., Wang, M., Zhang, N.: 3d model retrieval using weighted bipartite graph matching. Signal Processing: image Communication 26(1), 39–47 (2011)

  10. Gao, Y., Dai, Q.H., Zhang, N.Y.: 3d model comparison using spatial structure circular descriptor. Pattern Recog 43(3), 1142–1151 (2010)

    Article  MATH  Google Scholar 

  11. Gao, Y., Tang, J., Hong, R., Yan, S., Dai, Q., Zhang, N., Chua, T.S.: Camera constraint-free view-based 3-d object retrieval. IEEE Trans Image Process 21(4), 2269–2281 (2012)

    Article  MathSciNet  Google Scholar 

  12. Gao, Y., Tang, J.H., Li, H.J., Dai, Q.H., Zhang, N.Y.: View-based 3d model retrieval with probabilistic graph model. Neurocomputing 73(10), 1900–1905 (2010)

    Article  Google Scholar 

  13. Gao, Y., Wang, M., Ji, R., Zha, Z., Shen, J.: K-partite graph reinforcement and its application in multimedia information retrieval. Inform Sci 194(1), 224–239 (2012)

    Article  Google Scholar 

  14. Gao, Y., Wang, M., Ji, R.R., Wu, X., Dai, Q.: 3d object retrieval with hausdorff distance learning. IEEE Trans Ind Electron 61(4), 2088–2098 (2014)

    Article  Google Scholar 

  15. Gao, Y., Wang, M., Tao, D.C., Ji, R.R., Dai, Q.H.: 3-d object retrieval and recognition with hypergraph analysis. IEEE Trans Image Process 21(9), 4290–4303 (2012)

    Article  MathSciNet  Google Scholar 

  16. Gao, Y., Wang, M., Zha, Z.J., Tian, Q., Dai, Q.H., Zhang, N.Y.: Less is more: efficient 3-d object retrieval with query view selection. IEEE Trans Multimed 13(5), 1007–1018 (2011)

    Article  Google Scholar 

  17. Gao, Y., Yang, Y., Dai, Q., Zhang, N.: 3d object retrieval with bag-of-region-words. In: Proceedings of the ACM International Conference on Multimedia, pp. 955–958. Firenze, Italy (2010)

  18. Godil, A., Dutagaci, H., Akgul, C., Axenopoulos, A., Bustos, B., Chaoush, M., Daras, P., Furuya, T., Kreft, S., Lian, Z., Napoleon, T., Mademlis, A., Ohbuchi, R., Rosin, P.L., Sankur, B., Schreck, T., Sun, X., Tezuka, M., Verroust-Blondet, A., Walter, M., Temez, T.: Shrec ’09 track: Generic shape retrieval. In: Proceedings of Eurographics Workshop on 3D Object Retrieval, pp. 61–68. Munich, Germany (2009)

  19. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic representation of 3d shape descriptors. In: Proceedings of Eurographics symposium on Geometry processing, pp. 156–164. Aachen, Germany (2003)

  20. Kim, W.Y., Kim, Y.S.: A region-based shape descriptor using zernike moments. Signal processing: image communication 16(1), 95–102 (2000)

  21. Laga, H., Takahashi, H., Nakajima, M.: Spherical wavelet descriptors for content-based 3D model retrieval. In: Proceedings of IEEE International Conference on Shape Modeling and Applications, pp. 15–26. Sendai, Japan (2006)

  22. Leng, B., Guo, S., Zhang, X., Xiong, Z.: 3D object retrieval with stacked local convolutional autoencoder. Signal Process. 112, 119–128 (2015)

    Article  Google Scholar 

  23. Leng, B., Li, L., Qin, Z.: Made: A composite visual-based 3d shape descriptor. In: Proceedings of International Conference on Computer Vision / Computer Graphics Collaboration Techniques, pp. 93–104. INRIA, France (2007)

  24. Leng, B., Qin, Z.: A powerful relevance feedback mechanism for content-based 3d model retrieval. Multimed Tools Appl 40(1), 135–150 (2008)

    Article  Google Scholar 

  25. Leng, B., Qin, Z., Cao, X., Wei, T., Zhang, Z.: Mate: a visual based 3d shape descriptor. Chin J Electron 18(2), 291–296 (2009)

    Google Scholar 

  26. Leng, B., Qin, Z., Li, L.q.: Support vector machine active learning for 3d model retrieval. Journal of Zhejiang University SCIENCE A 8(12), 1953–1961 (2007)

  27. Leng, B., Xiong, Z.: Modelseek: an effective 3d model retrieval system. Multimed Tools Appl 51(3), 935–962 (2011)

    Article  Google Scholar 

  28. Leng, B., Xiong, Z., Fu, X.: A 3d shape retrieval framework for 3d smart cities. Front Comput Sci Chin 4(3), 394–404 (2010)

    Article  Google Scholar 

  29. Leng, B., Zeng, J., Yao, M., Zhang, X.: 3d object retrieval with multi-topic model combining relevance feedback and lda model. IEEE Trans Image Process 24(1), 94–105 (2015)

    Article  MathSciNet  Google Scholar 

  30. Leng, B., Zhang, X., Yao, M., Xiong, Z.: 3d object classification using deep belief networks. In: Proceedings of the 20th Anniversary International Conference on Multimedia Modeling, pp. II 128–139. Dublin, Ireland (2014)

  31. Leng, B., Zhang, X., Yao, M., Zhang, X.: A 3d model recognition mechanism based on deep boltzmann machines. Neurocomputing 151(Part 2, 5 March), 593–602 (2015)

  32. Liu, Z., Bu, S., Han, J.: Locality-constrained sparse patch coding for 3d shape retrieval. Neurocomputing 151(Part 2, 5 March), 583–592 (2015)

  33. Liu, Z., Tang, S., Bu, S., Zhang, H.: New evaluation metrics for mesh segmentation. Comput Gr 37(6), 553–564 (2013)

    Article  Google Scholar 

  34. Liu, Z., Tang, S., Xu, W., Bu, S., Han, J., Zhou, K.: Automatic 3d indoor scene updating with rgbd cameras. Comput Gr Forum 33(7), 269–278 (2014)

    Article  Google Scholar 

  35. Liu, Z., Xie, C., Bu, S., Wang, X., Han, J., Lin, H., Zhang, H.: Indirect shape analysis for 3d shape retrieval. Comput Gr 46(February), 110–116 (2015)

    Article  Google Scholar 

  36. Liu, Z.B., Wang, Z.S., Ma, C.B., Zhang, C., Mitani, J., Fukui, Y.: Shape alignment and shape orientation analysis-based 3d shape retrieval system. Multimed Syst 16(4), 319–333 (2010)

    Article  Google Scholar 

  37. Mademlis, A., Daras, P., Tzovaras, D., Strintzis, M.G.: 3d object retrieval using the 3d shape impact descriptor. Pattern Recog 42(11), 2447–2459 (2009)

    Article  MATH  Google Scholar 

  38. Mahmoudi, M., Sapiro, G.: Three-dimensional point cloud recognition via distributions of geometric distances. Gr Models 71(1), 22–31 (2009)

    Article  Google Scholar 

  39. Makadia, A., Daniilidis, K.: Spherical correlation of visual representations for 3d model retrieval. Int J Comput Vis 89(2), 193–210 (2010)

    Article  Google Scholar 

  40. Ohbuchi, R., Osada, K., Furuya, T., Banno, T.: Salient local visual featuers for shape-based 3d model retrieval. In: Proceedings of the IEEE International Conference on Shape Modeling and Applications, pp. 93–102. Stony Brook, NY, USA (2008)

  41. Osada, K., Furuya, T., Ohbuchi, R.: Local volumetric features for 3d model retrieval. In: Proceedings of IEEE International Conference on Shape Modeling and Applications, pp. 245–246. Stony Brook, New York, USA (2008)

  42. Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D.: Shape distributions. ACM Trans Gr 21(4), 807–832 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Papadakis, P., Pratikakis, I., Perantonis, S., Theoharis, T.: Efficient 3d shape matching and retrieval using a concrete radialized spherical projection representation. Pattern Recog 40(9), 2437–2452 (2007)

    Article  MATH  Google Scholar 

  44. Papadakis, P., Pratikakis, I., Theoharis, T., Perantonis, S.: Panorama: a 3d shape descriptor based on panoramic views for unsupervised 3d object retrieval. Int J Comput Vis 89(2), 177–192 (2010)

    Article  Google Scholar 

  45. Paquet, E., Rioux, M., Murching, A., Naveen, T., Tabatabai, A.: Description of shape information for 2-d and 3-d objects. Signal processing: image communication 16(1), 103–122 (2000)

  46. Passalis, G., Theoharis, T., Kakadiaris, I.A.: Ptk: A novel depth buffer-based shape descriptor for three-dimensional object retrieval. Vis Comput 23(1), 5–14 (2007)

    Article  Google Scholar 

  47. Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., Funkhouser, T.: A planar-reflective symmetry transform for 3d shapes. ACM Trans Gr 25(3), 549–559 (2006)

    Article  Google Scholar 

  48. Pu, J.T., Ramani, K.: On visual similarity based 2d drawing retrieval. Comput Aided Design 38(3), 249–259 (2006)

    Article  Google Scholar 

  49. Shih, J.L., Lee, C.H., Wang, J.T.: A new 3d model retrieval approach based on the elevation descriptor. Pattern Recog 40(1), 283–295 (2007)

    Article  MATH  Google Scholar 

  50. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Proceedings of Shape Modeling and Applications, pp. 167–178. Palazzo Ducale, Genova, Italy (2004)

  51. Toldo, R., Castellani, U., Fusiello, A.: The bag of words approach for retrieval and categorization of 3d objects. Vis Comput 26(10), 1257–1268 (2010)

    Article  Google Scholar 

  52. Vranić, D.V.: An improvement of rotation invariant 3D-shape based on functions on concentric spheres. In: Proceedings of IEEE International Conference on Image Processing, pp. 757–760. Barcelona, Catalonia, Spain (2003)

  53. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S., et al.: Constrained k-means clustering with background knowledge. In: Proceedings of the International Conference on Machine Learning, pp. 577–584. Williams College, Williamstown, MA, USA (2001)

  54. Wang, M., Gao, Y., Lu, K., Rui, Y.: View-based discriminative probabilistic modeling for 3d object retrieval and recognition. IEEE Trans Image Process 22(4), 1395–1407 (2013)

    Article  MathSciNet  Google Scholar 

  55. Wen, Y., Gao, Y., Hong, R., Luan, H.B., Liu, Q., Shen, J., Ji, R.: View-based 3d object retrieval by bipartite graph matching. In: Proceedings of the ACM International Conference on Multimedia, pp. 897–900. Nara, Japan (2012)

  56. Zarpalas, D., Daras, P., Axenopoulos, A., Tzovaras, D., Strintzis, M.G.: 3d model search and retrieval using the spherical trace transform. EURASIP J Adv Signal Process 39, 441–471 (2007)

    MATH  Google Scholar 

  57. Zeng, J., Leng, B., Zhang, X.: 3-D Object Retrieval Using Topic Model. Accepted for publication in Multimedia Tools and Applications (2014)

  58. Zhang, D., Lu, G.: Generic fourier descriptor for shape-based image retrieval. In: Proceedings of IEEE International Conference on Multimedia and Expo, pp. 425–428. Lausanne, Switzerland (2002)

  59. Zhang, L., Gao, Y., Hong, C., Feng, Y., Zhu, J., Cai, D.: Feature correlation hypergraph: Exploiting high-order potentials for multimodal recognition. IEEE Trans Cybern 44(8), 1408–1419 (2014)

    Article  Google Scholar 

  60. Zhang, L., Gao, Y., Xia, Y., Dai, Q., Li, X.: A fine-grained image categorization system by cellet-encoded spatial pyramid modeling. IEEE Trans Ind Electron 62(1), 564–571 (2014)

    Article  Google Scholar 

  61. Zhang, L., Gao, Y., Xia, Y., Lu, K., Shen, J., Ji, R.: Representative discovery of structure cues for weakly-supervised image segmentation. IEEE Trans Multimed 16(2), 470–479 (2014)

    Article  Google Scholar 

  62. Zhang, L., Han, Y., Yang, Y., Song, M., Yan, S., Tian, Q.: Discovering discrminative graphlets for aerial image categories recognition. IEEE Trans Image Process 22(12), 5071–5084 (2013)

    Article  MathSciNet  Google Scholar 

  63. Zhang, L., Song, M., Liu, X., Bu, J., Chen, C.: Fast multi-view segment graph kernel for object classification. Signal Processing 93(6), 1597–1607 (2013)

  64. Zhang, L., Song, M., Liu, X., Chen, C., Bu, J.: Recognizing architecture styles by hierarchical sparse coding of blocklets. Information Sciences 254, 141–154 (2014)

  65. Zhang, L., Song, M., Yang, Y., Zhang, Q., Zhao, C., Sebe, N.: Weakly supervised photo cropping. IEEE Trans Multimed 16(1), 94–107 (2014)

    Article  Google Scholar 

  66. Zhang, L., Yang, Y., Gao, Y., Yu, Y., Wang, C., Li, X.: A probabilistic associative model for segmenting weakly-supervised images. IEEE Trans Image Process 23(9), 4150–4159 (2014)

    Article  MathSciNet  Google Scholar 

  67. Zhang, L., Zhang, Y., Zimmermann, R.: Discriminative cellets discovery for fine-grained image categories retrieval. In: Proceedings of the ACM International Conference on Multimedia Retrieval, p. 57. Glasgow, UK (2014)

  68. Zhao, S., Yao, H., Zhang, Y., Wang, Y., Liu, S.: View-based 3D object retrieval via multi-modal graph learning. Signal Process. 112, 110–118 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The 3D model databases PSB and SHREC’09 are from the Shape Retrieval and Analysis Group at the University of Princeton, and the Shape Analysis Research Project 2009 Generic Shape Benchmark. This work is supported by the National Natural Science Foundation of China (No. 61103093), (No. 61472023), the New Teachers’ Fund for Doctor Stations, Ministry of Education (No. 20111102120017), and the National High-Tech Research and Development Plan of China (863) (No. 2013AA01A601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Leng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, B., Guo, S., Du, C. et al. 3D Object retrieval based on viewpoint segmentation. Multimedia Systems 23, 19–28 (2017). https://doi.org/10.1007/s00530-015-0454-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-015-0454-9

Keywords

Navigation