Skip to main content
Log in

Perceptual multi-exposure image fusion with overall image quality index and local saturation

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Realistic rendering of natural scenes captured by digital cameras is the ultimate goal of image processing. In recent years, high dynamic range (HDR) imaging has received increasing attention for producing high-quality images. Multi-exposure image fusion is one of the most popular methods to achieve an HDR-like image without tone mapping. However, existing fusion methods may result in serious color distortions due to the inappropriate image attribute selection. In this paper, we propose a multi-exposure image fusion method based on human visual perception with overall image quality index (OIQ) and local saturation. We adopt OIQ and local saturation to enhance the fusion quality of multi-exposure images and achieve natural color reproduction. Experimental results show that the proposed method can successfully enhance image quality and achieve realistic rendering of natural scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bandoh, Y., Qiu, G., Okuda, M., Daly, S.: Recent advances in high dynamic range imaging technology. In: Proceedings of IEEE International Conference on Image Processing, pp. 3125–3128 (2010)

  2. Kotwal, K., Chaudhuri, S.: An optimization-based approach to fusion of multi-exposure, low dynamic range images. In: Proceedings of International Conference on Information Fusion, pp. 1–7. SAQ (2011)

  3. Li, S., Kang, X.: Fast multi-exposure image fusion with median filter and recursive filter. IEEE Trans. Consum. Electron. 58(2), 626–632 (2012)

    Article  Google Scholar 

  4. Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S.: High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann, Burlington (2010)

    Google Scholar 

  5. Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Proceedings of ACM SIGGRAPH, vol. 31 (2008)

  6. Cadik, M., Wimmer, M., Neumann, L., Artusi, A.: Evaluation of HDR tone mapping methods using essential perceptual attributes. Comput. Gr. 32(3), 330–349 (2008)

    Article  Google Scholar 

  7. Drago, F., Myszkowski, K., Annen, T., Chiba, N.: Adaptive logarithmic mapping for displaying high contrast scenes. Comput. Gr. Forum 22(3), 419–426 (2003)

    Article  Google Scholar 

  8. Tumblin, J., Hodgins, J.K., Guenter, B.K.: Two methods for display of high contrast images. ACM Trans. Gr. 18(1), 56–94 (1999)

    Article  Google Scholar 

  9. Ward, L.G.: A contrast-based scale factor for luminance display. Gr. Gems 4, 415–421 (1994)

    Article  Google Scholar 

  10. Larson, G.W., Rushmeier, H., Piatko, C.: A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Trans. Vis. Comput. Gr. 3(4), 291–306 (1997)

    Article  Google Scholar 

  11. Ashikhmin, M.: A tone mapping algorithm for high contrast images. In: Proceedings of Eurographics Workshop on Rendering, pp. 145–156 (2002)

  12. Chiu, K., Herf, M.,Shirley, P., Swamy, S., Wang, C.: Spatially non-uniform scaling functions for high contrast images. In: Proceedings of Graphics Interface, pp. 245–245 (1993)

  13. Choudhury, P., Tumblin, J.: The trilateral filter for high contrast images and meshes. In: Proceedings of ACM SIGGRAPH (2005)

  14. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Trans. Gr. 21(3), 257–266 (2002)

    Article  Google Scholar 

  15. Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. ACM Trans. Gr. 21(3), 249–256 (2002)

    Article  Google Scholar 

  16. Tumblin, J., Turk, G.: LCIS: a boundary hierarchy for detail-preserving contrast reduction. In: Proceedings of ACM Annual Conference on Computer Graphics and Interactive Techniques, pp. 83–90 (1999)

  17. Pattanaik, S., Yee, H.: Adaptive gain control for high dynamic range image display. Proceedings of ACM Spring Conference on Computer Graphics, pp. 83–87 (2002)

  18. Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Trans. Gr. 21(3), 267–276 (2002)

    Article  Google Scholar 

  19. Schlick, C.: Photorealistic Rendering in Computer Graphics. Springer, Berlin, Heidelberg (1994)

    Google Scholar 

  20. Mertens, T., Kautz, J., Reeth, F.: Exposure fusion: a simple and practical alternative to high dynamic range photography. Comput. Gr. Forum 28(1), 161–171 (2009)

    Article  Google Scholar 

  21. Kumar, M., Dass, S.: A total variation-based algorithm for pixel-level image fusion. IEEE Trans. Image Process. 18(9), 2137–2143 (2009)

    Article  MathSciNet  Google Scholar 

  22. Li, S., Kwok, J.T., Tsang, I.W., Wang, Y.: Fusing images with different focuses using support vector machines. IEEE Trans. Neural Netw. 15(6), 1555–1561 (2004)

    Article  Google Scholar 

  23. Bogoni, L., Hansen, M.: Pattern-selective color image fusion. Pattern Recognit. 34(8), 1515–1526 (2001)

    Article  MATH  Google Scholar 

  24. Shen, R., Cheng, I., Shi, J., Basu, A.: Generalized random walks for fusion of multi-exposure images. IEEE Trans. Image Process. 20(12), 3634–3646 (2011)

    Article  MathSciNet  Google Scholar 

  25. Wang, Z., Bovik, A.C.: A universal image quality index. IEEE Signal Process. Lett. 9(3), 81–84 (2002)

    Article  Google Scholar 

  26. Mantiuk, R., Tomaszewska, A., Heidrich, W.: Color correction for tone mapping. Comput. Gr. Forum 28(2), 193–202 (2009)

    Article  Google Scholar 

  27. Khan, F., Anwer, R.M., Weijer, J., Bagdanov, A.D., Vanre, M., Lopez, A.M.: Color attributes for object detection. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3306–3313 (2012)

  28. Zheng, L., Wang, S., Tian, Q.: Coupled binary embedding for large scale image retrieval. IEEE Trans. Image Process. 23(8), 3368–3380 (2014)

    Article  MathSciNet  Google Scholar 

  29. Jung, C., Yang, Y., Jiao, L.: High dynamic range imaging on mobile devices using fusion of multi-exposure images. Opt. Eng. 52(10), 102004 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61271298) and the International S&T Cooperation Program of China (No. 2014DFG12780).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheolkon Jung.

Additional information

Communicated by Q. Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, P., Jung, C. & Fang, Y. Perceptual multi-exposure image fusion with overall image quality index and local saturation. Multimedia Systems 23, 239–250 (2017). https://doi.org/10.1007/s00530-015-0480-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-015-0480-7

Keywords

Navigation