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Abstract—The increasing demand for video streaming services
with high Quality of Experience (QoE) has prompted a lot of
research on client-side adaptation logic approaches. However,
most algorithms use the client’s previous download experience
and do not use a crowd knowledge database generated by users
of a professional service. We propose a new crowd algorithm
that maximizes the QoE. Additionally, we show how crowd
information can be integrated into existing algorithms and illus-
trate this with two state-of-the-art algorithms. We evaluate our
algorithm and state-of-the-art algorithms (including our modified
algorithms) on a large, real-life crowdsourcing dataset that
contains 336,551 samples on network performance. The dataset
was provided by WeFi LTD. Our new algorithm outperforms all
other methods in terms of QoS (eMOS).

I. INTRODUCTION

Dynamic Adaptive Streaming over HTTP (DASH) [1] is
the HTTP Adaptive Streaming (HAS) standard. It has been
recently adopted by YouTube (Google) and Netflix. DASH
splits a video into chunks and encodes each into several quality
representations.

A client’s DASH application often has a smart Adaptation
Logic (AL) module. The AL module is responsible for se-
lecting the most suitable quality representation to enhance the
client’s Quality of Experience (QoE) while considering factors
such as the client’s buffer and playback delay. QoE is affected
by factors such as the number of quality changes and their
sizes.

There is a tradeoff between increasing the video quality
and buffering additional video segments. A client’s player
often buffers a high number of segments to overcome network
outages.

Most of the current AL methods [2], [3], [4], [5], [6], [7],
[8], [9], [10], estimate the next suitable segment based on
estimates of previous segments without taking into account the
future network characteristics. However, knowledge of geo-
location network conditions can enable better decisions.

The term crowdsourcing was introduced by Howe [11].
Howe defined crowdsourcing as the act of taking a task
traditionally performed by a designated agent (such as an
employee or a contractor) and outsourcing it by making an
open call to an undefined but large group of people, especially
from an online community.

In the case of video adaptive streaming, crowdsourcing
makes it possible to collect mobile network data anonymously
and automatically. This is done using an application specially
designed to improve the AL decision. Neidhardt et al. [12]
reports that using many of the existing open datasets leads to
low accuracy because of extreme outliers and few measure-
ments for some of the cells. They note that cellular location
providers do not provide their complete data. In this work,
we present a real-world crowdsourcing dataset and test our
proposed solution based on different users.

We propose a Geo-Predictive Adaptive Logic (GPAL) algo-
rithm based on crowdsourcing data on network performance
provided by WeFi. WeFi collects granular information on mo-
bile network performance and application usage from millions
of devices, down to a 10× 10 meter geographical resolution.
A short 20-record sample of these data can be found in [13].

We dub our new crowd algorithm GPAL and show that it
outperforms state-of-the-art algorithms. Moreover, we show
that existing adaptation algorithms can be improved by using
crowd services. However, our algorithm outperforms these
algorithms even in this scenario. It is worth noting that our
crowd sourcing data was generated by users of a professional
service and not by a simulation.

The remainder of this paper is organized as follows: Section
II describes related work. Section III presents our proposed
crowd algorithms. Section IV present our dataset character-
istics. Section V presents the experimental setup and results.
Section VI discusses future work and conclusions.
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II. RELATED WORK

DASH AL is a well-investigated research topic. AL research
can be roughly divided into two different groups: past estima-
tion based AL and crowdsourcing based AL. Most work has
investigated past estimation algorithms.

Müller et al. [8] suggested a buffer based decision algorithm
that uses the previous segment bandwidth estimates and the
user’s current buffer duration to select a suitable quality rep-
resentation for downloading. The Multicast Adaptation Logic
(MAL) algorithm [10] uses a double Exponential Moving
Average (EMA) algorithm. One smooths the buffer size es-
timate and the other smooths the bandwidth estimate. This
is done to select the most suitable segment. Although MAL
was designed for multicast, it achieves good performance in
unicast networks [10].

Crowdsourcing AL methods have attracted much less at-
tention than past estimation based methods. Hung et al.
[14] proposed a video streaming control mechanism based
on location to overcome signal variations in train tunnels
and underground areas. Geo-location frameworks that have
the ability to predict future network conditions based on a
bandwidth lookup service and similar concepts can be found
in [15], [16], [17], [18], [19]. Acharya et al.[20] evaluated rate-
adaptation in a vehicular network based on signal strength and
throughput at a location as an indicator for congestion. Curcio
et al. [15] and Singh et al. [16] suggested server-side prediction
algorithms for RTP streaming. Curcio et al. [15] suggested
a framework with a predictive server which obtains: route,
speed, location and throughput from the client. However, this
study was based on simulation rather than real-world data.
Singh et al. [16] proposed building a Network Coverage Map
Service (NCMS) to make rate-control decisions over a Real
Time Protocol (RTP) using server-side adaptation algorithm.
Singh et al. however did not investigate performance on
datasets with a higher geographical coverage or more diverse
network connectivity conditions.

Yao et al. [17] showed that past bandwidth information is
a good indicator of the actual bandwidth at a given location.
Yao et al. found that location had greater influence than time,
based on traces. Nevertheless, their performance evaluation did
not take into account the number of switches or the playout
buffer size. Furthermore, it was gathered from a small set of
vehicles.

Riiser et al. [18] proposed a buffer based and a crowd-
based algorithm. Riiser et al. concluded that using past band-
width lookups led to far fewer rebuffering events and stabler
quality. Han et al. [21] investigated the extent to which the
available user mobile channel bandwidth is affected by con-
straints including location, time, speed, humidity and cellular
network type (3G/4G). Their scheme, called MASERATI,
outperformed Pure-DASH and LoDASH, where Pure-DASH
only uses the download throughput and LoDASH uses location
based bandwidth predictions as in [22], [18].

Liu et al. [23] suggested comparing the segment fetch time
with the media duration contained in the segment to detect

congestion and probe the spare network capacity. Liu’s algo-
rithm uses conservative step-wise up switching and aggressive
down switching. Hao et al.[19] suggested two algorithms: 1-
predict and n-predict. The 1-predict algorithm uses the playout
buffer and the next prediction to determine the most suitable
representation to download. The n-predict algorithm uses the
average throughput of the next n time steps as the algorithm’s
current prediction. Hao et al. [19] evaluated Liu et al.’s
algorithm and found that it achieved stable video quality but
with a very low average bitrate. They showed that n-predict
outperformed Liu et al’s algorithm as well as 1-predict .

Zou et al. [24] demonstrated that leveraging bandwidth
predictions can significantly improve QoE. They designed an
algorithm that combines bitrate prediction and rate stabiliza-
tion. They showed that during startup, their algorithm had
more than four times better video quality than heuristic-based
algorithms.

Riiser et al. [25] recorded 3G mobile traces in Oslo, Nor-
way, while traveling in different types of public transportation
(metro, tram, train, bus and ferry). However, the number of
contributors in the dataset was small.

Table I summarizes the papers presented above.

III. PROPOSED GEO-PREDICTIVE ALGORITHMS

We define the user playout buffer as B(t). The goal of the
AL modules is to maximize the overall quality of the stream,
while eliminating rebuffering (B(t) > 0). We measure the
quality in terms of its eMOS score [30] as shown in Eq. 1.

max(eMOS) s.t :

∀t > tstart 0 < B(t) ≤ Bmax

(1)

We first show how to integrate crowd information to existing
algorithms. This is done by estimating the bandwidth. The
estimate is based on the crowd and not on the network. We
demonstrate the approach with two state-of-the-art algorithms,
MAL (Section III-A) and MaxBW (Section III-B).

We also present a novel Geo-Predictive Adaptation Logic
(GPAL) algorithm that is designed to maximize the QoE
(Section III-C).

Our crowd bandwidth estimation algorithm is presented in
Algorithm 1. This algorithm was used for GPAL, Geo-MaxBW
and Geo-MAL.

Algorithm 1 Geo predictive bandwidth estimation algorithm,
used by GPAL, Geo-MaxBW and Geo-MAL.

1: g: current mobile geo-location.
2: v: current mobile speed.
3: w: highest quality average file size.
4: f : last downloaded segment throughput estimate.
5: radius: search radius.
6: Xbw(t): bandwidth estimate for the current time (t).
7: estimate: g,v
8: seg = vw

f
9: Xbw(t) = getCrowdPrediction(radius, g, seg)



TABLE I
COMPARISON OF ALGORITHMS

Paper Streaming
Protocol

Idea Trigger Action Quality Ad-
justment

Compared Algo-
rithms

Observed
Metrics

Mobility
Simulate

Singh et
el. [16] -
Geo-location
Assisted
Streaming
System
(GLASS)
Rate-
Switching

RTP/UDP
+
Temporal
Maximum
Media
Stream
Bit rate
Request
(TMMBR)

Avoiding buffer
underrun - client
looks ahead at
locations in its
vicinity for bad
coverage

Future Cov-
erage Hole

Client Pre-
Buffer

Client media
rate switch
according
to available
throughput
in the
coverage
hole

No adaptation
(RTCP), rate
switching
GLASS, late
scheduling
GLASS,
Omniscient
(Optimal)

packet loss
rate, average
receive
rate, Y
component
of the PSNR,
throughput

Actual
specific
bandwidth
trace

Yao et al.
[17] - BW-
MAP-TFRC

adaptive
TCP
streaming
with TCP
Friendly
Rate
Control
(TFRC)
[26]

Avoiding packet
loss - client up-
dates the server
when it changes
its location. The
server determines
the average band-
width at that lo-
cation in the past

Location
changed
by client
followed by
a new BW
value

Server
changes its
sending rate

Short
freezing
of the
TFRC and
disabling
the normal
operation of
TFRC when
needed

TFRC and BW-
MAP-TFRC

estimated
Mean
Opinion
Score [27],
Peak Signal-
to-Noise
Ratio
(PSNR),
Glitch
(Drop in the
streaming
quality)

Actual
specific
bandwidth
trace

Riiser et al.
[18]

Apple
Live
HTTP

Minimizing
rapid fluctuations
in quality and
avoiding buffer
underrun -
client’s estimate
of the number of
bytes that it can
download during
the remaining
time of the trip

Client
receives a
sequence of
bandwidth
averages for
its whole
path

Client plans
which qual-
ity levels to
use

Apple Live
HTTP
mechanism

Buffer-Based
Reactive,
History-Based
Prediction,
Omniscient
Prediction
(Optimal)

Buffer size,
selected rep-
resentations

Actual
specific
bandwidth
trace

Han et
al. [21] -
MASERATI

DASH Avoiding
frequent or
large video
quality changes

The
algorithm
finds the
most similar
database
entry and
estimates
the available
bandwidth

The bit
rate of the
next video
segment
is defined
by that
bandwidth

DASH
Adaptation
mechanism

Pure-DASH,
Location-
based DASH
(LoDASH) [18],
MASERATI

Playout
Success
Rate, Quality
of Segments,
Frequency
of Quality
Changes,
Degree of
Changed
Quality
Level

Actual
specific
bandwidth
trace

Hao et
al.[19] -
1-predict,
n-predict

DASH Achieving
continuous
playback -
DASH Based
algorithm with
an additional
function to
anticipate
future path
and bandwidth,
and to determine
the predicted rate

The server
calculates
the possible
bandwidth
and sends it
to the client

DASH
Client
applies the
best quality
level it can
afford

DASH
Adaptation
mechanism

Liu et al. [23],
Adobes Open
Source Media
Framework
(OSMF), 1-
Predict, N-
Predict

Segment
representa-
tion Level,
Ratio of
bandwidth
utilization,
rate of video
quality level
shift

Actual
specific
bandwidth
trace

Zou et al.
[24] - PBA

DASH Avoiding stalls,
preserving
stability while
maintaining
improved
average quality -
the client decides
which quality to
pick using the
buffer state and
the quality of
historical chunks

Buffer
occupancy
changes
all the
time during
download

Client can
decide when
to download
and quality
level

DASH FESTIVE [28] ,
BBA [29], opti-
mal( mixed in-
teger linear pro-
graming), PBA

Average
quality rate
supplied
in the first
360s/32s,
Number
of stalls,
Number of
switches

Actual
specific
bandwidth
trace



A. Geo-MAL

Dubin et al. [10] showed that using a Double Exponential
Moving Average (DEMA) estimator achieved good results
in unicast and multicast networks. Based on these results,
we present a new Geo-predictive MAL algorithm using a
crowdsource adapted DEMA estimator (Eqs. 2-3). The full
algorithm is presented in Algorithm 2.

The DEMA estimator uses a parameter to balance the
influence of the current measurement vs. the influence of
the previous estimate on the current estimate. Increasing the
parameter increases the weight of the current measurement
and decreases the weight of the previous estimate. In MAL
[10], they used α to denote the parameter used for the client’s
buffer estimate and β to denote the parameter used for the
channel bandwidth estimate. One of the main challenges is to
choose appropriate values for α and β to best comply with the
requirements of Eq. 1. Similar to [10] we used α = 0.2 and
β = 0.08. We define Sb(t) as the smoothed buffer estimate
and Sbw(t) as the smoothed bandwidth estimation:

Sb(0) = B(0)

∀t > 0 Sb(t) = (α)B(t) + (1− α)Sb(t− 1)
(2)

Sbw(0) = Xbw(0)

∀t > 0 Sbw(t) = (β)Xbw(t) + (1− β)Sbw(t− 1)
(3)

B. Geo-MaxBW Adaptation Logic

The MaxBW algorithm [2] adaptive decision is based on
the measured download time of each segment and the average
measured bitrate of the whole session. The Geo-MaxBW
algorithm uses a crowd-based bandwidth estimate as presented
in Algorithm 1.

C. Geo-Predictive Adaptation Logic (GPAL)

The GPAL algorithm, Algorithm 3, determines the represen-
tation of the next media segment to be fetched. The algorithm
estimates the current segment download path based on the
client’s location and speed. It predicts the future path network
bandwidth conditions based on the client’s playout buffer and
the crowd estimated throughput. The algorithm calculates the
playout buffer fullness ratio (Bp) based on the maximum
between the current buffer levels divided by the maximum
buffer size allocation and 10%. We used the 10% to select a
higher bandwidth when the playout buffer is drained.

IV. DATASET

The WeFi dataset contains 336, 551 samples from the Cal-
ifornia I110 and I405 interstates. The I110 is an interstate
highway in the Los Angeles area and connects San Pedro
and the port of Los Angeles with downtown Los Angeles and
Pasadena. The I405 is a major north-south interstate highway
in Southern California. Table II summarizes the interstates’
general features.

Algorithm 2 Geo-MAL: Geo Predictive MAL Algorithm
1: critical : playout buffer contains 2 segments.
2: low: playout buffer contains 4 segments.
3: Bmax: maximum buffer size.
4: almost full : playout buffer contains Bmax − 2 segments.
5: safety factor: 0.5.
6: Estimate Xbw(t) for each segment download.
7: if start or re-buffering then
8: if next representation<estimated bandwidth · safety

factor then
9: Ask for the highest representation available under

that condition
10: end if
11: end if
12: if segment is received then
13: if

(
buffer is depleting

)
and((

buffer level ≤ critical
)

or(
(buffer level ≤ low) and (estimated bandwidth

< current representation bitrate)
))

then
14: Switch down
15: else if

(
next representation bitrate < estimated band-

width) and((
buffer level ≥ almost full

)
or(

buffer level is safe and is filling
))

then
16: Switch up
17: end if
18: end if

Algorithm 3 GPAL: Geo Predictive Adaptation Logic Algo-
rithm

1: ρ: predicted mobile bandwidth for next segment.
2: B(t): current playout buffer duration.
3: Bp: playout buffer fullness ratio.
4: Bmax: maximum buffer size.
5: τ : selected quality for download.
6: Bp = B(t)

Bmax

7: if first segment then
8: Bp = 0.5
9: end if

10: Estimate Xbw(t) for each segment download.
11: ρ = Xbw(t) ·Bp

12: τ = the highest bit rate representation for which τ < ρ
13: if Bp = 0.2 then
14: Reduce τ in one representation.
15: end if
16: return τ



I110 I405
Date of creation 1− 7.12.2014 1− 7.12.2014
Number of samples 125079 211472
Section length 30 km 17 km
Number of users 5838 6170
Number of samples 125079 211472

TABLE II
INTERSTATE ROADS SUMMARY

A large number of different applications generated the data.
Most of the applications either regularly send low rate updates
or are in the idle state (sending keep-alive messages).

We estimate the average throughput (bits per second) per
sample s for the interval x using Eq 4.

Ex =

∑
s∈xDs ·As∑

s∈xDs
(4)

where Ds is the total data received in sample s and As is
the average throughput in sample s. Figs 1-2 illustrate the
average throughput per sample for an interval (Ex) vs. the
throughput (As). In these figures, each path is divided into 12
meter segments.

Fig. 1. I110 average throughput per sample for an interval (Ex) vs. the
throughput (As)

Fig. 2. I405 average throughput per sample for an interval (Ex) vs. the
throughput (As)

A. Interstate I110

The interstate heat map is illustrated in Fig. 3(a) which
shows that the road throughput can vary between 0.5 −

5[Mb/s]. Fig. 3(b) depicts the measured bandwidth of the path
(average and STD). We define this bandwidth path as I110.

The median throughput of the interstate is 0.86[Mb/s], the
average throughput is 1.585[Mb/s] and the STD is 2. That
is, the path has many fluctuations. Thus, it is challenging for
adaptive streaming clients to adapt to its network conditions.

Fig. 3(c) depicts the throughput density and the sample
densities along the route. We split the throughput density
into fixed bins from 0 to the maximum observed throughput,
10[Mb/s]. It is clear that lower throughput in the ranges of
0−2[Mb/s] are more likely while throughput above 5[Mb/s]
are less common. Fig. 3(d) shows the sample densities along
the route. From 23km the sample densities decrease. Figs. 3(e)
- 3(h) show the throughput behavior in different time ranges.
Obviously, the demand for bandwidth at night (21:00 - 3:00)
is much lower than during rush hour. Table. III summarizes
the average bit rate at different time periods.

Time range Average bit rate [Mb/s]
3:00-9:00 1.6
9:00-15:00 1.24
15:00-21:00 1.46
21:00-3:00 0.72

TABLE III
INTERSTATE I110 AVERAGE BIT RATE AT DIFFERENT HOURS

B. Interstate I405

The I405 interstate is shorter but has a higher number of
samples than the I110 interstate (see Table II). The interstate
heat map is illustrated in Fig. 4(a) which shows that the road
throughput varies between 0.5 − 5[Mb/s]. Fig. 4(b) depicts
the measured bandwidth of the path (average and STD). We
define this bandwidth path as I405A.

The median throughput of the interstate is 1.97[Mb/s], the
average throughput is 2.63[Mb/s] and the STD is 2.15. The
I405 interstate has a higher throughput average than I110. The
STD is slightly higher.

Fig. 4(c) illustrates the throughput density and the sample
densities along the route. We split the throughput density
into fixed bins from 0 to the maximum observed throughput
10[Mb/s]. The table shows that the I405 throughput density is
different from the I110 throughput density and the throughput
is better spread between 0.5 − 2.5[Mb/s]. Fig. 4(d) depicts
the density of the samples along the route. This road is more
evenly dense than I110. Figs. 4(e) - 4(h) show the throughput
behavior at different time periods. It shows that the throughput
demand on this road is higher even in the late hours (Fig. 4(h)).

V. EXPERIMENTS AND RESULTS

We describe our experimental setup and video representa-
tion information in Section V-A. We discuss our experimental
results Sections V-B, V-C and V-D.

A. Experimental Setup

This section describes our experimental settings and video
encoding configuration. We used the Big Buck Bunny (BBB)
[31] video encoded into fixed duration segments of 2 seconds.



(a) I110 throughput heat map. (b) I110 path positioning

(c) Bandwidth entropy (PMF) analysis (d) Samples density entropy (PMF) analysis (e) Route average throughput between 3:00 -
9:00

(f) Route average throughput between 9:00 -
15:00

(g) Route average throughput between 15:00 -
21:00

(h) Route average throughput between 21:00 -
03:00

Fig. 3. Interstate I110 dataset detailed depiction.

Table IV illustrates the BBB available representation stored in
the streaming server. The client playout buffer duration was
set to 30 seconds.

Fig. 5 illustrates our experimental setup. First, the user
requests (VLC [32]) the video MPD file from the HTTP
server. After the client receives it, the adaptation logic al-
gorithm requests the crowd estimate from the PostgreSQL
geo-predictive server. Then, the user sends a request to the
server using a simple API implementation which only sends
the following information to the server: the search radius
(250 meters), the user’s current location and the estimated
end point (which depends on the user’s average speed). The
geo-predictive module predicts the average throughput. Since
this API is very lightweight, the process delay is negligible.

We do not assume we know the route. Therefore, we used a
batch fetching mechanism. That is, before the current segment
download ends, we fetch the crowd estimate for the next
segment. Each adaptation logic can analyze the data or use
the API differently but the fetching optimization is beyond
the scope of this study. The DumyNet [33] shapes the traffic
according to the network scenario. As a result, the segment
download is delayed according to the network conditions. In
order to compare our work to state-of-the-art algorithms we
used the same segment fetching schema as these works, where
the client downloads each segment one after the other.

B. Experimental Results

In Eq. 1 we stated our goal. In our experiments Bmax was
30 seconds. All compared algorithms realized the constraints



(a) I405 throughput heat map. (b) I405 path positioning

(c) Bandwidth entropy (PMF) analysis (d) Samples density entropy (PMF) analysis (e) Route’s throughput average between 3:00 -
9:00

(f) Route’s throughput average between 9:00 -
15:00

(g) Route’s throughput average between 15:00
- 21:00

(h) Route’s throughput average between 21:00
- 3:00

Fig. 4. Interstate I405 dataset detailed depiction.

Representation SSIM PSNR [dB] Average bit rate [Kb/s]
50 0.719 24.4 51.05
100 0.8 28.3 98.91
200 0.89 32.4 193.31
250 0.914 34 240.96
500 0.96 38 480.15
750 0.971 40 721.56
1000 0.977 41.4 964.16
1500 0.985 0.91 1452.44
2000 0.988 44.5 1942.4
2400 0.989 45.28 2335.2041

TABLE IV
BIG BUCK BUNNY REPRESENTATION INFORMATION



Fig. 5. Experimental setup diagram

Algorithm Avergae eMOS
GPAL (our, Section III-C) 4.39
MaxBW ([2]) 4.21
Geo-MaxBW (our adaptation of [2], Section III-B) 4.35
MAL ([2]) 3.41
Geo-MAL (our adaptation of [10], Section III-A) 3.74
1-Predict ([19]) 3.24
n-Predict ([19]) 2.15
PBA ([24]) 2.89
MASERATI ([21]) 1.37

TABLE V
AVERAGE EMOS SCORE FOR ALL ALGORITHMS

of Eq. 1 (as can be seen in Figs. 6-7). Table V summarizes
the average eMOS score [30] for all the algorithms. The
table shows that our GPAL algorithm outperforms all other
algorithms. Additionally, the integration of crowd information
into state-of-the-art algorithms boosts their performance. Geo-
MaxBW eMOS score was 4.35 whereas the non-crowd-based
MaxBW eMOS score was only 4.21. Similarly, Geo-MAL
eMOS score was 3.74 whereas the non-crowd-based MAL
eMOS score was only 3.41.

C. Detailed Results of Interstate I110 and Discussion

In this section we present the experimental results for
Interstate I110. Fig.6 presents the bandwidth estimate, the
downloaded bitrate and the buffer estimate.

Fig. 6(b) shows that MaxBW had a relatively high band-
width. Nevertheless, the algorithm selected the suitable rep-
resentation. MaxBW does not constrain the number of repre-
sentation switches. As a result, the algorithm had the highest
number of quality switches (187). MaxBW achieved the high-
est eMOS score compared to all non-crowd algorithms without
any re-buffering events (see Table V). It is noteworthy that the
eMOS score includes factors such as the number of switch
events and re-buffering events.

Fig. 6(d) shows that MAL smoothed most of the small
bit rate variations and gave restrained bandwidth estimates
that translated into a low number of quality switches (33).
It did so without any prior knowledge about the path network
conditions. Note that the algorithm adjusted too late to the
decreasing channel throughput (150−200 seconds). When the

channel bitrate decreased even further, the algorithm failed to
recognize it and encountered 4 short re-buffering events.

Hao et al.[19] suggested two algorithms: 1-predict and n-
predict. Their goal was to put forward a crowd-based algorithm
with fewer representation switches that could also minimize
re-buffering events. Fig. 6(f) shows that 1-predict’s bit rate
estimates was relatively high. Even though the number of rep-
resentation switches was high (95) the algorithm maintained a
balanced playout buffer and downloaded high quality segments
without re-buffering events. The n-predict algorithm achieved
very different results compared to the 1-predict algorithm. Fig.
6(g) shows that the n-predict algorithm had the lowest number
of representation switches and that the playout buffers were
extremely high. But the n-predict algorithm tended to select
lower representations; thus, its eMOS score is the lowest (see
Table V).

The Prediction Based Adaptation (PBA) [24] algorithm
considers the buffer occupancy based on three buffer thresh-
olds and aggressively tries to stabilize rate selection. Fig.
6(h) shows that the algorithm tried to stay in the same
representation but the buffer occupancy tended to fluctuate
which caused serious re-buffering events.

The MASERATI algorithm uses a weighted average which
considers the past estimates and the adjusted bandwidth from
the crowd database. Fig. 6(i) shows that there was a relatively
high number of representation switches (82) whereas the total
re-buffering duration was 39 seconds. For a crowd algorithm
the average estimated throughput was low compared to other
crowd algorithms.

The Geo-MAL algorithm increased the number of repre-
sentation switches and minimized the number of re-buffering
events. Fig. 6(e) and Table. V show that Geo-MAL improved
the MAL eMOS score by 9.6% without any re-buffering
events. The MAL algorithm was designed for multicast net-
works. Thus, its throughput estimates are low and it tends
to download lower representations. It tends to smooth the
network’s fluctuations and thus its bandwidth estimates are
relatively low.

The Geo-MaxBW (Fig. 6(c)) crowd adaptation replaces
the MaxBW’s previous segment throughput estimate with the
crowd throughput estimate. The result was a slight reduction in
the number of representation switches and the average eMOS
score increased by 3.3%.

Our GPAL algorithm is a buffer based approach inspired
by the MaxBW algorithm combined with crowd knowledge.
Fig. 6(a) shows that the algorithm utilized the crowd in the
most effective way and yielded an average throughput estimate
of 1.3[Mb/s] compared to the other crowd algorithms that
generated lower utilization. GPAL had a relatively low number
of representation switches (48%). Table V shows that the
algorithm had the best average eMOS score.

D. Interstate I405 Results

Interstate I405 (see Fig. 4) differs from Interstate I110 and
its bandwidth is spread better in the path. This caused the
algorithms to select different representations than for I110. Fig.
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(b) MaxBW
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(c) Geo-MaxBW
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(d) MAL
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(e) Geo-MAL
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(f) 1-Predict
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(g) n-Predict
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(h) PBA
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Fig. 6. Algorithms’ bandwidth and buffer estimates with the selected video bitrate for the Interstate I110 path.

7 shows that the MAL algorithm, which is an exponential mov-
ing average based algorithm, smooths the bandwidth estimate.
Surprisingly, compared to I110 the algorithm did not have
re-buffering events, but this time Geo-MAL did. MAL based
algorithms do not check whether the estimated throughput or
crowd throughput are lower than the selected representation.
This behavior led to re-buffering. The MaxBW algorithm
exhibited good performance, similar to I110. However the
number of representation switches increased to 130. The Geo-
MaxBW reduced the number of representation switches to 28.
The other algorithms’ behavior was similar to I110. Table V
shows that the average eMOS score for MaxBW gave the best
result for non-crowd algorithms whereas GPAL outperformed
all the other algorithms.

VI. CONCLUSION

We showed that the use of real-world crowd data can
improve existing algorithms and demonstrated it on two dif-
ferent algorithms: Geo-MAL and Geo-MaxBW. Geo-MAL
presented a 9.6% average eMOS score improvement over
MAL whereas Geo-MaxBW had a 3.3% improvement over
MaxBW. We proposed a new crowd-based algorithm called
GPAL that outperformed all other state-of-the-art algorithms.
We conclude that an optimal adaptation logic should estimate
the distance between the current conditions and the cloud
conditions. Our future work will aim to design an adaptation
algorithm that can leverage the advantages of past download
algorithms with crowd knowledge based on the conclusions
drawn from this work. An interesting approach would be to

implement machine learning algorithms (similar to Claeys et
al. [30]) combined with crowd data. An additional interesting
research direction would be to harness a client-side pre-fetch
and HTTP2 server-side push mechanism based on crowd
knowledge.
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Fig. 7. Algorithms’ bandwidth and buffer estimates with the selected video bitrate for the Interstate I405 path.
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