Skip to main content
Log in

Efficient lossless compression for depth information in traffic scenarios

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Modern day automotive features (e.g., in-vehicle augmented reality) require a depth of the environment as the input source. It is important that depth data can be transferred from one processing unit to another in a car. About 10 years ago, Stixel has been introduced as a mid-level representation of depth maps (disparities) which reduces the data volume thereof significantly. Since then, Stixel has been extensively researched and is nowadays a seriously considered solution for series production cars. Nevertheless, even after using a Stixel representation, the depth data can hardly fit into a low- or medium-bandwidth in-vehicle communication system, e.g., via a CAN bus. Hence, the cost-sensitive automotive industry is still seeking new solutions for the transmission of depth information using in-vehicle communication buses. In this paper, we present an efficient lossless compression scheme for Stixels as a potential solution to this problem. Our proposed algorithm removes both spatial and temporal redundancies in Stixels through a combination of predictive modeling and entropy coding. Evaluation shows that it outperforms general purpose compression schemes, e.g., zlib, by more than \(60\%\) in space savings. More importantly, we prove that using the proposed Stixel compression, depth information could be transmitted through a less expensive CAN bus, whereas a much more expensive FlexRay bus is needed otherwise. We believe that this finding has great relevance for the automotive industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The horizontal and vertical coordinate start from zero.

References

  1. Alakuijala, J., Szabadka, Z.: Brotli compressed data format. https://tools.ietf.org/html/rfc7932 (2016). Accessed 5 Feb 2019

  2. Badino, H., Franke, U., Pfeiffer, D.: The Stixel world—a compact medium level representation of the 3d world. In: Proceedings of the 31st Deutsche Arbeitsgemeinschaft für Mustererkennung (DAGM) Symposium [German Conference on Pattern Recognition (GCPR)], pp 51–60. Jena, Germany (2009)

  3. Cordts, M., Rehfeld, T., Schneider, L., Pfeiffer, D., Enzweiler, M., Roth, S., Pollefeys, M., Franke, U.: The Stixel world: a medium-level representation of traffic scenes. Image Vis. Comput. 68, 40–52 (2017)

    Article  Google Scholar 

  4. Ding, J., Du, X., Wang, X., Liu, J.: Improved real-time correlation-based FPGA stereo vision system. In: IEEE International Conference on Mechatronics and Automation (ICMA), pp. 104–108. Xi'an, China (2010)

  5. Engel, D., Stütz, T., Uhl, A.: A Survey on JPEG2000 Encryption. Multimedia Syst. 15(4), 243–270 (2009)

    Article  Google Scholar 

  6. Gailly, J.L., Adler, M.: zlib: A Massively Spiffy Yet Delicately Unobtrusive Compression Library. https://www.zlib.net (1995). Accessed 5 Feb 2019

  7. Gallager, R., van Voorhis, D.: Optimal source codes for geometrically distributed integer alphabets. IEEE Trans. Inform. Theory 21(2), 228–230 (1975)

    Article  MATH  Google Scholar 

  8. Gautier, J., Le Meur, O., Guillemot, C.: Efficient depth map compression based on lossless edge coding and diffusion. In: Picture Coding Symposium (PCS), pp. 81–84. Kraków, Poland (2012)

  9. Gehrig, S., Eberli, F., Meyer, T.: A real-time low-power stereo engine using semi-global matching. In: International Conference on Computer Vision Systems (ICVS), pp. 134–143. Liège, Belgium (2009)

  10. Golomb, S.: Run-length encodings. IEEE Trans. Inform. Theory 12(3), 399–401 (1966)

    Article  MATH  Google Scholar 

  11. Hirschmüller, H.: Improvements in Real-time correlation-based stereo vision. In: IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV), pp. 141–148. Kauai, Hawaii, USA (2001)

  12. Hirschmüller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) 2, 807–814. San Diego, Carlifornia, USA (2005)

    Google Scholar 

  13. Hirschmüller, H., Innocent, P.R., Garibaldi, J.: Real-time correlation-based stereo vision with reduced Border errors. Int. J. Comput. Vis. 47(1), 229–246 (2002)

    Article  MATH  Google Scholar 

  14. Howard, P.G., Vitter, J.S.: Fast and efficient lossless image compression. In: Data Compression Conference (DCC), pp. 351–360. Snowbird, Utah, USA (1993)

  15. Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proc. IRE 40(9), 1098–1101 (1952)

    Article  MATH  Google Scholar 

  16. International Organization for Standardization: ISO 11898-1: road vehicles—controller area network (CAN)—Part 1: Data link layer and physical signaling (2003)

  17. International Organization for Standardization: ISO/IEC 15948: InformationTechnology—Computer Graphics and Image Processing—Portable NetworkGraphics (PNG): Functional Specification (2004)

  18. International Organization for Standardization: ISO/IEC 21320-1: Information technology—document container file—Part 1: Core (2015)

  19. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: International Conference on 3D Vision (3DV), pp. 239–248. Stanford, Carlifornia, USA (2016)

  20. Liu, Z., Qian, Y., Yang, L., Bo, Y., Li, H.: An improved lossless image compression algorithm LOCO-R. International Conference on Computer Design and Applications (ICCDA) 1, 328–331. Qinhuangdao, China (2010)

    Google Scholar 

  21. Mahoney, M.: Incremental journaling backup utility and archiver. http://mattmahoney.net/dc/zpaq.html (2009). Accessed 5 Feb 2019

  22. Nam, J.H., Sim, D.G.: Lossless video coding based on pixel-wise prediction. Multimedia Syst. 14(5), 291–298 (2008)

    Article  Google Scholar 

  23. Nemerson, E.: Squash Compression Benchmark. Data retrieved on 18 February 2018. http://quixdb.github.io/squash. Accessed 5 Feb 2019

  24. Ogniewski, J., Forssén, P.E.: What is the best depth-map compression for depth image based rendering? In: Computer Analysis of Images and Patterns (CAIP), pp. 403–415. Ystad, Sweden (2017)

  25. Pfeiffer, D., Franke, U.: Efficient representation of traffic scenes by means of dynamic Stixels. In: IEEE Intelligent Vehicles Symposium (IV), pp. 217–224. La Jolla, Carlifornia, USA (2010)

  26. Pfeiffer, D., Franke, U.: Towards a Global optimal multi-layer Stixel representation of dense 3D data. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 51.1–51.12. Dundee, Schottland, UK (2011)

  27. Pfeiffer, D., Gehrig, S., Schneider, N.: Exploiting the power of stereo confidences. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp. 297–304. Portland, Oregon, USA (2013)

  28. Rad, R.M., Attar, A., Shahbahrami, A.: A predictive algorithm for multimedia data compression. Multimedia Syst. 19(2), 103–115 (2013)

    Article  Google Scholar 

  29. Rao, Q., Grünler, C., Hammori, M., Chakraborty, S.: Stixel on the bus: an efficient lossless compression scheme for depth information in traffic scenarios. Multimedia Model. (MMM) I, 568–579. Dublin, Ireland (2014)

    Article  Google Scholar 

  30. Schneider, L., Cordts, M., Rehfeld, T., Pfeiffer, D., Enzweiler, M., Franke, U., Pollefeys, M., Roth, S.: Semantic Stixels: depth is not enough. In: IEEE Intelligent Vehicles Symposium (IV), pp. 110–117. Gotenburg, Sweden (2016)

  31. Shannon, C.: A mathematical theory of communication. The Bell System Technical J. 27, 623–656 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  32. Steinmetz, R.: Data compression in multimedia computing—principles and techniques. Multimedia Syst. 1(4), 166–172 (1994)

    Article  Google Scholar 

  33. Uhrig, J., Cordts, M., Franke, U., Brox, T.: Pixel-level encoding and depth layering for instance-level semantic labeling. In: German Conference on Pattern Recognition (GCPR), pp. 14–25. Hannover, Germany (2016)

  34. Weinberger, M.J., Seroussi, G., Sapiro, G.: LOCO-I: a low complexity, context-based, lossless image compression algorithm. In: Data Compression Conference (DCC), pp. 140–149. Snowbird, Utah, USA (1996)

  35. Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans. Image Process. 9(8), 1309–1324 (2000)

    Article  Google Scholar 

  36. World Wide Web Consortium: Graphics Interchange Format Specification, Version 89a (1989)

  37. Wu, X., Memon, N.: Context-based, adaptive, lossless image coding. IEEE Trans. Commun. 45(4), 437–444 (1997)

    Article  Google Scholar 

  38. Yue, H., Revesz, P.Z.: TVICS: An efficient traffic video information converting system. In: International symposium on temporal representation and reasoning (TIME), pp. 141–148. Leicester, England, UK (2012)

  39. Yue, H., Rilett, L.R., Revesz, P.Z.: Spatio-temporal traffic video data archiving and retrieval system. GeoInformatica 20(1), 59–94 (2016)

    Article  Google Scholar 

  40. Zimmermann, W., Schmidgall, R.: Bussysteme in der Fahrzeugtechnik - Protokolle und Standards [Bus systems in vehicle technology—protocols and Standards]. Vieweg (2011)

  41. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inform. Theory 23(3), 337–343 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Rao.

Additional information

Communicated by L. Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, Q., Chakraborty, S. Efficient lossless compression for depth information in traffic scenarios. Multimedia Systems 25, 293–306 (2019). https://doi.org/10.1007/s00530-019-00605-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-019-00605-z

Keywords

Navigation