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Abstract As an important format of multimedia, mu-

sic has filled almost everyone’s life. Automatic analyz-

ing music is a significant step to satisfy people’s need

for music retrieval and music recommendation in an

effortless way. Thereinto, downbeat tracking has been

a fundamental and continuous problem in Music In-

formation Retrieval (MIR) area. Despite significant re-

search efforts, downbeat tracking still remains a chal-

lenge. Previous researches either focus on feature engi-

neering (extracting certain features by signal process-

ing, which are semi-automatic solutions); or have some

limitations: they can only model music audio record-

ings within limited time signatures and tempo ranges.

Recently, deep learning has surpassed traditional ma-

chine learning methods and has become the primary

algorithm in feature learning; the combination of tradi-
tional and deep learning methods also has made better

performance. In this paper, we begin with a background

introduction of downbeat tracking problem. Then, we

give detailed discussions of the following topics: sys-

tem architecture, feature extraction, deep neural net-

work algorithms, datasets, and evaluation strategy. In

addition, we take a look at the results from the annual

benchmark evaluation–Music Information Retrieval Eval-

uation eXchange (MIREX), as well as the developments

in software implementations. Although much has been

achieved in the area of automatic downbeat tracking,
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some problems still remain. We point out these prob-

lems and conclude with possible directions and chal-

lenges for future research.

Keywords Music downbeat tracking · Music In-

formation Retrieval · Deep learning · Multimedia ·
Review

1 Introduction

Music is explicitly structured in a temporal manner.

The time structure of a music piece is often conceived as

a superposition of multiple hierarchical levels or time-

scales [65]. People can synchronize with these temporal

scales while playing instruments or dancing. The men-

sural level of these temporal structures (which people
tap their feet to) contains the approximately equally

spaced beat, which is the basic unit of time and pulse

(regularly repeating event) in music theory. Another

highly-related term is tatum, which is the lowest regu-

lar pulse train that a listener intuitively infers from the

timing of perceived musical events (i.e. a time quan-

tum). According to music’s metrical structure, the same

amount of beats are segmented sequentially into groups

called bars or measures. The first beat of each bar plays

a role of accentuation, and it is defined as a downbeat.

Downbeats are often used by composers and conductors

to help musicians read and navigate in a musical piece

and by music fans and amateurs to better learn music.

Automatically analyzing and estimating downbeat is of

significant importance when we are trying to analyze

and follow a music piece.

The research area that investigates computation mod-

els for tracking downbeats is known as Automatic down-

beat tracking (also called downbeat detection or down-

beat estimation). The goal of downbeat tracking is to
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automatically annotate the time points of all the down-

beats in a piece of music audio. An example of a song’s

annotation file is shown in Fig. 1. It is useful for var-

ious tasks such as music audio transcription [11, 90,

91, 98], chord recognition [16, 78], structure segmenta-

tion [68, 75, 79, 82, 89] and musicology analysis. Auto-

matic downbeat tracking can also be used in music

information retrieval [19, 21] and music recommenda-

tion [8, 81, 103]. This problem has long been paid at-

tention to in the community of Music Information Re-

trieval (MIR, which is an interdisciplinary research field

focusing on searching and obtaining information from

music. Related background knowledge include, but not

limited to, musicology, psychology, signal processing,

informatics, statistical learning and machine learning1.)

Automatic downbeat tracking has also attracted world-

wide scholars to exert their efforts to and has been

one of the challenging tasks of Music Information Re-

trieval Evaluation eXchange (MIREX) [21] in recent

years. The level of current interest by its recent inclu-

sion in automatic downbeat tracking problem amongst

the community is illustrated and compared in the MIREX

evaluation initiative. The most similar task related to

downbeat tracking is beat tracking [13,34,38,41,42,88],

which has been studied much longer than downbeat

tracking. A few researchers are also studying these two

tasks together [5, 60,60,62,83]. Tracking beats is diffi-

cult, however tracking downbeats is comparably hard.

Downbeat tracking problem has been studied from

very earlier. The premier one proposed by [43] mod-

els three metrical levels and is reported to successfully

track downbeats in 4/4 music with drums, however, it

is built upon hand-designed features and patterns. Un-

fortunately, annotating downbeat positions manually

is a time-consuming and expensive process and heav-

ily depends on the intuition of the developer. Hand-

crafted features and rules are also not readily available

for most music recordings [14, 25]. A general trend is

to divert the attention to automatical methods. Later

systems start to go from hand-crafted features to auto-

matically learned ones. One line uses probabilistic state-

space models, where rhythmic patterns are learned from

data and used as an observation model [58,60,83]. An-

other line uses Support Vector Machines (SVMs) to

track downbeat in a semi-automatic setting [55], and

later transforms into a fully automatic system with

a few beat-synchronous hand-annotated features. The

system of [14] tracks beats first and then calculates

the Kullback-Leibler divergence between two consecu-

tive band-limited beat synchronous spectral difference

1 For a more comprehensive survey of MIR, containing
background, history, fundamentals, tasks and applications,
we refer readers to the overview by [7,19,20,99].

frames to track downbeats. Papadopoulos and Peeters [80]

jointly tracks chords and downbeats by decoding a se-

quence of beat-synchronous chroma vectors using Hid-

den Markov Model (HMM). There are some problems

exist in these systems as well: they are applicable to

only several simple metrical structures [32, 58], or lim-

ited musical styles [53,60,96], or restrictive prior knowl-

edge [2,14,80]. Systems that forecast some necessary in-

formation beforehand are naturally prone to error prop-

agation.

Recent studies resort to deep learning to try to solve

the above problems. As the amount and variousness

of data increases, designing features and rules manu-

ally is infeasible. Deep learning can obtain higher-level

and abstract musical representations that fully charac-

terize the complexity of the problem that is hard to

design by hand. Many of these factors of variation can

be identified only through sophisticated, nearly human-

level understanding of music. Deep learning solves this

problem by introducing representations that are ex-

pressed in terms of other, simpler representations [36].

The advent of deep learning has had a significant im-

pact on many areas in machine learning and informa-

tion retrieval, dramatically improving the state-of-the-

art in tasks such as object detection, image classifica-

tion, speech recognition, and language translation. Re-

cent years have also witnessed a deluge of researches

in multimedia processing by using deep learning, such

as music recommendation, multimedia labeling and re-

trieval [77,101,102,107]. As an important and valuable

type of multimedia, music can also be well analyzed by

deep learning. The quintessential models of deep learn-

ing are multifarious deep neural networks (DNNs). This

survey focuses on DNN-based music downbeat track-

ing, which has achieved intriguing and effective results

[5, 22–24,59].

Downbeat tracking problem is a bit similar to classi-

fication or sequence labeling problem [46], whose aim is

to annotate a tag to each segment of the original audio

sequence. From an overall perspective, a typical DNN-

based automatic downbeat tracking system comprises

three major phrases: data preprocessing, feature learn-

ing and temporal decoding. An ensemble paradigm of

the downbeat tracking system is shown in Fig. 2. More

particularly, data preprocessing can be separated into

two procedures called segmentation and feature extrac-

tion, and after feature learning, there is a small proce-

dure called feature combination. Step by step, all of the

procedures are:

Segmentation: In all downbeat tracking systems,

segmentation would be the first step. By doing so makes

it much easier for subsequent stages to detect down-

beats because it does not have to deal with tempo
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Fig. 1 Example of a typical downbeat annotation (Albums-AnaBelen Veneo-01.beat from Ballroom dataset), showing down-
beat time (in red dashed line).

or expressive timing on one hand and it greatly re-

duces the computational complexity by both reducing

the sequence length of an excerpt and the search space.

Downbeat tracking is then reduced to a classification

or sequence labeling problem where each segment is de-

cided as a downbeat or not.

Feature Extraction: After segmenting, every piece

of the fragment is a possible candidate of a downbeat.

The first thing to do, is amplifying and extracting some

signal features so that the latter learning algorithm

could capture the characteristic easily. In western mu-

sic, the downbeats usually coincide with chord changes

or harmonic cues, whereas in non-western music the

start of a measure is often defined by the boundaries of

rhythmic patterns. Therefore, many algorithms exploit

one or more of these features to track the downbeats [5].

The most likely attributes–which are decided manu-

ally using domain-specific knowledge of music–that con-

tribute to the perception of downbeats are harmony,

timbre, bass content, rhythmic pattern, the local sim-

ilarity in timbre and harmony and percussion. Among

them, six attributes (harmony, timbre, bass content,

rhythmic pattern, the local similarity in timbre and

harmony) contribute to the grouping of beats into a

bar; two attributes (harmony and percussion) are beat-

synchronous features.

Feature Learning: The extracted features are then

running through the DNN. If features are more than one

kind, each of them is sent to independent neural net-

works as input, and these networks are called feature

adapted neural networks. This is a convenient approach

to work with features of different dimension and assess

the effect of each of them. More detailed illustration

about DNN-based feature learning methods will be dis-

cussed in Section 3.

Feature Combination: As it is important for the

following decoding process to reduce estimation errors,

leading to a tradeoff among the outputs from different

feature adapted neural networks. Durand et al. [22] use

an average of the observation probabilities obtained by

those independent networks. The average or sum rule

is in general quite resilient to estimation errors [57].

Temporal Decoding: Temporal decoding stage is

the last step of a downbeat tracking system; it an-

alyzes a downbeat likelihood sequence which is out-

put by DNNs and maps the sequence into a discrete

sequence of downbeats. Commonly-used methods are

Hidden Markov Model (HMM) and Dynamic Bayesian

Network (DBN). Krebs et al. [59] have experimented

and proved that an added DBN stage is performing

better than a simple DNN output (i.e. simply reports

downbeats if the output likelihood of DNN activations

exceeds a threshold). In Section 4 we will give a detailed

description of each algorithm.

Consequently, to give researchers a clear understand-

ing of DNN-based automatic downbeat tracking sys-

tem, this review expatiates each step of the system as

comprehensive as possible. More importantly, this pa-

per focuses on three different general DNN architec-

tures during the feature learning step and makes a brief

comparison among them. Additionally, we further go

through some work and information that are involved

in downbeat tracking researches.

The remainder of this paper is organized as follows.

Section 2 gives an overview of the segments and segmen-

tation methods for preprocessing. In Section 3, we will

summarize all the features that correlate to downbeats

and their extraction methods. Common and general

DNN models are depicted in Section 4. In the follow-

ing Section 5, several frequently used temporal decod-

ing and machine learning algorithms will be summed-

up. Section 6 gives a complete list of datasets used for

downbeat tracking problem. Some commonly-used eval-

uation methods are discussed in Section 7. Then in Sec-

tion 8 describes an incomplete list of the most relevant

software packages or libraries to downbeat tracking. Fi-

nally, Section 9 discusses the prevalent methods and

what the probable future directions are and what the

most challenging issues could be. This survey is struc-

tured logically rather than chronologically.
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Fig. 2 General architecture for downbeat tracking systems.

2 Segments and Segmentation Methods

The goal of music audio segmentation is to switch down-

beat annotation problem to sequence labeling problem.

Finding the exact timestamp of a downbeat is impos-

sible because time is continuous. Instead, we can split

music audio into a sequence of small segments and de-

cide each segment is a downbeat or not. If a segment is a

downbeat, then use the occurrence time of this segment

as the annotation of this downbeat. Doing segmentation

is desirable because tempo-invariant features decrease

the capacity and simplify the feature learning process

while making it less prone to over-fitting [22]. There

are three kinds of segments that are commonly used in

downbeat tracking: beat segment, tatum segment, and

frame segment.

Beat Segmentation: Durand et al. [22] and Krebs

et al. [59] temporally segment the signal into subdivi-

sions of the rhythmic beat. They seek the segmentation

that maximizes downbeat recall rate while emphasiz-

ing consistency in inter-segment durations. To achieve

these goals they extend the local pulse information ex-

tractor presented in [47] and process the following op-

erations: a) First, they use this toolbox to obtain a

tempogram of the musical audio. b) Then they use dy-

namic programming with strong continuity constraints

and emphasis towards high tempi. c) Finally they use

the decoded path to recover instantaneous phase and

amplitude values, construct the predominant local pulse

(PLP) function as in [47], and detect pulses using peak-

picking [18]. Using this procedure, the recall rate for

downbeat pulses is above 95% for each dataset, using a

100 ms tolerance window.

Tatum Segmentation: Durand et al. [23,24] adopt

the local pulse information extractor proposed to achieve

a useful tatum segmentation. The Processing procedure

is: a) Computing the tempogram of the musical audio

through a Short-Term Fourier Transform (STFT) and

only keep the tempo above 60 repetitions per minute

to avoid slow metrical levels. b) Tracking the best pe-

riodicity path by dynamic programming with the same

kind of local constraints. The following system can find

a fast subdivision of the downbeats at a rate that is

locally regular. c) Finally using the decoded path to re-

cover instantaneous phase and amplitude values, con-

struct the PLP function, and detect tatums using peak-

picking on the PLP. The resulting segmentation period

is typically twice as fast as the beats period, while it

can be up to four times faster.

Frame Segmentation: Böck et al. [5] use a very

simple way to do segmentation. They split audio into

overlapping frames, with 100 frames per second (100

fps), implying that two neighboring frames are located

10ms apart. This is also the initial processing stage

of STFT. Unlike beat and tatum, a frame is not as a

low-level music characteristic but as a raw audio piece.

Using frame segmentation avoids hand-crafted features

such as harmonic change detection [22, 23, 25, 56, 80],

or rhythmic patterns [53,54,60]. The relevant features

can be learned directly from the spectrogram, therefore

frame segmentation shows up in pair with auto-learned

features, and should co-operate with DNN-based fea-

ture learning algorithms (will be discussed in section

3.9 and section 4).
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3 Features and Feature Extraction Algorithms

Finding musical features that correlate to downbeat is

very helpful since these attributes make learning al-

gorithms or classifiers to apperceive downbeats more

easily. It is worth mentioning that in most cases hand-

crafted feature works well when the dataset is not large,

homogenous, high-qualified or identically-distributed.

By doing features extraction, the dimension of data is

reduced, so that learning algorithms could be less com-

plicated and run faster. In this section, we summarize

the most relevant features to downbeats and their cor-

responding extraction methods.

3.1 Harmony

In music, harmony considers the process by which the

composition of individual sounds, or superpositions of

sounds, is analyzed by hearing. Usually, this means si-

multaneously occurring frequencies, pitches (tones, notes),

or chords [69]. Change in harmony or timbre content

(will be described in section 3.3), for example, chord

changes, section changes or the entrance of a new in-

strument is often related to a downbeat position [22].

The feature of harmony is represented by chroma [3].

There are two main ways of extracting harmony.

One way is used by Durand et al. [22, 24] and they

extracts the harmonic feature as the following steps:

1)First, they down-sample the audio signal at 5512.5

Hz. 2)They then compute the STFT using a Hann win-

dow of size 4096 and a hop size of 512. 3)They ap-

ply a constant-Q filter-bank with 108 bins (36 bins per

octave). 4)They convert constant-Q spectrum to har-

monic pitch class profiles 5)Afterward, they remove oc-

tave information by accumulating the energy of equal

pitch classes. 6)They tune the chromagram by finding

bias on peak locations; smooth it by a median filter of

length 8. 7)In the end, they map it to a 12 bins rep-

resentation by averaging. The other way is conducted

by Krebs et al. [59] and they use the CLP chroma fea-

ture [76] with a frame rate of 100 frames per second.

Then they synchronize the features to the beat by com-

puting the mean value over a window of length 4b/nh
(4b is the beat period), yielding nh = 2 feature values

per beat interval.

3.2 Harmony Similarity

By looking at harmony similarity or timbre similarity

(detailed description is in section 3.4), we can observe

longer-term patterns of change and novelty that are in-

variant to the specific set of pitch values or spectral

shape. The similarity in harmony, for example, has the

interesting property of being key invariant and there-

fore can model cadences and other harmonic patterns

related to downbeat positions [22]. The feature of har-

mony similarity is represented by chroma similarity (CS).

The chromas are computed the same as in section

3.1, but they are then averaged to obtain segment syn-

chronous chroma. For each segment, compute the cosine

similarity of one segment synchronous chroma with the

24 segment synchronous chroma around it. The dimen-

sion of CS is 24.

3.3 Timbre

In music, timbre is the perceived sound quality of a

musical note, sound or tone. Timbre distinguishes dif-

ferent types of sound production, such as choir voices

and musical instruments. Alternations of the timbre-

inspired content occur more likely at the start of a new

section and near a downbeat position [24]. the feature

of timbre is represented by Mel-frequency cepstral co-

efficients (MFCC). Timbre extraction can also be done

in conjunction with an onset [55], tatum or beat seg-

mentation [24].

Durand et al. [22] compute the first 12 Mel-frequency

cepstral coefficients using [1], with a Hamming window

of size 2048, a hop size of 1024 and 32 Mel filters on a

signal sampled at 44100 Hz.

3.4 Timbre Similarity

The feature of timbre similarity is represented by MFCC

similarity (MS). The MFCC spectrograms are computed

the same as in section 3.3, but they are then averaged

to obtain segment synchronous MFCC spectrogram.

For each segment, computing the cosine similarity of

one segment-synchronous MFCC spectrogram with the

24 segment-synchronous MFCC spectrogram around it.

The dimension of MS is 24.

3.5 Bass Content

The bass content is low-frequency, containing mostly

bass instrument or kick drum, both of which tend to be

used to emphasize the downbeat [22]. The feature of

low-frequency content is represented by low-frequency

spectrogram (LFS).

Durand et al. [22,24] compute LFS as follows: 1)First

they downsample audio signal at 500 Hz. 2)Then they

compute STFT by a Hann window of size 32 and a

hop size of 4 to get the spectrogram. 3)They keep the
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spectral components below 150 Hz (the first 10 bins).

4)Finally, they clip the signal so that all values on the

9th decile are equal.

3.6 Rhythmic Pattern

Rhythm is the timing of musical sounds and silences

that occur over time. Rhythmic patterns are frequently

repeated each bar and are therefore useful to obtain the

bar boundaries. The feature of the rhythmic pattern is

represented by onset detection function (ODF).

Durand et al. in their early work [22] use 4 band-

wise ODF as computed by [58]. First, they compute the

STFT using a Hann window of size 1024 and a hop size

of 256 for a signal sampled at 44100 Hz. Second, they

compute the spectrogram and apply a 36-bands Bark

filter. Third, they use µ-law compression with µ = 100

and downsample the signal by a factor of two. Fourth,

they do envelope detection using an order 6 Butter-

worth filter with a 10 Hz cutoff. Fifth, a weighted sum of

20% of the envelope and 80% of its difference is done to

compute the ODF. Finally, they map ODF to 4 equally

distributed bands.

Durand et al. in their later work [23, 24] compute

a 3-band spectral flux ODF: 1)They perform STFT to

get the spectrogram. 2)They apply µ-law compression

with µ = 106 to the STFT coefficients. 3)They sum the

discrete temporal difference of the compressed signal

on 3 bands for each temporal interval, and subtract the

local mean and half wave. The frequency intervals of

the low, medium and high-frequency bands are [0 150],

[150 500] and [500 11025] Hz respectively.

3.7 Melody

A melody is a linear succession of musical tones that the

listener perceives as a single entity; it is a combination

of pitch and rhythm. For melody, some notes tend to

be more accented than others and both pitch contour

and note duration play important roles in our inter-

pretation of meter [26,50,84]. The feature of melody is

represented by melodic constant-Q transform (MCQT).

Durand et al. [23,24] get melody features as follows:

1)They downsample audio at 11025 Hz. 2)They conduct

STFT with Hann window of size 185.8 ms and hop size

11.6 ms. 3)They apply a constant-Q transform (CQT)

with 96 bins per octave, starting from 196 Hz to the

Nyquist frequency to the STFT, and average the energy

of each CQT bin q[k] with the following octaves:

s[k] =

∑Jk

j=0 q[k + 96j]

Jk + 1
(1)

with Jk such that q[k+ 96Jk] is below the Nyquist fre-

quency. 4)Then they only keep 304 bins from 392 Hz

to 3520 Hz that correspond to 3 octaves and 2 semi-

tones. 5)They use a logarithmic representation of s to

represent the variation of the energy more clearly:

r = log(|ŝ|+ 1) (2)

where ŝ is the restriction of s between 392 Hz and 3520

Hz. 6)They set every value which is under the 3rd quar-

tile Q3 of a given temporal frame to zero to get the final

melodic CQT:

mCQT = max(r −Q3(r), 0) (3)

3.8 Percussion

Percussion is commonly referred to as ”the backbone”

or ”the heartbeat” of a musical ensemble, often work-

ing in close collaboration with bass instruments, when

present.

Krebs et al. [59] compute a multi-band spectral flux:

1)First, they compute the magnitude spectrogram by

applying the STFT with a Hann window, hop size of

10ms, and a frame length of 2048 samples. 2)Second,

they apply a logarithmic filter bank with 6 bands per

octave, covering the frequency range from 30 to 17 000

Hz, resulting in 45 bins in total. 3)Third, they com-

press the magnitude by applying the logarithm. 4)For

every frame, they compute the difference between the

current and the previous frame. 5)Finally, they beat-

synchronize the feature sequence by only keeping the

mean value per frequency bin in a window of length

4b/np, where 4b is the beat period and np = 4 is the

number of beat subdivisions, centered around the be-

ginning of a beat subdivision.

3.9 Auto-learned Features

The selection of appropriate features is a difficult task.

Researchers are frequently unsure about which features

are useful, and it is difficult to extract the perfect fea-

tures. Although researchers generally just formulate a

limited hypothesis about which type of features may

be suitable according to their experience and domain

knowledge, this may lead to poor performance because

of the limitation of their hypothesis. Spontaneously, we

may want machine itself to automatically find out which

features are related to downbeat.

A study of automatic extracting features has con-

ducted by [5], who avoids hand-crafted features but

prefer the algorithm to learn some relevant features di-

rectly from spectrograms. These spectrograms are ob-

tained as follows: 1)Splitting audio signal overlapping
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frames and weighted with a Hann window of the same

length before being transferred to a time-frequency rep-

resentation with STFT. Two adjacent frames are lo-

cated 10 ms apart, which corresponds to a rate of 100

fps (frames per second). 2)Omitting the phase portion

of the complex spectrogram and use only the mag-

nitudes for further processing. 3)Using three different

magnitude spectrograms with STFT lengths of 1024,

2048, and 4096 samples (at a signal sample rate of 44.1

kHz). 4)Limiting the frequencies range to [30, 17000]

Hz to reduce the dimensionality of the features. 5)Pro-

cessing the spectrograms with logarithmically spaced

filters. A filter with 12 bands per octave corresponds

to semitone resolution, which is desirable if the har-

monic content of the spectrogram should be captured.

6)Using filters with 3, 6, and 12 bands per octave for

the three spectrograms obtained with 1024, 2028, and

4096 samples, respectively, accounting for a total of 157

bands. 7)Scaling the resulting frequency bands logarith-

mically to better match human perception of loudness.

8)Adding the first order differences of the spectrograms

to the features. The final dimension of the features 314.

4 DNN-Based Feature Learning Algorithms

So far, we have introduced downbeat-related music fea-

tures. The aforementioned features can directly flow

into the temporal decoding procedure to get the final

results, as some systems do [10, 27–30, 71]. This works

well when data is little, but as the number of data in-

creases, the diversity and complexity of data also grow

and some weak points may appear. Under this circum-

stance, the DNN-based feature learning algorithms are

inserted in between the feature extraction and temporal

decoding procedures to further extract and learn fea-

tures. The differences between systems with and with-

out DNN process exist in several aspects:

– The fundamental feature extraction algorithms learn

more low-level features, while DNN-based feature

learning algorithms discover more high-level and ab-

stract features.

– The aforementioned features are hand-crafted and

empirically-based which heavily resort to prior knowl-

edge of experts and need a very long period to ver-

ify effectiveness, while features learned by DNNs are

automatically-extracted which rely on the strength

of big data and can be verified quickly.

– More human prejudices exist in features designed

by experts but less in those extracted by learning

algorithms. Note that features discovered by learn-

ing algorithms may not in sync with our common

Fig. 3 Sketch diagram of a deep feed forward network.

sense, however they play a vital role in improving

model performance.

– Using DNN enlarges the number of parameters so

that the representation is more powerful.

In the following, we will describe and compare three

different DNN algorithms. These are the three main

models used in feature learning part: Multi-Layer Per-

ceptron (MLP), Convolutional Neural Network (CNN)

and Recurrent Neural Network (RNN).

4.1 Multi-Layer Perceptron

Multi-Layer Perceptron, or deep feedforward network,

is the quintessential deep learning model. In some pa-

pers, it is also called the general DNN [22]. In order not

to cause ambiguity, we refer to MLP instead of DNN

when we talk about this algorithm. While playing the

role of feature learner in downbeat tracking problems,

MLP is a series of functions to estimate the probabil-

ity of a feature being a downbeat. A sketch diagram of

MLP is shown in Fig. 3. An MLP is a cascade of L layer

functions of performing linear and non-linear transfor-

mations successively. The l-th layer functions are:

zl = xl−1Wl−1 + bl−1, (4)

fl(xl;θl) = ϕ(zl), θ = [Wl;bl] (5)

where xl ∈ Rd with dimension d is the input downbeat

feature vector when l = 1, and the output value of layer

l − 1 when l > 1. ϕ is the non-linear transformation

function (e.g. sigmoid, ReLU [35], maxout [37], etc.).

θl represents the l-th layer parameters; Wl ∈ Rd×dl is

a matrix of weights; bl ∈ Rdl is a vector of biases; dl
is the dimension of layer l. At L-th layer (the output

layer), ϕ is normally the sigmoid function:

sigmoid(zL) =
1

1 + e−zL
, (6)
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or the softmax function:

softmax(zL)i =
exp(zL)i∑K

k=1 exp(zL)k
. (7)

where K is the dimensionality of the output layer and

also is the number of classes we want to detect. Sigmoid

can only be used for binary classification issue, while

softmax can deal with more than two classes. Both of

them output conditional probabilities P(x1|Θ). As for

downbeat tracking problem, sigmoid function just gives

the probability of one feature x1 being a downbeat (i.e.

downbeat likelihood), while softmax gives every proba-

bility of one feature belonging to each class.

4.2 Convolutional Neural Networks

Convolutional Neural Networks are simply neural net-

works that use convolution in place of general matrix

multiplication in at least one layer [36]. A typical CNN

layer consists of three stages sequentially: convolution

stage, detector stage, and pooling stage [36]. The com-

plete CNN includes stacked convolutional and pooling

layers, at the top of which are multiple fully-connected

layers. A sketch diagram of CNN is shown in Fig. 4.

4.2.1 Convolution Stage

Given input downbeat features X ∈ Rc×w×h with chan-

nel number c, feature width w (could be time length),

and feature height h (could be frequency bandwidth),

the convolutional layer convolves X with K filters (or

called kernels) where each filter Wk ∈ Rc×m×n is a 3-

dimensional tensor with width m and height n. We will

obtainK feature maps, which constitute a 3-dimensional

tensor Z ∈ RK×wZ×hZ . The k-th feature map Zk is

computed as follows:

Zk = X ∗Wk + bk, k = 1, · · · ,K. (8)

where ∗ denotes the convolution operation and bk is a

bias parameter. The convolution on X is operated not

only along the feature height (frequency) axis but also

along the feature width (time) axis, which results in

a simple 2-dimensional convolution commonly used in

computer vision.

4.2.2 Detector Stage

Before doing the pooling part, we often operate an

element-wise non-linear function on the feature maps

we obtain after convolution. Here we also denote ϕ as

the non-linear function, and transform feature maps Z

to A:

A = ϕ(Z) (9)

4.2.3 Pooling

After the element-wise non-linearities, feature maps are

passed through a pooling layer. A pooling function re-

places the neuron values of the feature map at a certain

location with a summary statistic of the nearby neuron

values.

The most frequently-used pooling function is max

pooling. The max pooling [106] operation reports the

maximum output within a rectangular neighborhood.

With regard to the k-th activated feature map Ak, the

value at position (t, r) of the after-pooling feature map

Sk is computed by:

[Sk]t,r = maxpi=1{[Ak]t×s+i,r×s+i} (10)

where s is the step size and p is the pooling size. Other

popular pooling functions include the average of a rect-

angular neighborhood, the L2 norm of a rectangular

neighborhood, or a weighted average based on the dis-

tance from the central pixel. We do pooling only along

the frequency axis since it helps to reduce spectral vari-

ations while pooling in time has been shown to be less

helpful [86].

On the top of the complete CNN, fully-connected

layers are applied. Their structures are simply the same

as the aforementioned MLP. The input to this fully-

connected layer is a concatenation of all flattened fea-

ture maps Sk. The output is the downbeat likelihood.

4.3 Recurrent Neural Networks

Recurrent neural networks or RNNs [85] are a family of

neural networks for processing sequential data. Much

as a CNN is a neural network that is specialized for

processing a grid of values X such as an image, an RNN

is a neural network that is specialized for processing a

sequence of values x1, · · · ,xT .

Considering the downbeat feature as a sequence X =

[x1, · · · ,xT ]>, in this way, downbeat tracking can be

seen as a sequence labeling problem. Vector xt is in-

dexed with time step t, ranging from 1 to T . A one-

hidden-layer vanilla RNN is composed of three layers:

an input layer, a hidden layer, and an output layer.

Computation runs along both layer axis and time axis.

A one-hidden-layer vanilla RNN is shown in Fig. 5. The

hidden layer at time t is computed as:

ht = fh(xtWih + ht−1Whh + bh) (11)

where fh is the hidden layer activation function, Wih

is the weight matrix connecting input layer and hid-

den layer, Whh is the weight matrix between adjacent

time-step hidden layers (i.e. this weight matrix is shared
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Fig. 4 Sketch diagram of a deep convolutional neural network.

Fig. 5 Sketch diagram of a one-hidden-layer recurrent neural
network.

along the time axis) and bh is the bias vector of the hid-

den units. Formula 11 is also called the basic RNN unit.

Output layer at time t is computed as:

y′t = fo(htWho + bo) (12)

where fo is the output layer activation function, Who

is the weight matrix between hidden layer and output

layer and bo is the bias vector of the output units.

Practically, vanilla RNN is not performing well cause

its gradient vanishing and exploding issue. More so-

phisticated and powerful RNN units include Long-Short

Term Memory (LSTM) [52], Gated Recurrent Unit (GRU) [9]

etc.

If fo is sigmoid function, at time t output yt is a

scalar; the whole output sequence y′ = [y′1, y
′
2, · · · , y′T ]

represent the downbeat likelihood. If fo is softmax func-

tion and two classes (downbeat and non-downbeat) to

be classified, output y′t ∈ R2 at time t is a vector, con-

sisting of the downbeat likelihood and non-downbeat

likelihood value. We take out only the downbeat like-

lihood values as the final probability sequence y′ =

[y′1, y
′
2, · · · , y′T ]. Each element of this sequence is the

parallel-corresponding prediction to the input segment

sequence.

4.4 Comparison of DNNs on Downbeat Tracking

The preceding text has expatiated three kinds of DNN

models and described each model independently, how-

ever, there are some notable differences among them

when solving downbeat tracking problem. The differ-

ences are discussed from several perspectives:

– From the innate and intrinsic difference point of

view, MLP is more computationally expensive due

to its fully-connected architecture. Comparing to

MLP, the number of parameters of CNN and RNN

is much smaller. When the dimension of the down-

beat feature is small, these three models all work

well. MLP always is the first thought [22] because

it’s very flexible and the results can be used as a

baseline point of comparison.

– Choosing which model to use also depends on what

basic problem the authors see downbeat tracking as.

Some researchers view downbeat tracking as a se-

quence modeling problem. Feature values that fall

into one time unit (beat, tatum or frame) are con-

densed into one vector and all vectors of one au-

dio signal are organized in sequence according to

their occurrence time. In this case, RNN is the most

suitable model since it is the natural choice for se-

quence modeling tasks [5,59]. CNN can also be used

to model sequence and give the probability of each

component of a sequence being a downbeat or not,

just like the rhythmic neural network designed by

[23]. Some other researchers treat downbeat track-

ing as a binary classification problem first–let the

model learn to distinguish which input feature is

a downbeat feature and which is not. In this case,

MLP and CNN are more suitable models [22–24].
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When seeing it as binary classification problem, some

of the features at non-downbeat position need to

be randomly removed in order to obtain an equal

amount of features computed at downbeat and non-

downbeat positions [22]. Each downbeat-correlated

musical feature is considered independently and one

network is trained per feature. Output probabilities

obtained by these independent networks are aver-

aged or summed in the end and then are organized

in a probability sequence. Note that when training

these classifiers, the temporal correlation between

adjacent features is ignored.

Generally speaking, when the downbeat problem size is

small and we want to quickly get a rough result, MLP

would be the first to try; when we want to focus on the

spatial relationship within features (such as harmony

and melody features), CNN would be better; when we

want to model temporal characteristics while learning

features, RNN is the better candidate model.

5 Temporal Decoding Algorithms

Temporal decoding maps the output likelihood sequence

of DNN into the discrete sequence of downbeats, incor-

porating musical prior knowledge into the process. Two

frequently-used algorithms are HMM and DBN (in fact,

HMM is a simple and special case of DBN). In this sec-

tion, we will describe in detail the two algorithms and

how they solve the last problem.

5.1 Hidden Markov Model

Hidden Markov Model (HMM) is a probability model

with respect to time series. It describes a process, where

a hidden Markov chain randomly generates an invisi-

bly random state sequence, and then each state gener-

ates each observation. Suppose S = {s1, s2, · · · , sN} is

the set of all possible states, namely the state space;

V = {v1, v2, · · · , vM} is the set of all possible observa-

tions. HMM model is composed of three components:

initial state probability vector π ∈ RT , state transfor-

mation probability matrix A ∈ RN×N and observation

probability matrix B ∈ RN×M , where T is the time

length. So a HMM model λ can be symbolized as:

λ = (A,B,π) (13)

There are three fundamental problems with regard to

HMM: a) probability computation, b) learning prob-

lem, and c) decoding problem. Among them, the decod-

ing problem is what we try to solve at the last step of a

downbeat tracking system. Decoding problem is defined

as this: given model λ = (A,B,π) and observation

sequence o = [o1, o2, · · · , oT ], find the state sequence

y = [y1, y2, · · · , yT ] so that the conditional probability

P (y|o) achieves maximum (i.e. find the most possibly

corresponding state sequence).

5.1.1 Viterbi Algorithm

Viterbi Algorithm is proposed to solve the decoding

problem of HMM by using dynamic programming. It is

using dynamic programming to find a path that achieves

maximum or best probability; here a path corresponds

to a state sequence.

Viterbi algorithm is used to decode downbeat likeli-

hood to the most likely downbeat state sequence [22–

24]. They model the problem as follows:

1) State space S = {s1, s2, · · · , sN}, where N is the

number of possible states. On the whole, states are par-

titioned into two distinct states: downbeat and non-

downbeat. It is worth noting that the downbeat likeli-

hood depends on the bar length and the position inside

a bar, therefore a state is defined for each possible seg-

ment (beat or tatum) in a given bar. For those [22]

who segment audio signal into beat segments, states

correspond to downbeats and non-downbeats in a spe-

cific metrical position. For example, the downbeat in

4/4 and in 5/4 time signatures correspond to different

states. Likewise, the first non-downbeat in 3/4 is differ-

ent from its second non-downbeat and different to any

other non-downbeat in a different meter. For those [24]

who segment audio into tatum segments, time signa-

tures of 3,4,5,6,7,8,9,10,12,16 tatums per bar are al-

lowed. For example, considering two possible bars of

two and three tatums, there would be five different

states in the model. One state represents the first tatum

of the two-tatum bar, and one state represents the sec-

ond tatum of the two-tatum bar and so forth.

2) State transition probability matrix A = [aij ]N×N ,

where aij = P (yt+1 = sj |yt = si), i = 1, ..., N ; j =

1, · · · , N is the probability of state si at time t trans-

ferring to state sj at time t + 1. Values of A needs to

be trained to get (e.g. if a transition from i to j occurs

q times out of a total Q transitions from i to any state,

then aij = max( q
Q , 0.02)).

3) Observation probability matrix B = [bj(k)]N×M ,

where bj(k) = P (ot = vk|yt = sj), k = 1, · · · ,M ; j =

1, · · · , N is the probability of state sj at time t gen-

erates observation vk. Values of bj are distinguished

into two cases: a) the state sj corresponds to a segment

(tatum or beat) at the beginning of a bar: sj ∈ S1 ⊂ S,

then it is equal to the downbeat likelihood y′; or b) the

state sj corresponds to another position inside a bar:

sj ∈ S1 ⊂ S, then it is equal to the complementary
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probability 1− y′:

bj =

{
y′, if sj ∈ S1

1−y′, if sj ∈ S1

(14)

4) Initial state probability vector π = [πi]1×N , where

πi = P (y1 = si) is the probability of y1 being in state

si initially. For downbeat tracking problem, each value

πi is equally distributed: πi = 1
N ,∀si ∈ S.

Then we can obtain the final downbeat segment se-

quence following Algorithm. 1 below.

Algorithm 1 Viterbi Algorithm
Input:

Model λ = (A,B,π); observation sequence o =
[o1, o2, · · · , oT ].

Output:
Optimal state sequence y = [y1, y2, · · · , yT ].

1: Initialize δ1(i) = πibi(o1), i = 1, 2, · · · , N
2: ψ1(i) = 0, i = 1, 2, · · · , N
3: for t = 2, 3, · · · , T do
4: δt(i) = max

1≤j≤N
[δt−1(j)aji]bi(ot), i = 1, 2, · · · , N

5: ψt(i) = argmax
1≤j≤N

[δt−1(j)aji], i = 1, 2, · · · , N

6: end for
7: P∗ = max

1≤i≤N
δT (i)

8: yT = argmax
1≤i≤N

[δT (i)]

9: for t = T − 1, T − 2, · · · , 1 do
10: yt = ψt+1(yt+1)
11: end for
12: return optimal sequence y = [y1, y2, · · · , yT ];

5.2 Dynamic Bayesian Network

Dynamic Bayesian Network (DBN) is the generalization

of HMM. It is adept at dealing with ambiguous RNN

observations and finds the global best state sequence

given these observations. DBN can use the Most Prob-

able Explanation (MPE) feature to find the most prob-

able state sequence. The process is analogous to the

Viterbi algorithm with HMM, however, is more gen-

eral. [5, 59] use DBN as the temporal decoding algo-

rithm and they model the problem as follows:

1) State space S = {s1, s2, · · · , sN}. A state s(b, r) is

the DBN state space is determined by two hidden state

variables: the beat counter b and the time signature r

The beat counter counts the beats within a bar b ∈
{1, · · · , Nr} where Nr is the number of beats in time

signature r (e.g. r ∈ {2/4, 3/4, 4/4} for the case where

a 3/4 and a 4/4 time signature are modelled).

2) State transition probability matrix A = [aij ]N×N .

Element aij = P (sk|sk−1) is decomposed via:

P (sk|sk−1) = P (bk|bk−1, rk−1) . . . P (rk|rk−1, bk, bk−1)

(15)

where

P (bk|bk−1, rk−1) =

{
1, if bk = (bk−1 mod rk−1) + 1

0, otherwise

(16)

This forces that beat counter only moves steadily from

left to right in a bar. Time signature changes are only

allowed to happen at the beginning of a bar (i.e. bk <

bk−1), so the probability is defined as:

if bk < bk−1

P (rk|rk−1, bk, bk−1) =

 1−pr, if rk = rk−1
pr
R
, if rk 6= rk−1

else

P (rk|rk−1, bk, bk−1) = 0

(17)

where pr is the probability of a time signature change;

it is learned on the development set and [59] finds out

that pr = 10−7 is an overall good value, which makes

time signature changes improbable but possible.

3) Observation probability matrix B = [bj(k)]N×M ,

where bj(k) = P (featuresk|sj) is the probability of state

sj at time t generates observation vk. It can be obtained

by rescale the downbeat likelihood y′ = P (sj |featuresk)

through:

P (featuresk|sj) ∝
P (sj |featuresk)

P (sj)
(18)

4) Initial state probability vector π is a uniform

distribution over the states.

6 Datasets

In this section, we review the data available to down-

beat tracking researches and discuss two techniques to

divide datasets for training.

6.1 Available Datasets

Datasets2 used for training and evaluation are listed in

Table 1. They are:

2 A more complete list of datasets for MIR research is at:
http://www.audiocontentanalysis.org/data-sets/

http://www.audiocontentanalysis.org/data-sets/
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Table 1 Overview of the available datasets for Downbeat Tracking research

Dataset Reference # excerpts Total length Source

Ballroom [45,60] 685 5h 57m http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html
https://github.com/CPJKU/BallroomAnnotations

Beatles [12,51] 180 8h 09m http://www.isophonics.net/content/reference-annotations-
beatles

Carnatic [95,97] 176 16h 38m http://compmusic.upf.edu/carnatic-rhythm-dataset

Cretan [54] 42 2h 20m Not publicly available

GTZAN [70,100] 1000 8h 20m http://anasynth.ircam.fr/home/media/GTZAN-rhythm/
http://www.marsyas.info/tempo/

Hainsworth [48,49] 222 3h 20m http://www.marsyas.info/tempo/

HJDB [53] 236 3h 19m http://ddmal.music.mcgill.ca/breakscience/dbeat

Klapuri [58] 320 4h 54m http://www.cs.tut.fi/k̃lap/iiro/meter

Robbie Williams [16,33] 65 4h 31m http://ispg.deib.polimi.it/mir-software.html

Rock [15] 200 12h 53m http://rockcorpus.midside.com/

RWC Popular [39,40,44] 100 6h 47m https://staff.aist.go.jp/m.goto/RWC-MDB/

Turkish [96] 82 1h 33m http://compmusic.upf.edu/corpora

Ballroom: This dataset is (as its name implies)

ballroom dancing music. It consists of 685 (after remov-

ing duplications3) 30-second-length excerpts of Ball-

room dance music. The total length is 5h 57m. Genres

that it covers are Cha Cha, Jive, Quickstep, Rumba,

Samba, Tango, Viennese Waltz, and Slow Waltz.

Beatles: The full name of Beatles dataset is Iso-

phonics (Beatles only) Dataset. Songs of this dataset

come from 12 studio albums of The Beatles Band. It

consists of 180 excepts of the Beatles band. The total

length is 8h 09m.

Carnatic: Carnatic dataset is short for Carnatic

Music Rhythm Dataset. It is a set of art music tra-

dition from South India. It consists of 176 songs. The

total length is 16h 38m. The dataset is representative of

the present day performance practice in Carnatic music

and spans a wide variety of artists, forms and instru-

ments. All labels are manually annotated. It is worth

mentioning that the cultural definition of the rhythms

of Carnatic music contains irregular beats.

Cretan: Cretan dataset is a collection of Greek

music. The corpus consists of 42 full-length pieces of

Cretan leaping dances. While there are several dances

that differ in terms of their steps, the differences in

the sound are most noticeable in the melodic content,

and all pieces are considered belonging to one rhyth-

mic style. All these dances are usually notated using a

2/4 time signature and the accompanying rhythmical

patterns are usually played on a Cretan lute. While a

variety of rhythmic patterns exist, they do not relate to

3 There are 13 duplicates which are pointed out by
Bob Sturm: http://media.aau.dk/null_space_pursuits/

2014/01/ballroom-dataset.html

a specific dance and can be assumed to occur in all of

the 42 songs in this corpus.

GTZAN: GTZAN dataset was first proposed for

music genre classification problem [100]. This dataset

consists of 1000 unique 30-second-length excerpts of

evenly 10 genres. The total length is 8h 20m. The au-

dio content of GTZAN dataset is representative of the

real commercial music of various music genre. Also, this

dataset has a good balancing between tracks with swing

(blues and jazz music) and without swing.

Hainsworth: This dataset takes directly from CD

recordings of western music. It consists of 222 excepts,

and the total length is 3h 20m. Hainsworth includes six
genres and styles, including choral, rock/pop, dance,

classical, folk and jazz.

HJDB: HJDB dataset contains four genres: hard-

core, jungle, and drum and bass. These are fast-paced

electronic dance music genres that often employ rese-

quenced breakbeats or drum samples from jazz and

funk percussionist solos. This dataset is comprised of

236 excerpts of between 30 seconds and 2 minutes in

duration. The total length is 3h 19m. Downbeat an-

notations were made by a professional drum and bass

musician using Sonic Visualiser4.

Klapuri: Musical pieces of Klapuri Dataset were

collected from CD recordings. Klapuri dataset consists

of 320 excerpts, the total length is 4h 54m. Genres in-

clude classical, electronic/dance, hip hop/rap, jazz/blues,

rock/pop, soul/R&B/funk and unclassified. This dataset

was created for the purpose of musical signal classifica-

tion in general and the balance between genres is ac-

4 http://www.sonicvisualiser.org/

http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html
http://www.isophonics.net/content/reference-annotations-beatles
http://www.isophonics.net/content/reference-annotations-beatles
http://compmusic.upf.edu/carnatic-rhythm-dataset
http://anasynth.ircam.fr/home/media/GTZAN-rhythm/
http://www.marsyas.info/tempo/
http://ddmal.music.mcgill.ca/breakscience/dbeat
http://www.cs.tut.fi/~klap/iiro/meter
http://ispg.deib.polimi.it/mir-software.html
http://rockcorpus.midside.com/
http://compmusic.upf.edu/corpora
http://media.aau.dk/null_space_pursuits/2014/01/ballroom-dataset.html
http://media.aau.dk/null_space_pursuits/2014/01/ballroom-dataset.html
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cording to an informal estimate of what people listen

to.

Robbie Williams: This dataset is composed of five

albums of Robbie Williams and manual annotations. It

consists of 65 songs and its total length is 4h 31m.

Rock: Rock dataset is based on Rolling Stone mag-

azine’s list of the ”500 Greatest Songs of All Time.”

This dataset is still expanding with an increasing num-

ber of annotations. The newest version right now (Ver-

sion 2.1) is a subset of the complete list containing 200

songs and the total length is 12h 53m.

RWC Popular: RWC Popular dataset with AIST

Annotation is distributed as 80 Japanese popular songs

with Japanese lyrics and 20 western popular songs with

English lyrics. In all, this dataset consists of 100 ex-

cerpts. The total length is 6h 47m.

Turkish: The Turkish corpus collects Makam mu-

sic from Turkey, and is an extended version of the an-

notated data used in [96]. It includes 82 excerpts of

one-minute length each, and each piece belongs to one

of three rhythm classes that are referred to as usul in

Turkish Art music. 32 pieces are in the 9/8-usul Aksak,

20 pieces in the 10/8-usul Curcuna and 30 samples in

the 8/8-usul Düyek. This dataset is composed of 230 ex-

cerpts. Turkish dataset is manually annotated. What’s

also worth mentioning that, the cultural definition of

the rhythms contain irregular beats.

6.2 Datasets Division Strategies

Dataset and training technique both play a crucial role

in DNN. To spy on DNN training procedure and pre-

vent DNN from overfitting, we need to divide datasets

into a training set and a development set; to check

the generalization ability of DNN, we also need to di-

vide out a test set. There are two mainstream divi-

sion modes used in downbeat tracking problems: k-fold

cross-validation and leave-one-dataset-out.

K-fold cross-validation first divides the dataset

into k mutually-exclusive but identically-distributed sub-

sets of similar size. During one training procedure, k−1

subsets are combined as training set and the remaining

one as test set; then we could obtain k groups of train-

ing/test sets. After k rounds of training, the mean value

of k results is adopted as the final result. The common

k value is 8.

Leave-one-dataset-out is recommended in [66],

whereby in each iteration all datasets but one for train-

ing and development, and the holdout dataset for test-

ing. After removing the test dataset, we can split 75%

for training and 25% for development as in [59].

Fig. 6 An example of tolerance window (best viewed in
color—-red dot is in between gt’s tolerance window while
green dot is not).

7 Evaluation

In this section, we first describe how to evaluate whether

a single segment is labeled correctly; then extend the

evaluation to a whole song; finally, we take an overview

of Music Information Retrieval Evaluation eXchange

(MIREX) on Automatic Downbeat Estimation task and

summarize the performances.

Given a predicted annotation and a known and trusted

ground truth, methods of performance evaluation are

required to assess algorithms and define the state of

the art. The common metric is F-measure (which is

also used as the evaluation method by MIREX Auto-

matic Downbeat Estimation task), and the higher F-

measure, the better model. We assume that for a spe-

cific song there exists a predicted annotation sequence

y = {y1, · · · , ys, · · · , yS} and a ground truth annota-

tion sequence g = {g1, · · · , gt, · · · , gT } where S is the

length of predicted sequence and T is the length of the

ground truth sequence; S and T may not equals. Each

element value of the two sequences is time point (in

seconds).

7.1 Evaluating a Single Downbeat Label

A candidate annotation ys is considered correctly tracked

when it is within some fixed error window of an an-

notated ground truth downbeat gt, where s is possi-

bly not equal to t, however, is the neighbor of t. This

window is called the tolerance window, and the com-

mon size is ±70 ms. For instance, in Fig. 6, if a pre-

dicted downbeat ys meets certain gt’s tolerance win-

dow: (gt − 70ms) ≤ ys ≤ (gt + 70ms) (located between

two vertical red lines) , it is a true positive (just like

the red dot).

7.2 Evaluating on a Song

A predicted annotation is perfectly correct if it is a

true positive. If a predicted annotation is not in the

tolerance window of any ground truth annotation, it is

a false positive (just like the green dot in Fig. 6). The
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number of false negatives is counted in a tricky way: if a

ground truth annotation has no predicted annotations

meeting its tolerance window (just like gt−1 and gt+1

in Fig. 6), the amount of false negatives increases by

one. Obviously, there is a vacant predicted annotation

in its tolerance window, which is supposed to be a false

negative.

Add up all statistics of a specific song by comparing

y and g. The number of true positives tp, false positives

fp and false negatives fn are combined to calculate

precision and recall :

precision =
tp

tp+ fp
(19)

recall =
tp

tp+ fn
(20)

Then the F-measure on a song is computed as:

Fmeasure =
2× precision× recall
precision+ recall

(21)

Some researches [24] don’t take into account the first

5 seconds and the last 3 seconds of audio when evaluat-

ing a song. Because annotations are sometimes missing

or not always reliable.

7.3 Music Information Retrieval Evaluation eXchange

Since 2014, downbeat estimation systems have been

compared in an annual evaluation held in conjunction

with the International Society for Music Information

Retrieval5. Authors submit algorithms which are tested

on several datasets of audio and ground truth. For down-

beat estimation systems that require training, the dataset

is split into a training set for training and a test set for

evaluating the performance. We present a summary of

the algorithms submitted in Table 2. Due to the high

diversity of musical styles among these datasets, per-

formances of all algorithms are reported per each indi-

vidual dataset. Note that results of the year 2017 and

2018 haven’t come out.

7.3.1 MIREX 2014

In Audio Downbeat Estimation task of MIREX 2014,

six datasets were used to train and test the submit-

ted algorithms. Audio in these datasets is monophonic

sound files of CD-quality (PCM, 16 bit, 44100 Hz) ex-

cept Ballroom (originally lower quality, but resampled

to 44100 Hz).

5 http://www.music-ir.org/mirex/wiki/MIREX_HOME

Krebs’s submission FK3 achieved an F-measure of

0.792 on Ballroom dataset by using Dynamic Bayesian

Network. Durand et al.’s submission DBDR2 achieved

0.831 on Beatles dataset, using Deep Belief Network

and Viterbi Algorithm. Submission KSH1 of Krebs,

Holzapfel and Srinivasamurthy obtained the highest per-

formance on four datasets: Carnatic, Turkish, Cretan

and HJDB, with F-measure of 0.4, 0.775, 0.854 and

0.854 respectively. Algorithms used in KSH1 are bar

pointer model [54] and HMM.

7.3.2 MIREX 2015

Datasets used in 2015 was as same as last year. Du-

rand et al.’s submission DBDR3 reached 0.802 on Ball-

room dataset and submission DBDR2 0.855 on Beat-

les dataset using DNNs and Viterbi algorithm. Krebs

and Böck’s submission FK3 obtained an F-measure of

0.824 on HJDB dataset by using HMM. From an over-

all perspective, most submissions performed better on

Ballroom, Beatles and HJDB datasets. Audio in these

datasets basically is western music; while those in the

other three datasets are non-western music–whose time

signature and tempo range are not quite regular.

7.3.3 MIREX 2016

In 2016, the number of datasets is increased to eight,

and the new datasets are RWC classical and GTZAN.

By now, performance had steadily risen from early work

in 2014. The first thing to notice from Table 2 is that

performances on two datasets had reached above 0.9:

submission BK4 of Böck and Krebs obtained 0.908 on

Ballroom and 0.97 on HJDB by using RNN and Dy-

namic Bayesian Network. Durand et al.’s submission

DBDR2 achieved 0.872 on Beatles dataset using DNN

and Viterbi algorithm. Performances on the two new

datasets are not perfectly well, with F-measure of 0.599

(submission BK4) on RWC classical and 0.647 (submis-

sion KB2) on GTZAN.

7.4 Summary and Evolution of MIREX Performance

We show the annual evolution of the best performance

on each dataset of the MIREX Automatic Downbeat

Estimation task as a line chart displayed in Fig. 7. We

can see from this figure that the performances on three

western music datasets (Ballroom, Beatles and HJDB)

have slightly increased from the year 2014 to 2016; while

the F-measures on non-western music datasets (Car-

http://www.music-ir.org/mirex/wiki/MIREX_HOME
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Table 2 MIREX Systems from 2014-2017, sorted in each year by F-measure evaluation. The best system in each dataset in
that year are underlined. The best result in each dataset over the years are shown in bold font. Systems where no data is
available are shown by a dash (-). Results marked by an asterisk should be taken with care as in those cases overlapping test
and training sets were used.

Year Submission Code Abstract Approach(es)a
Performance (F-measure)

Ballroom Beatles Carnatic Turkish Cretan HJDB RWC classical GTZAN

2014 DBDR2 [92] deep belief network; Viterbi algorithm 0.705 0.831* 0.184 0.448 0.435 0.435 - -

DBDR3 [92] deep belief network; Viterbi algorithm 0.752* 0.816 0.2 0.448 0.415 0.415 - -

FK3 [28] dynamic Bayesian network 0.792* 0.588 0.169 0.197 0.535 0.535 - -

FK4 [29] dynamic Bayesian network 0.708* 0.63 0.194 0.24 0.512 0.512 - -

KSH1 [27] hidden Markov model 0.194 0.194 0.4 0.775* 0.854* 0.854 - -

2015 DBDR2 [93] CNN; Viterbi algorithm 0.763 0.855* 0.221 0.472 0.415 0.691 - -

DBDR3 [93] CNN; Viterbi algorithm 0.802* 0.847 0.216 0.446 0.449 0.682 - -

FK2 [30] hidden Markov model 0.503 0.713* 0.154 0.289 0.151 0.794 - -

FK3 [30] hidden Markov model 0.595* 0.709 0.166 0.298 0.167 0.824 - -

FK4 [30] hidden Markov model 0.179 0.178 0.474 0.142 0.233 0.12 - -

FK6 [30] hidden Markov model 0.756* 0.642 0.197 0.284 0.529 0.626 - -

2016 DBDR1 [94] CNN; Viterbi algorithm 0.838* 0.849 0.201 0.306 0.426 0.578 0.527* 0.615

DBDR2 [94] CNN; Viterbi algorithm 0.783 0.872* 0.231 0.415 0.418 0.629 0.532* 0.619

KB1 [31] RNN; hidden Markov model 0.898* 0.803 0.269 0.352 0.433 0.69 0.436 0.63

KB2 [31] RNN; hidden Markov model 0.86* 0.818* 0.33* 0.336* 0.443* 0.851* 0.428* 0.647

BK4 [87] RNN; dynamic Bayesian network 0.908* 0.865* 0.369* 0.537* 0.635* 0.97* 0.599* 0.638

DSR1 [71] Viterbi algorithm 0.463 0.665 0.184 0.317 0.265 0.208 0.251 0.397

CD4 [10] Viterbi algorithm 0.412 0.604 0.186 0.218 0.25 0.334 0.174 0.46

a If two approaches are listed, the first one represents DNN-based feature learning algorithm and the second one refers to
the temporal decoding method. Note that not all of the MIREX systems are deep learning-based, we still list here. And if just
one approach is listed, it denotes the temporal decoding method.

natic, Cretan, Turkish) have declined as a whole6. It

seems that algorithms usually fail on non-western mu-

sic, and the reason could be two-fold: a) Comparing to

the number of western excerpts (1101 tracks), the num-

ber of non-western excerpts (300 tracks) is few, which

leads to an imbalanced training set. b) Time signatures

of most tracks in three western music are commonly

used (2/4, 3/4 and 4/4), whereas the time signatures

in the other two non-western music are various and rare

(Carnatic art music contains 5/4 and 7/4 meters; Turk-
ish contains 8/8, 9/8 and 10/8 usul). What’s worth

mentioning that music in Cretan dataset truly is 2/4

time signature but the volume of this dataset is too

small (40 tracks), therefore learning algorithms could

hardly learn features.

8 Software Packages

A few software packages or toolboxes are released over

the years to solve downbeat tracking problems. In this

section, we summarize an incomplete list of the most

relevant packages.

Madmom7, first released in 2016, is an open-source

audio signal processing library written in Python with

a strong focus on MIR tasks [4]. Apart from focusing

6 Here we only talk about the six datasets used since 2014
because there are no comparisons for RWC classical and
GTZAN
7 https://github.com/CPJKU/madmom

Fig. 7 The evolution of the best performance (F-measure)
per dataset per year on Automatic Downbeat Estimation task
of MIREX (best viewed in color).

on low-level music features, madmom puts emphasis on

musically meaningful high-level features by implement-

ing some signal processing methods. Also, madmom

provides a module that implements some in MIR com-

monly used machine learning methods such as HMM

and DNN; and it comes with several state-of-the-art

MIR algorithms for onset detection, beat, downbeat

and meter tracking, tempo estimation, and piano tran-

scription.

There are other toolboxes or packages that are quite

relevant to downbeat tracking. MIRtoolbox8 is a free (to

8 https://www.jyu.fi/hytk/fi/laitokset/mutku/en/

research/materials/mirtoolbox

https://github.com/CPJKU/madmom
https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/materials/mirtoolbox
https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/materials/mirtoolbox
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the research community) Matlab toolbox dedicated to

the extraction of musically-related features from audio

recordings such as tonality, rhythm, structures, etc. Ad-

ditionally to some basic computational approaches for

low- and mid-level features, the toolbox also includes

higher-level musical feature extraction tools [63,64]. Es-

sentia9 is an open-source C++ library (also wrapped

in Python) for audio analysis and audio-based music

information retrieval [6]. It contains an extensive col-

lection of reusable algorithms which implement audio

input/output functionality, standard digital signal pro-

cessing blocks, statistical characterization of data, and

a large set of spectral, temporal, tonal and high-level

music descriptors. LibROSA10 is a python package for

audio and music signal processing; it provides the build-

ing blocks necessary to create music information re-

trieval systems [72]. It covers core input/output audio

processing and digital signal processing functions, visu-

alization, structural segmentation, feature extraction,

and manipulation etc.

9 Discussion

As a continuous research area, automatic downbeat track-

ing has received quite an amount of attention in aca-

demic researches and for industrial applications. It is

aimed to annotate all downbeat time points in the mu-

sic, so that users can precisely follow the groove while

listening to it or can easily divide a music piece into bars

etc. A concise chronological review of the associated

literature in DNN-based downbeat tracking, together

with the main contributions of each work, according to

the timeline, is shown in Table 3.

9.1 Detailed Analysis

An analysis of each key step of a prevalent system is

stated below.

9.1.1 Segmentation

Beat segmentation is the always first thought because

normally the first beat of a bar is downbeat. One can

easily think of the way to find downbeat by deciding

a beat is a downbeat or not. However, automatic beat

tracking is still not perfect, even though [22] tries to

ease this problem by way of seeking the segmentation

that maximizes downbeat recall while emphasizing con-

sistency in inter-segmentation durations.

9 http://essentia.upf.edu/documentation/
10 https://github.com/librosa/librosa

Tatum is a more fine-grained temporal unit. There

are three reasons using tatums: a) tatum encodes a

musically meaningful dimension reduction according to

tempo invariance, b) tatum reduce the cost of design-

ing, training and testing DNN and temporal decod-

ing algorithms, and c) comparing to beat segmenta-

tion, tatum segmentation achieves higher recall rate,

enabling almost all possible downbeats under detec-

tion. However, Durand et al. also point out in [24] that

tatum segmentation has a downbeat recall rate of 92.9%

considering a ±70 ms tolerance window and therefore

occasionally misses an annotated downbeat. Another

problem in tatum segmentation pointed by [24] is that

two consecutive bars may contain a different number of

estimated tatums.

A frame is just a raw segment of the original au-

dio. It is not a temporal unit in the metrical level of

music. Nevertheless, comparing to tatums, segmenting

audio into frames takes every piece of music as a down-

beat candidate and indeed won’t miss a downbeat. But

it obviously increase the number of samples. So frame

segmentation needs to cooperating with automatic fea-

ture extraction method and better works with DNN.

9.1.2 Features Selection

The effectiveness of the feature extraction part depends

on the selection of features. Which feature is actually

contributing is not very clear. Features mentioned in

section 3 are mostly hand-crafted and are considered

to be related to downbeats in experts’ view. We don’t

analysis the feature extraction methods here since they

are common methods in audio signal processing for mu-

sic applications. We will discuss the effect of feature

design at the general level.

Durand et al. [22] have done a series of ablation

studies to testify the importance of features. In their

experiments, they ran a simplified version of the sys-

tem without temporal decoding step. They added one

feature at a time while conducting each experiment

(the order of features added is not important). The

F-measure result increases as they add features and

adding all features increases 18 F-measure scores com-

paring to average. The result of this study adheres to

our intuition since each possibly downbeat-related fea-

ture contributes a little to the final performance. Nonethe-

less, every automatic downbeat tracking system chooses

different features to use, basically according to the re-

searchers’ intuition.

Automatic learned feature exceeds hand-crafted fea-

ture because it doesn’t rely on human intuitions and

doesn’t exist human prejudice. Relevant features are

directly learned from the raw audio signal by using a

http://essentia.upf.edu/documentation/
https://github.com/librosa/librosa
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Table 3 Chronological Summary of Advances in DNN-Based Downbeat Tracking, Years 2015-2017, Showing Year of Publi-
cation, Reference Number, Authors, Title and (step-by-step) Methods to the Field.

Year Reference
Number

Authors Title Methods

2015 [22] S. Durand, et al. Downbeat Tracking With multiple Fea-
tures and Deep Neural Networks

beat segmentation; multiple features ex-
traction; DNNs; Viterbi Algorithm

2016 [5] S. Böck, et al. Joint Beat and Downbeat Tracking with
Recurrent Neural Networks

frame segmentation; auto-learned features;
RNN; DBN

[59] F. Krebs, et al. Downbeat Tracking Using Beat-
Synchronous Features and Recurrent
Neural Networks

beat segmentation; percussive and har-
monic features; RNNs; DBN

[23] S. Durand, et al. Feature Adapted Convolutional Neural
Networks for Downbeat Tracking

tatum segmentation; rhythm, melodic and
harmony feature extraction; CNNs; HMM

2017 [24] S.Durand, et al. Robust Downbeat Tracking Using an En-
semble of Convolutional Networks

tatum segmentation; multiple features ex-
traction; CNNs; Viterbi Algorithm

feature learning algorithm. In this setting, a good fea-

ture learning algorithm is particularly important. The

quality of the model directly influences the selection of

features and further impacts on the final performance.

9.1.3 DNN-based Feature Learning

To testify whether DNN-based feature learning method

is necessary, some researchers have also conducted sev-

eral ablation experiments [22, 24]. In [24], researchers

compare the deep learning method with a shallow learn-

ing method SVM and results show an improvement of

around 10 points of F-measure. In [22], researchers fix
all the features and the temporal decoding step, com-

paring the feature learning method between the DNN

and a linear regression method. Their results show that

there is a 12-point increase in the F-measure score when

using DNN, which is statistically significant. The sys-

tem in [22] is compared to three non-DNN downbeat

tracking systems [14, 80, 83]. Their system achieves a

mean F-measure of 67.5 points compared to other three

non-DNN systems (48.7 points in [83], 51.7 points in

[14], 52.2 points in [80]). Taken dataset individually,

DNN-based system doesn’t improve much (about 10

points) when the dataset is relatively small since in

this case, a simple learning algorithm can already give

good results. However when the dataset is more com-

plex (fewer clues, more changes in time signature, soft

onsets or where there is not always percussion), the

DNN-based system improves a lot (about 19 points).

Note that these systems all fail in certain datasets where

there are expressive timings because bar boundaries are

not clear and distinguishable.

Results shown in Table 2 give a clear comparison be-

tween several prevalent systems11. We can see a trend

of using DNN-based feature learning algorithm through

years and also see F-measure scores increase on the

whole through years. To make an unambiguous anal-

ysis, the comparison is made among systems focusing

on different datasets. For Ballroom, Beatles, HJDB and

GTZAN datasets, results achieves a relatively high F-

measure score when using DNN-based learning meth-

ods comparing to shallow methods, all surpassing 0.6

points and some even reaching above 0.9 points. This

is because these datasets are of large data size, small

variance, common time signatures, hard onsets, and dis-

tinct percussions. For other datasets which do not pos-

sess the above attributes, like Carnatic (containing ir-

regular beats), Turkish (unusual time signatures), Cre-

tan (small data size) and RWC classical (soft onsets

and blurry percussions) datasets, DNN-based systems

performance a little worse than shallow ones, however

generally all these systems performance not very well.

In summary, DNN exceeds other learning algorithms

in the aspect of learning high-level feature representa-

tions in a data-driven circumstance. Comparing to deep

models, shallow ones are less able to classify segment

with the perceptively correct results moving towards

out-of-phase or inconsistent segments.

9.1.4 Temporal Decoding

The temporal model plays an important role of further

boosting the performance of DNN. To testify this, Du-

11 Note that almost all researchers of automatic downbeat
tracking have participated in MIREX Automatic Downbeat
Estimation task and systems they proposed in their papers
are similar to ones in MIREX. So results in Table 2 are quite
representative and sufficient enough to analysis
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rand et al. [24] conduct a comparison study where they

remove the temporal decoding step with a hard thresh-

old. In the configuration without temporal decoding, a

position is a downbeat if its likelihood exceeds a fixed

oracle threshold. The threshold t = 0.88 is manually

set to achieve the best F-measure and it corresponds

roughly to the ratio of downbeats and non-downbeats

in the dataset. Results show the system with temporal

decoding surpasses over 10 points than that with the

threshold. This can be interpreted as the raw output of

DNN is a noisy downbeat likelihood sequence.

9.2 Future Work

Despite the success of DNN-based Downbeat Tracking

Systems and considerable effort that many researchers

have made, many problems still need to be addressed

in automatic downbeat tracking before these techniques

can be applied to a wide range of complex real-world

problems. Problems that need to be solved are: the rel-

atively lower results for classical music dataset and for

songs where there are expressive timings (time signa-

ture changes within a musical piece) [5, 22], the lack of

the diversity of time signatures in the used datasets [24]

(some even need to know the time signature in ad-

vance [59]), the uncertainty of effectiveness of manually

selected features. This section summarizes these issues

and accordingly discusses future research direction.

9.2.1 Improving datset quality

DNN-based models are very limited to the integrity, va-

riety, richness, exhaustiveness, and balance of training

datasets. They will perform better for the sake of better

datasets. Therefore, the quality of datasets is extremely

important, especially the size, diversity, and balancing

of datasets matter the most. However, none of the ex-

isting datasets has satisfied this requirement.

First of all, the magnitude and size of existing datasets

is so small (for example Cretan and Robbie Williams

dataset only consists of 42 and 65 songs respectively)

that the information provided for deep learning method

is not enough. Second and third, the lack of diver-

sity (especially of time signatures) and balancing is

also a severe issue. Among the available datasets, west-

ern music is in the majority, and under most circum-

stances, the time signatures used in western music are

3/4 and 4/4. Even though there are Indian (Carnatic

dataset), Greek (Cretan dataset) and Turkish (Turkish

dataset) music, the time signatures are pretty rare or

little (Carnatic: 5/4 and 7/4 meters; Greek: 2/4 time

signature; Turkish: 8/8, 9/8 and 10/8 usul). These is-

sues are quite obviously revealed in Fig. 7 since we can

see that the performances on western music dataset

are better than non-western music datasets as a whole.

Since the downbeat position is highly relevant to time

signature, datasets with unbalanced time signatures will

significantly hinder deep learning methods performance.

Last but not least, the variety and richness of the avail-

able datasets are not wide enough. For songs of different

genres and various forms of expression, their downbeat

traits are also very different. When facing more complex

datasets, where there are fewer clues, more changes in

time signature, soft onsets or where there is not always

percussion, such as Classical, Jazz or Klapuri subset

datasets, the results are relatively lower [22]. In regard

to the limitation of the system of not being able to

perform time signature changes within a musical piece,

particle filters as used in [61] should be able to solve

this problem [5].

There is another issue that needs pointing out. As

mentioned in Section 6.2 before, dataset division strat-

egy is crucial to training procedure of DNN, and re-

searches in automatic downbeat tracking haven’t used

the same division strategy, which will make the perfor-

mance comparison less convincing. Therefore, defining

standardized dataset train/test split is also an urgent

task. Future work should refine and organize more and

better datasets, in terms of the size, diversity, balanc-

ing and standardized split of datasets. Albeit, dataset

labeling, and organization is both labor-consuming and

time-consuming, more and more contributions are still

needed.

9.2.2 Data augmentation

Another way to solve dataset problem is to do data

augmentation. This could be faster than the solution

of improving dataset quality. Data augmentation has

been widely used in deep learning tasks because one

of the essential requirements of deep learning is a huge

amount of data. When the dataset is inadequate and

unbalanced, data augmentation can be a good approach

to increase the size of data. Data augmentation can

also increase the diversity of dataset to prevent the

model from overfitting (simply memorizing music se-

quence [74]). For music audio, possible data augment

strategies could be pitch shifting [74], time-scale modi-

fication. As long as the innate downbeat characteristics

stay unchanging, we can do any augmentation to widen

dataset scale.

9.2.3 Automatic feature discovery

Hand-crafted features are extracted according to hu-

man’s domain knowledge. However, these features have
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not proven to be highly correlated to downbeat and

their effectiveness and validity are not very clear. In

terms of the definition of downbeat, which is the first

beat of each bar, we speculate that downbeat is in high

correlation with time. More specifically, attributes re-

lated to the bar are possibly related to downbeat as

well, such as tempo and time signature. If we know the

music audio duration (time length), tempo, time sig-

nature and time stamp of the first downbeat, we could

reckon all downbeat positions in this audio (assume that

there are no rhythm flexibility because it will cause in-

equality of each bar). Nevertheless, these attributes are

also unknown in advance, let alone there could exist

rhythm flexibility.

Straightforwardly, we can calculate tempo and time

signature first, then use them to calculate the down-

beat position or guide learning algorithms as condi-

tions. However, this approach relies on the precision

and accuracy of the estimated tempo and time signa-

ture, otherwise, errors will be introduced. Another ap-

proach is automatically learning features, which [5] has

already tried to use. But [5] still applies some human’s

prior knowledge as they preprocess audio with speci-

fied hand-made digital signal processing procedure. To

achieve complete automatic feature discovery and ex-

tract attributes from scratch without any human guid-

ance, we can use a novel deep learning architecture to

learn attributes all by itself [105], to mine useful higher-

level representations and use them as inputs to feed

learning model.

9.2.4 Improving deep learning architecture

From another perspective, we can see that models used

in downbeat tracking system are not powerful enough.

Since the researches of deep learning have exploded,

more advanced models appear. On one hand, we can

focus on replacing the basic DNN models in the sys-

tem of more advanced DNN models. Possible effective

models include dilated CNN (which excels at extract-

ing features in a wider-range), dilated RNN (which is

good at modeling both short-term and long-term time

series) and highway networks etc. In time, we also hope

that our theoretical understanding of the properties of

neural networks will improve, as it currently lags far be-

hind the practice. On the other hand, a network combi-

nation procedure adapted to the temporal model seems

promising to improve performance [23, 24]. Moreover,

downbeats of some songs are not quite related to the

aforementioned hand-crafted features, then maybe we

could combine feature extraction and feature learning

parts and let deep learning algorithms process together.

And this leads to a more adventurous way–using end-

to-end neural network to merge all stages together and

process the whole system by only designing a power-

ful neural network architecture. End-to-end deep ar-

chitectures [17, 67, 73, 104] are feasible and alternative

approaches to combine these two stages (feature extrac-

tion and feature learning). As a general rule, features

are extracted from music audio signals and are then

used as input to a learner, such as deep neural net-

works. The features are designed to uncover informa-

tion in the input that is salient for the task at hand.

This requires considerable expertise about the problem

and constitutes a significant engineering effort. In this

case, end-to-end models require no feature engineering

or complex data preprocessing, thus making it appli-

cable to automatic downbeat tracking problem. Using

end-to-end architecture covers the solution to the prob-

lem described in section 9.2.3 as it obviously combines

that part of the architecture.

10 Conclusion

Automatic downbeat tracking is to find out the tem-

poral locations of all downbeats in music audio. It is

a promising task for the sake of the music industry,

musicians and music lovers, and for them to better un-

derstand, process and learn music. Enabling machines

to possess the capability of perceiving music is a diffi-

cult task. Hence, researchers are attempting to establish

an automatic downbeat tracking system using various

methods. To conclude, it is worth revisiting the overar-

ching goal of all of this research: reviewing the current
automatic downbeat tracking systems based on several

kinds of deep neural networks, mostly DNN, CNN, and

RNN. We detail every procedure of downbeat tracking

system step by step in this work. To start, we describe

the preprocessing phrases, including all the segmenta-

tion methods and all the features extracted from music

data. Next, we depict every deep neural network used

in the feature learning part, both visually and theoret-

ically. Subsequently, temporal decoding methods used

at the end of the system are summarized. In addition,

to provide researchers with an easy way to use the pub-

lic downbeat dataset, we collect and organize all the

information of the available datasets in this task. Fur-

thermore, standardized and acknowledged evaluation

metrics used in automatic downbeat tracking are de-

scribed. We also discussed some available software and

APIs. Finally, we summarize and point out some ex-

isting problems in current researches, and put forward

some suggestions and possible solutions for future re-

search directions.
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2016 audio downbeat estimation evaluation: Dbdr nobe.
http://www.music-ir.org/mirex/abstracts/2016/

DBDR1.pdf
95. Srinivasamurthy, A., Holzapfel, A., Cemgil, A.T., Serra,

X.: Particle filters for efficient meter tracking with dy-
namic bayesian networks. In: ISMIR-International Soci-
ety for Music Information Retrieval Conference (2015)

96. Srinivasamurthy, A., Holzapfel, A., Serra, X.: In search
of automatic rhythm analysis methods for turkish and
indian art music. Journal of New Music Research 43(1),
94–114 (2014)

97. Srinivasamurthy, A., Serra, X.: A supervised approach
to hierarchical metrical cycle tracking from audio music
recordings. In: Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on, pp.
5217–5221. IEEE (2014)

98. Sturm, B.L., Santos, J.a.F., Ben-Tal, O., Korshunova,
I.: Music transcription modelling and composition using
deep learning. arXiv preprint arXiv:1604.08723 (2016)

99. Typke, R., Wiering, F., Veltkamp, R.C.: A survey of
music information retrieval systems. In: Proc. 6th In-
ternational Conference on Music Information Retrieval,
pp. 153–160. Queen Mary, University of London (2005)

100. Tzanetakis, G., Cook, P.: Musical genre classification of
audio signals. IEEE Transactions on speech and audio
processing 10(5), 293–302 (2002)

101. Wang, X., Wang, Y.: Improving content-based and hy-
brid music recommendation using deep learning. In:
Proceedings of the 22nd ACM international conference
on Multimedia, pp. 627–636. ACM (2014)

102. Yan, Y., Chen, M., Shyu, M.L., Chen, S.C.: Deep learn-
ing for imbalanced multimedia data classification. In:
2015 IEEE International Symposium on Multimedia
(ISM), pp. 483–488. IEEE (2015)

103. Yang, X., Dong, Y., Li, J.: Review of data features-based
music emotion recognition methods. Multimedia Sys-
tems 24(4), 365–389 (2018)

104. Zhang, H., Wang, M., Hong, R., Chua, T.S.: Play and
rewind: Optimizing binary representations of videos by
self-supervised temporal hashing. In: Proceedings of
the 2016 ACM on Multimedia Conference, pp. 781–790.
ACM (2016)

105. Zhang, H., Yang, Y., Luan, H., Yang, S., Chua, T.S.:
Start from scratch: Towards automatically identifying,
modeling, and naming visual attributes. In: Proceedings
of the 22nd ACM international conference on Multime-
dia, pp. 187–196. ACM (2014)

106. Zhou, Y., Chellappa, R.: Computation of optical flow
using a neural network. In: IEEE International Confer-
ence on Neural Networks, vol. 27, pp. 71–78 (1988)

107. Zou, H., Du, J.X., Zhai, C.M., Wang, J.: Deep learning
and shared representation space learning based cross-
modal multimedia retrieval. In: International Confer-
ence on Intelligent Computing, pp. 322–331. Springer
(2016)

http://arxiv.org/abs/1805.07848
http://www.music-ir.org/mirex/abstracts/2016/BK4.pdf
http://www.music-ir.org/mirex/abstracts/2016/BK4.pdf
http://www.music-ir.org/mirex/abstracts/2014/DBDR2.pdf
http://www.music-ir.org/mirex/abstracts/2014/DBDR2.pdf
http://www.music-ir.org/mirex/abstracts/2015/DBDR2.pdf
http://www.music-ir.org/mirex/abstracts/2015/DBDR2.pdf
http://www.music-ir.org/mirex/abstracts/2016/DBDR1.pdf
http://www.music-ir.org/mirex/abstracts/2016/DBDR1.pdf
http://arxiv.org/abs/1604.08723

	1 Introduction
	2 Segments and Segmentation Methods
	3 Features and Feature Extraction Algorithms
	4 DNN-Based Feature Learning Algorithms
	5 Temporal Decoding Algorithms
	6 Datasets
	7 Evaluation
	8 Software Packages
	9 Discussion
	10 Conclusion

