Skip to main content
Log in

Extracting-mapping scheme for the dynamic details in fluid re-simulations from videos

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Reconstructing a 3D fluid simulation (re-simulation) from video has practical significance. In this study, we address the realistic problem of fluid re-simulation in an inverse project. State-of-the-art studies on the inverse problem of fluid simulation have mainly focused on dimensionality reduction for acquiring better time performance, but the realistic aspect has rarely been investigated. This paper presents an extracting-mapping scheme to tightly couple fluid re-simulation with enhanced physically driven data for realistic high-quality dynamic detail. We make a full use of the details extracted from recovered physically driven data to improve the coarse and unrealistic re-simulation from fluid auto-advection. Two schemes are discussed. The first scheme is the density block method (DBM). In this method, a density block database is constructed from the prepartitioned and sorted density blocks, and then, some selected density blocks with dynamic details are selected from the preconstructed database and coupled coherently into the physically driven data to enhance the detail in every auto-advection cycle. The second method is the density spectrum block method (DSBM) in the frequency domain. Using the DSBM and DBM, realistic effects are achieved by extensive quantitative and qualitative evaluation via re-simulation tests driven by the recovered physical data from ground truth fluid video. Both approaches outperform previous auto-advection re-simulation schemes in terms of the rich detail under several challenging scenarios and low-level hardware conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Solenthaler, B., Pajarola, R.: Predictive-corrective incompressible SPH. ACM Trans. Gr. 28(3), 1–6 (2009)

    Article  Google Scholar 

  2. Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: ACM Siggraph/Eurographics Symposium on Computer Animation. Eurographics association, pp 154–159 (2003)

  3. Liu, M.B., Liu, G.R.: Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch. Comput. Methods Eng. 17(1), 25–76 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kuznik, F., Obrecht, C., et al.: LBM based flow simulation using GPU computing processor. Comput. Math. Appl. 59(7), 2380–2392 (2010)

    Article  MATH  Google Scholar 

  5. Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Gr. 24(3), 965–972 (2005)

    Article  Google Scholar 

  6. Enright, D., Fedkiw, R., Ferziger, J., et al.: A hybrid particle level set method for improved interface capturing. J. Comput. Phys. 183(1), 83–116 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Yan, Z., Zhu, X., Liu, Y., et al.: An improved method of position based fluids. Coll. Math. 32(1), 38–43 (2016)

    MathSciNet  Google Scholar 

  8. Boyd, L., Bridson, R.: MultiFLIP for energetic two-phase fluid simulation. ACM Trans. Gr. 31(2), 1–12 (2012)

    Article  Google Scholar 

  9. Huang, T., Li, D., Li, L.: Adaptive time-stepping particle fluid motion simulation. In: International Conference on Computer Application and System Modeling. IEEE, V12-117-V12-121 (2010)

  10. Jeong, S.H., Solenthaler, B., Pollefeys, M., et al.: Data-driven fluid simulations using regression forests. ACM Trans. Gr. 34(6), 199 (2015)

    Google Scholar 

  11. Yang, C., Yang, X., Xiao, X.: Data-driven projection method in fluid simulation. Comput. Anim. Vir. Worlds 27(3–4), 415–424 (2016)

    Article  Google Scholar 

  12. Okabe, M., Anjyor, K., Onai, R.: Creating fluid animation from a single image using video database. Comput. Gr. Forum 30(7), 1973–1982 (2011)

    Article  Google Scholar 

  13. Sato, S..,Morita, T., Dobashi, Y., Yamamoto, T.: A data-driven approach for synthesizing high-resolution animation of fire. In: Proceeding of the Digital Production Symposium, pp 37–42 (2012)

  14. Quan, H., Wang, C., Song, Y.: Fluid re-simulation based on physically driven model from video. Vis. Comput. 33(1), 85–98 (2017)

    Article  Google Scholar 

  15. Mullen, P., Crane, K., Pavlov, D.: Energy-preserving integrators for fluid animation. ACM Trans. Gr. 28(3), 38,1–8 (2009)

    Article  Google Scholar 

  16. Lentine, M., Zheng, W., Fedkiw, R.: A novel algorithm for incompressible flow using only a coarse grid projection. ACM Trans. Gr. 29(4), 114 (2010)

    Article  Google Scholar 

  17. Péteri, R., Fazekas, S., Huiskes, M.J.: DynTex: a comprehensive database of dynamic textures. Pattern Recogn. Lett. 31(12), 1627–1632 (2010)

    Article  Google Scholar 

  18. Chenggang, Y., Hongtao, X., Dongbao, Y., Jian, Y., Yongdong, Z., Qionghai, D.: Supervised hash coding with deep neural network for environment perception of intelligent vehicles. In: IEEE Transactions on Intelligent Transportation Systems, 99,10,1-12 (2017)

  19. Chenggang, Y., Hongtao, X., Shun, L., Jian, Y., Yongdong, Z., Qionghai, D.: Effective uyghur language text detection in complex background images for traffic prompt identification. IEEE Trans. Intell. Transp. Syst. 99(10), 1–10, (2017)

    Google Scholar 

  20. Chenggang, Y., Zhang, Y., Xu, J., et al: A highly parallel framework for HEVC coding unit partitioning tree decision on many-core processors. IEEE Signal Process. Lett. 21(5), 573–576, (2014)

    Article  Google Scholar 

  21. Yan, C., Zhang, Y., Xu, J., et al: Efficient parallel framework for HEVC motion estimation on many-core processors[J]. IEEE Trans. Circ. Syst. Video Technol. 24(12), 2077–2089 (2014)

    Article  Google Scholar 

  22. Miguel, E., Bradley, D., Thomaszewski, B., et al.: Data-driven estimation of cloth simulation models. Comput. Gr. Forum 31(2), 519–528 (2012)

    Article  Google Scholar 

  23. Otaduy, M.A., Bickel, et al.: Data-driven simulation methods in computer graphics: cloth, tissue and faces. In: Eurographics (2013)

  24. White, R., Crane, K., Forsyth, D.A.: Data driven cloth animation. In: ACM Siggraph 2007 sketches, p 37 (2007)

  25. Wang, C., Wang, C., Qin, H., et al.: Video-based fluid reconstruction and its coupling with SPH simulation. Vis. Comput. 33, 1–14(2016)

    Google Scholar 

  26. Kim, T., Delaney, J.: Subspace fluid re-simulation. ACM Trans. Gr. 32(4), 1–9 (2013)

    MATH  Google Scholar 

  27. Kenichi, S.: Interactive SPH simulation of fluid phenomena. J. Vis. Soc. Jpn. 21(2), 15–18 (2001)

    Google Scholar 

  28. Kim, T., Thürey, N., James, D.: Wavelet turbulence for fluid simulation. ACM Trans. Gr. 27(3), 1–6 (2008)

    Article  Google Scholar 

  29. Klingner, B.M., Feldman, B.E., Chentanez, N.: fluid animation with dynamic meshes. ACM Trans. Gr. 25(3), 820–825 (2006)

    Article  Google Scholar 

  30. Kuznik, F., Obrecht, C., Rusaouen, G., Roux, J.J.: Lbm based flow simulation using gpu computing processor. Comput. Math. Appl. 59(7), 2380–2392 (2010)

    Article  MATH  Google Scholar 

  31. https://www.opengl.org/. Accessed 22 Dec 2017

  32. Yi, W., Jiangyun, W., Xiao, S., Liang, H.: An efficient adaptive fuzzy switching weighted mean filter for salt-and-pepper noise removal. IEEE Signal Process. Lett. 23(11), 1582–1586 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dyntex for providing rich fluid videos for our study. We also thank Xinquan Zhou for her help in the preliminary work. Special thanks to the reviewers for their valuable comments and suggestions.

Funding

This study was funded by the NSFC Grant No. 61672237, 61532002, and the National High-tech R&D Program of China (863 Program) under Grant 2015AA016404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Quan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest concerning this paper.

Additional information

Communicated by Y. Zhang.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, H., Wang, N., Li, J. et al. Extracting-mapping scheme for the dynamic details in fluid re-simulations from videos. Multimedia Systems 25, 371–381 (2019). https://doi.org/10.1007/s00530-019-00612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-019-00612-0

Keywords

Navigation