
Vol.:(0123456789)1 3

Multimedia Systems (2020) 26:157–172
https://doi.org/10.1007/s00530-019-00633-9

REGULAR PAPER

RMoCap: an R language package for processing and kinematic
analyzing motion capture data

Tomasz Hachaj1  · Marek R. Ogiela2

Received: 18 August 2018 / Accepted: 19 March 2019 / Published online: 31 August 2019
© The Author(s) 2019

Abstract
Package RMoCap is an advanced open-source tool for scientists, engineers and computer graphics familiar with R language
who work with motion capture (MoCap) technology. Package provides them with MoCap data handling, statistical pro-
cessing, visualizing and analysis. Package uses well-established MoCap file exchange format and can be easily integrated
with most of the motion analysis workflows. Among functions available in RMoCap, there are procedures for conversion
between hierarchical and direct kinematic models, data averaging, correcting direction of motion, 3D interactive visualiza-
tion and advanced analysis using Dynamic Time Warping. This paper covers all advanced algorithms that are implemented
in RMoCap. This article also introduces direct to hierarchical kinematic conversion algorithm that is a new, never-before-
published method. We also introduce extension of motion direction correction method that makes possible to process data
that does not contain information about acceleration. All examples showed in this paper can be reproduced using replication
code and data sources that are included to this package.

Keywords  Motion capture · Kinematic model · Hierarchical kinematic · BVH · Motion processing · Motion analysis ·
Motion averaging · R language

1  Introduction

Motion capture (MoCap) technology generates motion
description that is composed of a set of time varying signals
that describe positions of body joints. This modern tech-
nology has many important applications; among them are:
sport data analysis, medicine, biomechanics and computer
graphic. The RMoCap package is devoted to statistical pro-
cessing and kinematic analyzing of this type of data.

The structure of our paper goes as follows: the rest of
the first section is devoted to presentation of the state of
the art in MoCap kinematic analysis. We will also initially

show how RMoCap covers various MoCap applications
and we will introduce its novel functionalities. Section 1.3
presents description of algorithms notation we use in this
paper. Sections 1.4 and 1.5 are technical details about input
data format and package installation notes. Sections 2, 3,
4, 5 and 6 are devoted to the most important algorithms of
RMoCap. Sections 2 and 3 covers mapping from hierarchi-
cal to direct kinematic model and vice versa. Section 4 is
about motion direction correction that is applied to improve
results of body displacement estimation. Section 5 describes
motion averaging algorithm which uses several recordings
of same activity to generate the single motion pattern. The
sixth section covers motion analysis procedure that enables
comparison of two MoCap recordings to detect, measure
and visualize important kinematic differences between them.
The last, seventh contains summary and discussion.

1.1 � State of the art in kinematic analysis

Kinematics is the branch of mechanics that deals with the
motion of the bodies and system without considering the
force [28]. Forward kinematics is specified by the joints
parameters and kinematic equations that are used to compute

Communicated by M. Katsurai.

 *	 Tomasz Hachaj
	 tomekhachaj@o2.pl

	 Marek R. Ogiela
	 mogiela@agh.edu.pl

1	 Institute of Computer Science, Pedagogical University
of Cracow, Kraków, Poland

2	 Cryptography and Cognitive Informatics Research Group,
AGH University of Science and Technology, Kraków, Poland

http://orcid.org/0000-0003-1390-9021
http://crossmark.crossref.org/dialog/?doi=10.1007/s00530-019-00633-9&domain=pdf

158	 T. Hachaj, M. R. Ogiela

1 3

the position of the end effector from specified value for each
joint parameter (in this paper, we do not take into account
an inverse kinematic problem which is not a case in MoCap
technology). Let us define the Direct Kinematic (DK) model/
description as motion notation in which body joints posi-
tions are directly described by 3D coordinates of each body
joint (no further calculation is required to determine they
spatial positions). This model does not take into account
rotation, so it treats each body joint as a material point in
space rather than a rigid body. In Hierarchical Kinematic
(HK) model/description, we define the motion as a set of
3D rotations of body joints that are organized in hierarchy
(so called kinematic chain)—a tree structure that has a root
joint. Distances (offsets) between body joint and its parent
are defined relatively to the parent joint. Also rotations are
defined relatively to the parent joint. The root joint, that
does not have the parent joint, beside rotation also contains
information about translation of the whole body. An example
visualization of joints organized in hierarchy can be seen in
Fig. 1. In that figure, a root joint is a Hips joint and it has
three children: SpineLow, RightThigh and LeftThigh; Right-
Thigh has a child RightLeg, etc. To get spatial coordinates of
body joints from HK model, we have to recalculate it to DK.

DK model is often more useful for kinematic data analysis.
However, for example, computer graphic often utilizes HK,
because it has the information about joints orientation (rota-
tion). Cheap MoCap hardware like Kinect generates data in
DK model. To get joints orientation, we need to recalculate
DK to HK model. To do so, we need to have a prior defini-
tion of joints hierarchy that is compatible with DK model
(that has same number of joints).

The RMoCap package is dedicated to work on MoCap
data that are either in DK or HK model. Our package can
freely convert HK into DK and DK into HK and is oper-
ational on various types of public datasets. The DK into
HK conversion algorithm is a new, never-before-published
authors’ method.

Nearly, each motion capture hardware manufacturer sup-
plies users with a basic graphical interface and/or application
programming interface that enables conversion of a raw data
into popular data formats that can be processed by third-
party software. Also, there are often dedicated packages for
computing basic kinematic parameters like time of motion,
trajectory length, linear velocity, acceleration, angles
between body joints, etc. Those parameters are often used
by scientists to generate tabularized values that later become
reference values for various motion activities [16, 17, 33].
From the statistical and computer science perspective, those
are very basic operations. Those statistic can be generated
by several common programming language instructions (for
example summary command in R language). Due to this, our
package does not implement operations that are available as
generic R language functions and we will not discuss those
approaches later on.

Among the most interesting and fruitful methods of
motion analysis are motion capture averaging methods and
motion path matching approaches. The motion averaging is
a process in which as an input data we take several record-
ings of a person who performs same action. After apply-
ing averaging, we generate a single recording that should
maximize value of similarity measure between averaged
recording and each input recording (so motion averaging is
an optimization procedure). The aim of motion averaging
is to remove small, random noises that might be present in
MoCap recording. Motion averaging does not remove sys-
tematic errors that might visualize some common motion
inaccuracies. Depending of application of MoCap analysis,
an inaccuracy might be an effect of some disabilities caused
by illness (medical and rehabilitation application) or wrong
performance of technique (sport application). Our package
implements method presented in paper [12] that enables
averaging 3D MoCap data using dynamic time warping
barycenter averaging (DBA) [24]. It operates in quater-
nion space using Markley averaging approach instead of
barycenter [19]. Package RMoCap is the first open-source
release of this method.

Fig. 1   A three-dimensional interactive plot that visualizes single
frame of 3D motion capture data

159RMoCap: an R language package for processing and kinematic analyzing motion capture data﻿	

1 3

The motion path matching approaches analyze trajectory
of certain body joints and align one MoCap data to another
to find some important differences between them. There are
many papers that describe application of that type of analysis
in 1D and 2D [7, 21, 22, 29–31]. In our package we imple-
ment 3D trajectory comparison method based on Dynamic
Time Warping (DTW) approach that is able to find and visu-
alize the highest local differences in kinematic chain.

The IMU-based (Inertial Measurement Unit) MoCap
hardware, that typically contains accelerometers, gyroscopes
and magnetometers, is capable to measure the acceleration
of the objects that are attached to costume. By numerical
integration, we can estimate the distance that those sensors
moved starting from the known, initial position. Due to
limited precision of IMU (both static and dynamic), some
unavoidable drifts from the ”real” body position are con-
tinuously introduced. However, the most important prob-
lem with IMU-based MoCap is the fact, that those three
earlier mentioned measuring sensors (accelerometer, gyro-
scope and magnetometer) are not enough to measure the
body displacement is 3D space relatively to the ground (we
will call it later a body displacement). The only reliable
displacement returned by those sensors is relative motion
to root joint of HK model. To measure body displacement,
some additional sensors have to be introduced, for example,
vision-based (cameras) or pressure sensors located on feet.
Vision-based system is not reliable as long as it is not a pro-
fessional MoCap with at least the same price as IMU system
itself. Pressure sensors operate under some heuristic that
often introduces errors in estimation body displacement vec-
tor. Knowing that the RMoCap package introduces function
that is a heuristic that can estimate the body displacement
of MoCap data. The proposed heuristic is a novel extension
of the method proposed in [10]. The extension in RMoCap
package makes method capable to process data that do not
contain information about acceleration.

1.2 � Open‑source software packages dedicated
to motion capture analyzing

In this subsection, we will only discuss package for MoCap
data analysis. There are dozens of open packages for con-
verting 2D image data into 3D MoCap (for example [5]) and
for MoCap-based pattern recognition [9]; however, they are
designed to solve different problems than our algorithms.
Also kinetic (not kinematic) analysis performed, for exam-
ple, by MotionLab is out of our scope [25].

Our package is capable of freely converting not only HK
into DK model (there are many examples of that in number
of programming languages) but also DK into HK which is
a more complex optimization task. For our best knowledge,
this is a first open-source publicly available package that
implements this type of conversion.

R language has very little packages directly dedicated for
MoCap data analysis. As far as we know, there is only mocap
[27] package that enables loading ASF/AMC files and con-
verting them into a list data structure. The visualization
functions of that package seem to be based on old version
of third-party libraries and are not operational any more.
The second package we found, mocapGrip [14] encapsulates
a python motion capture project dedicated for annotations
analysis, which is utilized mostly in linguistic and psychol-
ogy. Both of those packages do not contain functions that
can be helpful in motion processing and kinematic analysis.
DBA algorithm is implemented in R language package [26]
and DTW in package [8]; however, both of those imple-
mentations do not allow to use quaternion data. Also, DTW
implementation is not flexible enough to access all algorithm
parameters that we need. Due to this, RMoCap has its own
implementations of both algorithms, independent from both
packages.

Among important open-source packages created in other
than R programming languages is Mokka,1 which is a motion
capture kinematic and kinetic analyzer with graphical inter-
face that implements basic plots, media integration and
data importing functions. It utilizes functions from an open
source framework Biomechanical ToolKit (BTK) [2]. BTK
supports C++, Matlab and Python programming languages.
OpenSim is a software to create and analyze dynamic simu-
lations of movement [4]. An open source toolbox MoBILAB
[23] can be used for analysis and visualization of mobile
brain/body imaging data. HuMAns toolbox [32] includes a
biomechanical model of a complete human body and pro-
poses a set of versatile tools for modeling, capture, analy-
sis and simulation of human and humanoid motion (it is an
open-source software, distributed under the GPL License).
MoCap Toolbox [3] is a set of functions written in Matlab
for analyzing and visualizing motion capture data. It covers
basic visualization and analysis approaches, such as general
data handling, creating stick-figure images and animations,
kinematic analysis (mean and standard deviation of veloc-
ity and acceleration), and performing Principal Component
Analysis (PCA) on movement data.

Although all mentioned software contain useful methods,
they do not cover new functionalities that are included in
RMoCap that we initially presented in Sect. 1.1. All of them
will be discussed in detail in the rest of this paper.

1.3 � Algorithms notation

All algorithms that are implemented in RMoCap package are
described using standard mathematical notation or, if this
notation might be too clumsy, with code in R language or

1  http://biome​chani​cal-toolk​it.githu​b.io/mokka​/.

http://biomechanical-toolkit.github.io/mokka/

160	 T. Hachaj, M. R. Ogiela

1 3

pseudocode similar to R language. In case of mathematical
notation, matrices are named with capital letter, numbers
are in lowercase, angles are lowercase Greek letters and vec-
tors are lowercase letters with arrow. In R/R pseudocode, all
fields of complex data types (i.e., named columns of lists,
matrices, data frames) are accessed with $ operator. Vectors
are defined with parentheses, while accessing object with
certain index in data frame, list or matrix require square
brackets. Dot symbol ”.” might be a part of the name of the
variable. Hash symbol ”#” begins a single-line commentary.
We use notation ”/* */” for commentaries in pseudocode.

1.4 � Test datasets and accepted input file formats

RMoCap package contains several MoCap recordings that
can be used to test algorithms we have implemented. The
MoCap data were recorded using Shadow 2.0 wireless
motion capture system, which is high-end professional
IMU-based solution. We use this hardware for our everyday
work. More about recording process can be learned from
[12]. Motion recordings are example karate techniques per-
formed by a world and national class professional (medal-
ists) karate athletes. There are both short recordings of single
karate kicks and also longer karate kata motion sequences.
Of course, our algorithms can read and operate on other
recordings. There are two basic file formats RMoCap uses:
Biovision Hierarchy file format (BVH), that is a very popular
format to hold HK model [20] and also comma-separated
vector (CSV) file format. Requirements for CSV are proper
naming of columns:

•	 CSV must have a column with name Time that shows the
acquisition time of single frame (in milliseconds);

•	 rotation or/and translation data columns for each body
joint, each column of this type has to have name starting
with body joint name (for example RightLeg) and ending
.Dx,.Dy,.Dz for translation data (for example RightLeg.
Dx, the unit should be centimeters). Rotation data col-
umns are .Rx, .Ry, .Rz (for example RightLeg.Rx, the
unit should be Euler angles in degrees – not radians).

In case of R language, CSV files are often stored in memory
in data.frame structure. If data.frame columns have same
number of joints definition in DK model as HK in BVH
file, data can be easily converted from DK into HK (see
example in Sect. 3). Most of the current MoCap systems
and motion repositories store data in at least one of those
formats. It requires basic knowledge of R to prepare a data.
frame imported from CSV to work with RMoCap.

1.5 � Installing R package RMoCap

The R package RMoCap [11] is distributed under the GPL-3
license. It depends on the R packages smoother v. 1.1 [13],
rgl v. 0.99.16 [1], RSpincalc v. 1.0.2 [6], subplex v. 1.5.4
[15], signal v. 0.7.6 [18], compiler v. 3.5.0.

The R package RMoCap is hosted by GitHuba2 and its
dependencies are available at https​://CRAN.R-proje​ct.org/
and can be installed as follows:

2 � Mapping from HK to DK model

In this section, we will present how to recalculate MoCap
data from HK to DK model. In KH model, the rotation
of each joint is governed by three-dimensional rotation
described by Euler angles. Let us assume that the order of
rotation is Z, Y, X and rotation angles are �, �, � , respectively.
The rotation matrix has following form:

and the final rotation:

Root joint is the only joint that in HK that has both rotation
TRoot
rans

 and translation DRoot
isp

 data. Taking into account offset
of the root joint ORoot

ffset
 , the final displacement (3D position in

DK model) of root joint DRoot
xyz

 is:

Then we need to calculate the translation matrix of root joint
TRoot
rans

 that will be used later:

(1)

Mx =

⎡
⎢⎢⎣

1 0 0

0 cos(�) − sin(�)

0 sin(�) cos(�)

⎤
⎥⎥⎦
,

My =

⎡⎢⎢⎣

cos(�) 0 sin(�)

0 1 0

− sin(�) 0 cos(�)

⎤⎥⎥⎦
,

Mz =

⎡⎢⎢⎣

cos(�) − sin(�) 0

sin(�) cos(�) 0

0 0 1

⎤
⎥⎥⎦
,

(2)Rot = Mz ⋅My ⋅Mx.

(3)DRoot
xyz

= DRoot
isp

+ ORoot
ffset

.

(4)TRoot
rans

(4 × 4) =

⎡⎢⎢⎢⎣

⎡⎢⎢⎣
RRoot
ot

(3 × 3)

⎤⎥⎥⎦

⎡⎢⎢⎣
Dxyz(3 × 1)

⎤⎥⎥⎦
0 0 0 1

⎤⎥⎥⎥⎦
,

2  https​://githu​b.com/browa​rsoft​ware/RMoCa​p.

https://CRAN.R-project.org/
https://github.com/browarsoftware/RMoCap

161RMoCap: an R language package for processing and kinematic analyzing motion capture data﻿	

1 3

(3 × 3) and (3 × 1) indicates the dimensionality of matrices.
The calculation of final displacements (positions in DK

model) of all joints has to be made according to hierarchy
indicated in HK. This means that at first, we need to cal-
culate translation matrix of root joint, then positions of its
direct descendants, then translation of descendants of those
descendants, etc. until we calculate translation matrices of
end site joints (joints without children).

A joint with index i which is neither root joint nor end site
has only a rotation data. To calculate its translation matrix,
we need to multiply translation matrix of the parent joint of
joint i TParent(i)

rans by a matrix composed of rotation matrix and
offset of joint i:

End site joints do not have rotation data; due to this transla-
tion matrix of end site joint j is calculated by multiplying
translation matrix of parent joint TParent(j)

rans by matrix com-
posed of offset of end site j:

(5)

T
Jointi
rans (4 × 4) = TParent(i)

rans

⋅

⎡⎢⎢⎢⎢⎣

⎡⎢⎢⎣
R
Jointi
ot (3 × 3)

⎤⎥⎥⎦

⎡⎢⎢⎣
O

Jointi
ffset

(3 × 1)

⎤⎥⎥⎦
0 0 0 1

⎤⎥⎥⎥⎥⎦
.

(6)

T
EndSitej
rans (4 × 4) = TParent(j)

rans

⋅

⎡⎢⎢⎢⎢⎣

⎡⎢⎢⎣

1 0 0

0 0 1

0 1 0

⎤⎥⎥⎦

⎡⎢⎢⎣
O

EndSitej

ffset
(3 × 1)

⎤⎥⎥⎦
0 0 0 1

⎤⎥⎥⎥⎥⎦
.

The displacement Dxyz of all types of joints is in first three
rows of fourth column of their Trans matrix:

Above procedures are implemented in RMoCap package
in function read.mocap. This function loads data stored in
BVH format from disc and generates object of class mocap
that contains all original HK data and data frame with DK
model.

Visualization of 3D data can be seen on Figs. 1 and 2.

3 � Mapping from DK to HK model

Let us face the following problem: we have 3D coordinates
of body joints (direct kinematic description) and a hierarchi-
cal kinematic model that is compatible with direct one (it has
the same number of joints). We want to recalculate direct
kinematic parameters to hierarchical so that they describe
the same motion.

(7)Dxyz = [T1,4
rans

, T2,4
rans

, T3,4
rans

].

Fig. 2   A three-dimensional
interactive plot that visualize
3D motion capture data

162	 T. Hachaj, M. R. Ogiela

1 3

Mapping from DK to HK is, similarly as mapping from
HK to DK, an iterative procedure, that starts from the root
node and explores its children setting appropriate rotation
coefficients. In HK, each joint holds information about its
rotation in Euler angles. Additionally, root joint (the joint
that does not have a parent joint) has a translation data.

In algorithm proposed in this paper we assume that the
rotation order of Euler angles will be ZYX and there is only
one root joint with at least two direct descendants.

The below calculation has to be repeated for each frame
of motion capture recording.

Among the basic steps of this mapping algorithm is to
find 3D rotation matrix between vectors. As it is not a trivial
procedure, we will describe this method in the following
section.

3.1 � Finding n‑dimensional rotation matrix
between vectors

The method of finding n-dimensional rotation matrix Rn
that rotates vector �⃗x to �⃗y is not a basic but already known
algebraic procedure. Let us assume that �⃗x and �⃗y are linearly
independent. If this condition is false, the rotation is repre-
sented by identity matrix.

At first we will generate 2D rotation matrix R2 such that:
x ⋅ R2 is linearly dependent to y.

where � is an angle on the plane between �⃗x to �⃗y ,
cos(𝛼) =

x⃗◦⃗y

|⃗x|⋅|⃗y| , sin(�) =
√
1 − cos2(�) and ◦ is a dot

product.

(8)R2 =

[
cos(�) − sin(�)

sin(�) cos(�)

]
,

The projection matrix onto complemented subspace n-2
subspace is:

where In is n – dimensional identity matrix.
Because the rotation happens in subspace designated by

vectors �⃗a , �⃗y we can get n-dimensional substitute of R2 by
changing the base of R2 to be n-dimensional and by complet-
ing it with P′:

Knowing how to calculate Rn , we can go to the first step
of DK to HK mapping that is determination of rotation of
root joint.

3.2 � Root joint rotation calculation in HK model

Among all joints in HK model, the root joint is a special case
because of two factors:

•	 This is the only joint that has a translation data,
•	 as this joint does not have a parent we need two vectors

in 3D space to unambiguously define its rotation.

Let HK be a MoCap data structure in hierarchical model,
while DK a MoCap data structure in direct kinematic model.
Calculation of translation data is straightforward (see below
pseudocode):

(11)P = �⃗a ⋅ �⃗aT + �⃗b ⋅ �⃗bT.

(12)P� = In − �⃗a ⋅ �⃗aT − �⃗b ⋅ �⃗bT,

(13)Rn = In − �⃗a ⋅ �⃗at − �⃗b ⋅ �⃗bt + [�⃗a �⃗b] ⋅ R2 ⋅ [�⃗a �⃗b]
T.

In the next step, we will generate orthonormal pairs of
vectors �⃗a , �⃗b from �⃗x , �⃗y using Gram–Schmidt process.

We need to normalize vector �⃗x:

and then by projection of vector �⃗y onto the line spanned by �⃗a

The projection matrix on subspace designated by unit vec-
tors �⃗a , �⃗b is:

(9)�⃗a =
�⃗x
||�⃗x||

,

(10)�⃗b = �⃗y − (�⃗a ◦ �⃗y) ⋅ �⃗a.

Finding rotation of the root joint is, however, more com-
plex. At first we need to find any two direct descendants of
the root. If there are more than two, the rest is irrelevant for
this algorithm.

We choose one of these descendants (Child1) and calcu-
late rotation matrix that rotates vector designated by offset of
HK root joint onto vector designated as difference between
Child1 and Root joints coordinates in DK model.

163RMoCap: an R language package for processing and kinematic analyzing motion capture data﻿	

1 3

it was said in Sect. 3.1 operates on the 2D plane and there is
no guarantee that the initial solution we found also maps all
other direct descendants of the root joint. That is because the
solution we initially obtained might be rotated around ������⃗map .
To find the appropriate 3D rotation that also maps other chil-
dren of root we have to find additional rotation that applied
after the first one correctly aligns both child-parent vectors.
To do this, we can apply the following algorithm:

Where vector.to.unit is a function that normalizes the
vector and rotation.matrix is a function that implements an
algorithm from Sect. 3.1.

Having rotation matrix Rx2y, we can now calculate qua-
ternion after rotation by which we will rotate one vector onto
another. In R, we can do it with function DCM2EA from
package RSpincalc. Pseudocode 2 finds matrix that maps
vector defined by an offset of root joint onto vector desig-
nated by position of child joint. The rotation matrix Rx2y as

164	 T. Hachaj, M. R. Ogiela

1 3

Optimization from Pseudocode 3 can be done with Sim-
plex method that is implemented for example in function
subplex from package subplex. Functions EV2Q that calcu-
lates quaternion from axis angle is from package RSpincalc.
The variable HK in last line of above pseudocode contains
correctly mapped root joint.

3.3 � All other joints

After processing the root joint, we iterate through all its chil-
dren. Those children become parents of the following algo-
rithm. All joints that have parent joint (joints with children

and end sites) are processed in the same way. Because we
want to find rotation angles relatively to the parent joint, we
need to know the transformation matrix Trans of the parent
joint. Trans is calculated in the same way as it is in mapping
procedure from HK to DK model (see Sect. 2). See Pseu-
docode 4 for more details.

Fig. 3   This plot presents exam-
ple rotation angles of hip joints
in HK model generated from
input DK data frame

0 50 100 150 200 250 300
−

15
0

−
50

50
15

0

sample

an
gl

e
(d

eg
re

es
)

X axis rotation
Y axis rotation
Z axis rotation

Hips rotation data

165RMoCap: an R language package for processing and kinematic analyzing motion capture data﻿	

1 3

As the result in variable Rx2y.n, we have the rotation
matrix of analyzed joint. After processing a parent joint
(Parent.n), we find all children of this joint. Those joints are
processed with Pseudocode 4. The program ends when there
are no more joints in HK model.

Algorithms described in this section are implemented in
RMoCap package in function df.to.bvh.

The following R code generates HK from DK and creates
plot presented in Fig. 3. As can be seen Euler angles may
contains nonlinearities (near 76 and 100 sample) that are
present due to periodic domain of trigonometric functions;
however, the effector trajectory remains smooth.

The more advanced examples are presented in Supple-
ments—R replication code.

4 � Motion direction correction

In Sect. 1.1, we have described the important issue of IMU-
based MoCap technology: it does not measure body displace-
ment directly—it has to be estimated. To overcome this limi-
tation, RMoCap package implements extension of heuristic
approach proposed in [10]. After applying this method, we can
estimate body displacement (motion) relatively to environment.

The proposed heuristic works in one of the two possible
versions: first version that uses acceleration data and the sec-
ond, in which we directly indicate which body joint remains
immobile during whole motion.

4.1 � Correction with acceleration data

This approach has three main assumptions:

1.	 During the whole motion always one feet remains on the
same ground level (a person is not jumping, climbing etc.);

2.	 A person does not perform body displacement by sliding
on the ground;

3.	 A base on which person is moving is flat.

At first we calculate magnitudes of acceleration of right MR
and left foot ML and we smooth them with Gaussian ker-
nel. MR and ML are vectors that are obtained as a result of
smoothing right foot ��������������������⃗RightFoot.a and left foot �����������������⃗LeftFoot.a
acceleration signals, respectively.

where ��������������������⃗RightFoot.a is an acceleration signal (a vector of 3D
acceleration vectors), G� is a Gaussian kernel and

⨂
 is con-

volution operator.
In Fig. 4, we present acceleration magnitude plot obtained

for MoCap data from Heian Shodan motion sample from
RMoCap package. It can be clearly observed which foot is
one with higher magnitude of acceleration (this foot moves)
moves and which one with lower magnitude of acceleration
remains on the ground.

In the next step for each sample i of MR and MR , we check
if MR[i] > ML[i] ∧MR[i + 1] > ML[i + 1] . If it is true, there
is a motion of right foot in this sample and left foot remains
on the ground. We perform displacement correction of all
����������������⃗ALL.Dxyz displacement vectors (of all body joints vectors)
in our dataset:

(14)
MR ←

|||��������������������⃗RightFoot.a
|||
⨂

G𝜎 ,

ML ←
|||�����������������⃗LeftFoot.a

|||
⨂

G𝜎 ,

(15)

����������������⃗ALL.Dxyz[i ∶ samples.count(������������������������⃗LeftFoot.Dxyz)] ←

����������������⃗ALL.Dxyz[i ∶ samples.count(������������������������⃗LeftFoot.Dxyz)]

− (������������������������⃗LeftFoot.Dxyz[i + 1] − ������������������������⃗LeftFoot.Dxyz[i]),

0 500 1000 1500 2000 2500

1.
0

1.
5

2.
0

2.
5

Time [ms]

A
cc

el
er

at
io

n
m

ag
ni

tu
de

 [g
]

Acceleration magnitude plot of Heian Shodan

Right foot
Left foot

Fig. 4   Acceleration magnitude plot obtained for MoCap data from
Heian Shodan motion sample

166	 T. Hachaj, M. R. Ogiela

1 3

where i ∶ samples.count(������������������������⃗LeftFoot.Dxyz) is a range of sam-
ples to be corrected starting from i th sample and end-
ing on the last index of sample from the MoCap data-
set. ������������������������⃗LeftFoot.Dxyz[i] is an i th sample vector of left foot
displacement.

The second condition we take into account is
MR[i] < ML[i] ∧MR[i + 1] < ML[i + 1] . If it is true, there
is a motion of left foot in this sample and right foot remains
on the ground. We perform displacement correction of all
����������������⃗ALL.Dxyz displacement vectors (of all body joints vectors)
in our dataset:

In the next step, we need to correct the vertical (Y) coordi-
nate of tracked person so that foot that remains on the ground

(16)

����������������⃗ALL.Dxyz[i ∶ samples.count(��������������������������⃗RightFoot.Dxyz)] ←

����������������⃗ALL.Dxyz[i ∶ samples.count(��������������������������⃗RightFoot.Dxyz)]

− (��������������������������⃗RightFoot.Dxyz[i + 1] − ��������������������������⃗RightFoot.Dxyz[i]).

would be on the same ground level GroundPosition.Dy,
which might not be a true condition in original dataset (see
Fig. 5a). Let us assume, that initial position of feet is correct
(both feet are on the ground level). For each motion sample
i of MR and MR we check if MR[i] ⩾ ML[i] . If it is true, there
is a motion of right foot in this sample and left foot remains
still on the ground. We perform displacement correction of
all ALL.Dy displacement vector coordinates (of all body
joints vectors) in our dataset:

If MR[i] < ML[i] the processing is analogical to above.
The overall results for large motion sample are visual-

ized in Fig. 6. Red silhouettes are original while green are
corrected by our approach. An example R code that utilizes
calculate.kinematic and plots results analogical to Figs. 4
and 5 is presented below.

(17)
ALL.Dy[i] ← ALL.Dy[i]

− (LeftFoot.Dy[i] − GroundPosition.y).

0 500 1000 1500 2000 2500

−
10

−
5

0
5

10
15

Time [ms]

Y
 [c

m
]

Vertical coordinates of feet of Heian Shodan

Right foot

Left foot

(a) Position of feet before aligning.

0 500 1000 1500 2000 2500

8
10

12
14

16

Time [ms]
Y

 [c
m

]

Vertical coordinates of feet after positioning with the ground of Heian Shodan

(b) Positions of feet after aligning.

Fig. 5   Aligning feet positioning with ground level

167RMoCap: an R language package for processing and kinematic analyzing motion capture data﻿	

1 3

4.2 � Correction without acceleration data

In this approach of motion direction correction, we indicate
which body joint should be immobile (to have constant posi-
tion) during the whole motion. We might want to do it in two
main scenarios: we do not have acceleration data or/and we
want to analyze motion relatively to some body joint. After
indicating the constant joint we apply substantially the same
approach as in (15); however, instead of ������������������������⃗LeftFoot.Dxyz , we
use displacement vector of the chosen joint. The application
of this method will be discussed in section about Motion
analysis in RMoCap package.

5 � Motion averaging

The role of motion averaging algorithm is to generate sin-
gle MoCap data from many motion recordings of the same
activity performed by the same person to generate a sin-
gle motion pattern. This motion pattern should be free of
all random errors that might happen between repetitions
of the same move. The averaging algorithm implemented
in RMoCap is mocap.averaging method proposed in paper
[12]. Because this method is already fully described in that
open access paper, here we will only presents its basis and
additional coverage checking method, which was not present
in earlier published paper.

A mocap.averaging utilizes dynamic time warping bar-
ycenter averaging (DBA) heuristic algorithm [24] that is

applied to data represented in HK model. Algorithm does
not take into account translation of root joint which is not
averaged. Each iteration of DBA utilizes dynamic time
warping (DTW), where cost function is defined as:

where qi , qj are normalized quaternions, ◦ is a dot product
and | | is an absolute value (q and -q correspond to the same
rotation).

DBA is applied separately to each three-dimensional
rotation signal and rotation of each joint is recalculated to
quaternions. Because this MoCap averaging algorithm uses
quaternions the barycenter averaging (that happens dur-
ing each DBA iteration) is replaced by norm-preserving
quaternion averaging Markley’s approach [19]. Markley’s
approach works as follow. Let us assume that we have to
average k quaternions. At first, we iteratively generate matrix
in the following form:

where qj is – ith quaternion to be averaged, j ∈
{
1, ..., k

}

and wj–ith weight of weight vector. To calculate the average

(18)distance(qi, qj) = 1 −
|||qi◦qj

|||,

(19)M =

⎧
⎪⎪⎨⎪⎪⎩

M0 =

⎡⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎦
Mi = Mj−1 + wj ⋅ qj ⋅ q

T
j

,

Fig. 6   This figure presents
original motion (red silhouettes)
and corrected motion by calcu-
late.kinematic function (green
silhouettes) (color figure online)

168	 T. Hachaj, M. R. Ogiela

1 3

quaternion qavg , we need to find eigenvector of M corre-
sponding to the maximum eigenvalue.

RMoCap has implementation of both weighted and not
weighted (where ∀j ∈

{
1,… , k

}
wj = 1 ) Markley’s algo-

rithms in functions wavg.quaternion.markley and avg.qua-
ternion.markley, respectively.

The stop criterion of averaging algorithm for each rota-
tion signal is either maximal iterations count or coverage of
the algorithm. The coverage happens when a module of dif-
ference of normalized DTW distances in DBA cost matrix of
actual and previous iteration is below certain epsilon value

or when normalized DTW distances in DBA cost matrix
of actual iteration is below one tenth of epsilon value. The
return signal from DBA has number of samples equals to
the longest input signal from the averaged group. To smooth
the final solution, we apply to each return signal weighted
Markley’s algorithm in the process similar to convolution
filtration with Gaussian kernel (see [12] for more details).

An example R code that utilizes mocap.averaging and
draws averaging plots for each body joint is presented below.
The plot analogical to the one we will obtain in R is pre-
sented in Fig. 7.

Fig. 7   This figure presents
normalized distance after
each iteration of DBA. Those
distances are stored in DBA
distance matrix for each body
joint that is processed during
averaging

0 10 20 30 40 50

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Iterations

N
or

m
al

iz
ed

 d
is

ta
nc

e

Hips
LeftThigh
LeftLeg
LeftFoot
RightThigh
RightLeg

RightFoot
SpineLow
SpineMid
Chest
LeftShoulder
LeftArm

LeftForearm
LeftHand
RightShoulder
RightArm
RightForearm
RightHand

Neck
Head
EndSite21

169RMoCap: an R language package for processing and kinematic analyzing motion capture data﻿	

1 3

6 � Motion analysis

The motion analysis that is performed in RMoCap package
is based on motion paths alignment and comparison. The
aim of this comparison is to find those fragments in motion
paths, where there are locally maximal differences between
input and reference data. The analysis is performed on chain
of body joints that are defined before analysis (they might be
the same as in HK model, however this is not obligatory).
We need to indicate which joint is the joint in the end of
the chain (we will call it end joint) and which are its parent
joints. We may want to align either 3D coordinates of refer-
ence and input body joints (for example a foot) or angles
on the plain between vectors designated by tracked body
joints (for example knee flexion angle) or Euler angles in
certain coordinate frame (for example rotation angle towards
X axis between thigh and leg), however the end joint has to
be analyze as 3D coordinates. Euclidean distance is com-
monly used to all of those cases. This type of data evalua-
tion is based on evaluation of so called DTW align function
(DTWaf) which is defined as follow:

•	 It is a vector or real values;
•	 It has the length of the DTW warping path (warping

paths path1 and path2 that maps reference data on input
data and vice versa has the same length);

•	 The value in each sample is calculated using following
formula (see below pseudocode):

DTWaf holds information about distances between aligned
signals. distance(x,y) is a distance function that was used in
DTW. If more than one sample of one signal was warped onto
another sample, DTWaf takes maximal distance value.

The motion analysis algorithm works as follow:

1.	 Both MoCaps have to be initially translated and rotated
so that persons on them face same direction. To per-
form rotation, we choose vectors vreference and vinput in
reference and input data derived from coordinates of
body joints (for example, LeftThigh − RightThigh ) and
we align those two vectors by rotation around Y axis.
The optimal angle of rotation minimizes Euclidean dis-
tance between vreference and vinput . The optimization is
done using Simplex method. This procedure works if
the translation of the root joint in MoCap data is zero.

2.	 Because root joint translation in original data is zero,
we need to perform motion direction correction without
using acceleration data of both reference and input data.
To do so, we use the procedure described in Sect. 4.2.

3.	 Next, we translate input data so that it initially has same
coordinates of selected joint ������������������������⃗Joint.Dxyzinput as the same
joint from reference data �����������������������������⃗Joint.Dxyzreference . After this
operation both input and reference body motions start
from the same point in space.

(20)
�����������������������⃗ALL.Dxyzinput[i] ←

�����������������������⃗ALL.Dxyzinput[i]

− (������������������������⃗Joint.Dxyzinput[1] −
�����������������������������⃗Joint.Dxyzreference[1]).

170	 T. Hachaj, M. R. Ogiela

1 3

 This procedure is applied to each sample i of input
MoCap.

4.	 We perform DTW on end joints of reference and input
signal, we find DTWaf, we smooth it with Gaussian ker-
nel and next we calculate first derivative DTWaf’ using
central difference numerical operator. We find local
maxima in DTWaf’. Maximum is present in the moment
of time i when DTWaf’(i) > 0 and DTWaf’(i) < 0 . We
take into consideration only those maxima, which have
relative value above certain threshold. Example results
of DTWaf analysis is presented in Fig. 8.

5.	 Analysis of all other joints from kinematic chain is
identical. At first, we perform DTW alignment of both
input and reference signals; however, we use warping

paths calculated in the previous step (for end joints).
We calculate, smooth, find and threshold local maxima
in DTWaf’ of a joint of kinematic chain using the same
approach as above. We take into consideration only
those maxima that are close enough to maxima detected
in first step.

Figure 8 contains four sub-plots. Sub-plot (a) presents
DTW alignment of left foot trajectory between reference
and input signal. In this case, the left foot is the end joint and
as we already mentioned distance function used by DTW is
Euclidean metric. Sub-plot (b) presents DTWaf of left foot
trajectory calculated according to Pseudocode 5. Original
DTWaf is a solid black line, violet dashed line is DTWaf

0 50 100 150 200

0
50

10
0

15
0

DTW alignment

Reference signal [sample id]

In
pu

t s
ig

na
l [

sa
m

pl
e

id
]

(a) DTW alignment of left foot.

0 50 100 150

20
40

60
80

DTWaf of LeftFoot trajectory analysis

Time [10^−2 s]

D
is

ta
nc

e
[c

m
]

Original
Smoothed
Maxima
Maxima over threshold

(b) DTWaf of left foot trajectory with max-

ima.

0 50 100 150

0.
0

0.
5

1.
0

1.
5

2.
0

Time [10^−2 s]

A
ng

le
 [r

ad
]

DTWaf of Left knee trajectory analysis

Original
Smoothed
Maxima over threshold
ROI

(c) DTWaf of left knee angle with maxima.

0 50 100 150

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Time [10^−2 s]

A
ng

le
 [r

ad
]

DTWaf of Z angle between LeftThigh and LeftLeg trajectory analysis

Original
Smoothed
Maxima over threshold
ROI

(d) DTWaf of rotation angle around Z axis of

vector designated by left thigh and left leg.

Fig. 8   This image presents the subset of plots that are generated during analysis of mawashi geri kick with left leg

171RMoCap: an R language package for processing and kinematic analyzing motion capture data﻿	

1 3

smoothed with Gaussian kernel. Cyan circles indicate local
maxima detected in smoothed signal by our algorithm. Red
crosses are those maxima which values are over a threshold.
As can be seen the largest difference in foot trajectory has
been detected near 0.6 s and 1.4 s. Those two local maxima
are indicated in Fig. 9 with yellow lines. Sub-plots (c) and
(d) visualize similar analysis of DTWaf however of different
body joints. In (c), DTWaf of left knee angle is visualized.
This time we only show those local maxima that are within
time span threshold of maxima detected in sub-plot (b) (see
point 5 of motion analysis algorithm). Blue crosses preced-
ing maxima are sample point in smoothed DTWaf in which
first derivative is greater than zero. Sub-plot (d) contains
visualization with analysis of DTWaf rotation angle around
Z axis of vector designated by left thigh and left leg.

The motion analysis algorithm is implemented in ana-
lyze.mocap function. Because R code for data preparation
and function calls look clumsy after inserting necessary line
brakes to fit into this paper an example code is presented in
Supplements—R replication code. In Fig. 9 we present 3D
visualization of motion analysis of mawashi geri kick with
left leg performed by analyze.mocap function.

7 � Summary and discussion

Package RMoCap is a complete, advanced open-source tool
for scientists, engineers and computer graphics who are
familiar with R language. It provides them with MoCap data
handling, statistical processing, visualizing and analysis with

the help of high-level R programming language. RMoCap
package uses well-established MoCap file exchange format
and can be easily integrated with most of motion analy-
sis workflows. It also introduces implementations of both
novel and already known MoCap processing methods. What
is more is the first R package that is devoted entirely for
MoCap processing and analysis purposes. Those are the
most important feature of our programming library.

The main drawback of RMoCap is long time of data pro-
cessing, especially while converting from DK to HK model
and data averaging. It is caused by many algebraic and opti-
mization procedures calls that happen during calculation.
However, those functions are often called only once at the
beginning or end of data analysis and can be computed in
the batch.

Acknowledgements  This work has been supported by the National
Science Centre, Poland, under project number 2015/17/D/ST6/04051.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

	 1.	 Adler, D., Murdoch, D., et al.: RGL: 3D Visualization Using
OpenGL. R package version 0.99.16 (2018)

Fig. 9   3D visualization of motion analysis of mawashi geri kick with left leg. Reference data is green, input red. Blue lines indicate aligning of
motion frames. Yellow line shows local maxima (color figure online)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

172	 T. Hachaj, M. R. Ogiela

1 3

	 2.	 Barre, A., Armand, S.: Biomechanical toolkit: open-source frame-
work to visualize and process biomechanical data. Comput. Meth-
ods Progr. Biomed. 114(1), 80–87 (2014)

	 3.	 Burger, B., Toiviainen, P.: Mocap toolbox—a matlab toolbox for
computational analysis of movement data. In: Bresin, R. (Ed.)
Proceedings of the Sound and Music Computing Conference
2013, pp. 172–178 (2013)

	 4.	 Delp, S., Anderson, F., Arnold, A., Loan, P., Habib, A., John,
C., Guendelman, E., Thelen, D.: Opensim: open-source software
to create and analyze dynamic simulations of movement. IEEE
Trans. Biomed. Eng. 54(11), 1940–1950 (2007)

	 5.	 Flam, D., de Queiroz, D., de Souza Ramos, T., de Albuquerque
Araujo, A., Gomide, J.: Openmocap: an open source software for
optical motion capture. In: 2009 VIII Brazilian Symposium on
Games and Digital Entertainment, pp. 151–161 (2009)

	 6.	 Gama, J., Fuller, J., Leva, P.: RSpincalc: Conversion Between
Attitude Representations of DCM, Euler Angles, Quaternions,
and Euler Vectors. R package version 1.0.2 (2015)

	 7.	 Gheller, R., Pupo, J.D., Ache-Dias, J., Detanico, D., Padulo, J.,
dos Santos, S.: Effect of different knee starting angles on interseg-
mental coordination and performance in vertical jumps. Hum.
Mov. Sci. 42, 71–80 (2015)

	 8.	 Giorgino, T.: DTW: Dynamic Time Warping Algorithms. R pack-
age version 1.20-1 (2018)

	 9.	 Hachaj, T., Ogiela, M., Koptyra, K.: Application of assistive
computer vision methods to oyama karate techniques recogni-
tion. Symmetry 7(4), 1670–1698 (2015)

	10.	 Hachaj, T., Ogiela, M.R.: Heuristic method for calculation of
human body translation using data from inertial motion capture
costume. Int. J. Electr. Electr. Eng. Telecommun. 1, 26–29 (2018)

	11.	 Hachaj, T., Ogiela, M.R.: RMocap: an R package for processing
and analysing motion capture data. R package version 1.0.0 (2018)

	12.	 Hachaj, T., Piekarczyk, M., Ogiela, M.: Human actions analy-
sis: templates generation, matching and visualization applied to
motion capture of highly-skilled karate athletes. Sensors 17(11),
1–24 (2017)

	13.	 Hamilton, N.: Smoother: Functions Relating to the Smoothing of
Numerical Data. R package version 1.1 (2015)

	14.	 Keane, J.: mocapGrip: An R package that encapsulates a motion
capture grip and gesture analysis project. University of Chicago.
R package version 0.4 (2016)

	15.	 King, A.A., Rowan, T.: subplex: Unconstrained Optimization
using the Subplex Algorithm. R package version 1.5-4 (2018)

	16.	 Kong, P., Luk, T., Hong, Y.: Difference between Taekwondo
roundhouse kick executed by the front and back leg biomechani-
cal study. In: 18 International Symposium on Biomechanics in
Sports, pp. 268–272 (2005)

	17.	 Lee, C.L., Chin, Y.F., Liu, Y.: Comparing the difference between
front-leg and back-leg round-house kicks attacking movement
abilities in Taekwondo. In: 23 International Symposium on Bio-
mechanics in Sports, pp. 877–880 (2005)

	18.	 Ligges, U., et al.: signal: signal processing. R package version
0.7-6 (2015)

	19.	 Markley, F., Cheng, Y., Crassidis, J., Oshman, Y.: Averaging qua-
ternions. J. Guid. Control Dyn. 30, 1193–1197 (2007)

	20.	 Michael Meredith, S.M.: Motion capture file formats explained
(2001)

	21.	 Moreira, P., Goethel, M., Gonçalves, M.: Neuromuscular perfor-
mance of Bandal Chagui: comparison of subelite and elite taek-
wondo athletes. J. Electromyogr. Kinesiol. 30, 55–65 (2016)

	22.	 Neto, O., Magini, M.: Electromiographic and kinematic character-
istics of Kung Fu Yau-Man palm strike. J. Electromyogr. Kinesiol.
18(6), 1047–52 (2008)

	23.	 Ojeda, A., Bigdely-Shamlo, N., Makeig, S.: Mobilab: an open
source toolbox for analysis and visualization of mobile brain/body
imaging data. Front. Hum. Neurosci. 8, 1–9 (2014)

	24.	 Petitjean, F., Ketterlin, A., Gançarski, P.: A global averaging
method for dynamic time warping, with applications to cluster-
ing. Pattern Recognit. 44(3), 678–693 (2011)

	25.	 Sandholm, A., Pronost, N., Thalmann, D.: Motionlab: A matlab
toolbox for extracting and processing experimental motion capture
data for neuromuscular simulations. pp. 110–124 (2009)

	26.	 Sarda-Espinosa, A.: dtwclust: Time Series Clustering Along with
Optimizations for the Dynamic Time Warping Distance. R pack-
age version 5.5.0 (2018)

	27.	 Simchoni, G.: mocap: R interface to parsing and plotting Motion
Capture ASF/AMC files. R package version 0.0.0.9000 (2017)

	28.	 Singh, T., Suresh, P., Chandan, S.: Forward and inverse kinematic
analysis of robotic manipulators. Int. Res. J. Eng. Technol. IRJET
4(2), 1459–1469 (2017)

	29.	 Soltani, P., Figueiredo, P., Fernandes, R., Vilas-Boas, J.: Do player
performance, real sport experience, and gender affect movement
patterns during equivalent exergame? Comput. Hum. Behav. 63,
1–8 (2016)

	30.	 Vishnoi, N., Mitra, A., Duric, Z., Gerber, N.: Motion based mark-
erless gait analysis using standard events of gait and ensemble
Kalman filtering. Conf Proc IEEE Eng Med Biol Soc., pp. 2512–
2516 (2014)

	31.	 Vuk, S., Markovic, G., Jaric, S.: External loading and maximum
dynamic output in vertical jumping: the role of training history.
Hum. Mov. Sci. 31(1), 139–151 (2012)

	32.	 Wieber, P., Billet, F., Boissieux, L., Pissard-Gibollet, R.: The
humans toolbox, a homogenous framework for motion capture,
analysis and simulation. In: Proceedings of the Ninth ISB Sympo-
sium on 3D Analysis of Human Movement, Valenciennes, France
(2006)

	33.	 Witte, K., Emmermacher, P., Bystrzycki, S., Potenberg, J.: Move-
ment structures of round kicks in karate. In: 25 International Sym-
posium on Biomechanics in Sports, pp. 302–305 (2007)

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

	RMoCap: an R language package for processing and kinematic analyzing motion capture data
	Abstract
	1 Introduction
	1.1 State of the art in kinematic analysis
	1.2 Open-source software packages dedicated to motion capture analyzing
	1.3 Algorithms notation
	1.4 Test datasets and accepted input file formats
	1.5 Installing R package RMoCap

	2 Mapping from HK to DK model
	3 Mapping from DK to HK model
	3.1 Finding n-dimensional rotation matrix between vectors
	3.2 Root joint rotation calculation in HK model
	3.3 All other joints

	4 Motion direction correction
	4.1 Correction with acceleration data
	4.2 Correction without acceleration data

	5 Motion averaging
	6 Motion analysis
	7 Summary and discussion
	Acknowledgements
	References

