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Abstract
Package RMoCap is an advanced open-source tool for scientists, engineers and computer graphics familiar with R language 
who work with motion capture (MoCap) technology. Package provides them with MoCap data handling, statistical pro-
cessing, visualizing and analysis. Package uses well-established MoCap file exchange format and can be easily integrated 
with most of the motion analysis workflows. Among functions available in RMoCap, there are procedures for conversion 
between hierarchical and direct kinematic models, data averaging, correcting direction of motion, 3D interactive visualiza-
tion and advanced analysis using Dynamic Time Warping. This paper covers all advanced algorithms that are implemented 
in RMoCap. This article also introduces direct to hierarchical kinematic conversion algorithm that is a new, never-before-
published method. We also introduce extension of motion direction correction method that makes possible to process data 
that does not contain information about acceleration. All examples showed in this paper can be reproduced using replication 
code and data sources that are included to this package.

Keywords  Motion capture · Kinematic model · Hierarchical kinematic · BVH · Motion processing · Motion analysis · 
Motion averaging · R language

1  Introduction

Motion capture (MoCap) technology generates motion 
description that is composed of a set of time varying signals 
that describe positions of body joints. This modern tech-
nology has many important applications; among them are: 
sport data analysis, medicine, biomechanics and computer 
graphic. The RMoCap package is devoted to statistical pro-
cessing and kinematic analyzing of this type of data.

The structure of our paper goes as follows: the rest of 
the first section is devoted to presentation of the state of 
the art in MoCap kinematic analysis. We will also initially 

show how RMoCap covers various MoCap applications 
and we will introduce its novel functionalities. Section 1.3 
presents description of algorithms notation we use in this 
paper. Sections 1.4 and 1.5 are technical details about input 
data format and package installation notes. Sections 2, 3, 
4, 5 and 6 are devoted to the most important algorithms of 
RMoCap. Sections 2 and 3 covers mapping from hierarchi-
cal to direct kinematic model and vice versa. Section 4 is 
about motion direction correction that is applied to improve 
results of body displacement estimation. Section 5 describes 
motion averaging algorithm which uses several recordings 
of same activity to generate the single motion pattern. The 
sixth section covers motion analysis procedure that enables 
comparison of two MoCap recordings to detect, measure 
and visualize important kinematic differences between them. 
The last, seventh contains summary and discussion.

1.1 � State of the art in kinematic analysis

Kinematics is the branch of mechanics that deals with the 
motion of the bodies and system without considering the 
force [28]. Forward kinematics is specified by the joints 
parameters and kinematic equations that are used to compute 
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the position of the end effector from specified value for each 
joint parameter (in this paper, we do not take into account 
an inverse kinematic problem which is not a case in MoCap 
technology). Let us define the Direct Kinematic (DK) model/
description as motion notation in which body joints posi-
tions are directly described by 3D coordinates of each body 
joint (no further calculation is required to determine they 
spatial positions). This model does not take into account 
rotation, so it treats each body joint as a material point in 
space rather than a rigid body. In Hierarchical Kinematic 
(HK) model/description, we define the motion as a set of 
3D rotations of body joints that are organized in hierarchy 
(so called kinematic chain)—a tree structure that has a root 
joint. Distances (offsets) between body joint and its parent 
are defined relatively to the parent joint. Also rotations are 
defined relatively to the parent joint. The root joint, that 
does not have the parent joint, beside rotation also contains 
information about translation of the whole body. An example 
visualization of joints organized in hierarchy can be seen in 
Fig. 1. In that figure, a root joint is a Hips joint and it has 
three children: SpineLow, RightThigh and LeftThigh; Right-
Thigh has a child RightLeg, etc. To get spatial coordinates of 
body joints from HK model, we have to recalculate it to DK. 

DK model is often more useful for kinematic data analysis. 
However, for example, computer graphic often utilizes HK, 
because it has the information about joints orientation (rota-
tion). Cheap MoCap hardware like Kinect generates data in 
DK model. To get joints orientation, we need to recalculate 
DK to HK model. To do so, we need to have a prior defini-
tion of joints hierarchy that is compatible with DK model 
(that has same number of joints).

The RMoCap package is dedicated to work on MoCap 
data that are either in DK or HK model. Our package can 
freely convert HK into DK and DK into HK and is oper-
ational on various types of public datasets. The DK into 
HK conversion algorithm is a new, never-before-published 
authors’ method.

Nearly, each motion capture hardware manufacturer sup-
plies users with a basic graphical interface and/or application 
programming interface that enables conversion of a raw data 
into popular data formats that can be processed by third-
party software. Also, there are often dedicated packages for 
computing basic kinematic parameters like time of motion, 
trajectory length, linear velocity, acceleration, angles 
between body joints, etc. Those parameters are often used 
by scientists to generate tabularized values that later become 
reference values for various motion activities [16, 17, 33]. 
From the statistical and computer science perspective, those 
are very basic operations. Those statistic can be generated 
by several common programming language instructions (for 
example summary command in R language). Due to this, our 
package does not implement operations that are available as 
generic R language functions and we will not discuss those 
approaches later on.

Among the most interesting and fruitful methods of 
motion analysis are motion capture averaging methods and 
motion path matching approaches. The motion averaging is 
a process in which as an input data we take several record-
ings of a person who performs same action. After apply-
ing averaging, we generate a single recording that should 
maximize value of similarity measure between averaged 
recording and each input recording (so motion averaging is 
an optimization procedure). The aim of motion averaging 
is to remove small, random noises that might be present in 
MoCap recording. Motion averaging does not remove sys-
tematic errors that might visualize some common motion 
inaccuracies. Depending of application of MoCap analysis, 
an inaccuracy might be an effect of some disabilities caused 
by illness (medical and rehabilitation application) or wrong 
performance of technique (sport application). Our package 
implements method presented in paper [12] that enables 
averaging 3D MoCap data using dynamic time warping 
barycenter averaging (DBA) [24]. It operates in quater-
nion space using Markley averaging approach instead of 
barycenter [19]. Package RMoCap is the first open-source 
release of this method.

Fig. 1   A three-dimensional interactive plot that visualizes single 
frame of 3D motion capture data
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The motion path matching approaches analyze trajectory 
of certain body joints and align one MoCap data to another 
to find some important differences between them. There are 
many papers that describe application of that type of analysis 
in 1D and 2D [7, 21, 22, 29–31]. In our package we imple-
ment 3D trajectory comparison method based on Dynamic 
Time Warping (DTW) approach that is able to find and visu-
alize the highest local differences in kinematic chain.

The IMU-based (Inertial Measurement Unit) MoCap 
hardware, that typically contains accelerometers, gyroscopes 
and magnetometers, is capable to measure the acceleration 
of the objects that are attached to costume. By numerical 
integration, we can estimate the distance that those sensors 
moved starting from the known, initial position. Due to 
limited precision of IMU (both static and dynamic), some 
unavoidable drifts from the ”real” body position are con-
tinuously introduced. However, the most important prob-
lem with IMU-based MoCap is the fact, that those three 
earlier mentioned measuring sensors (accelerometer, gyro-
scope and magnetometer) are not enough to measure the 
body displacement is 3D space relatively to the ground (we 
will call it later a body displacement). The only reliable 
displacement returned by those sensors is relative motion 
to root joint of HK model. To measure body displacement, 
some additional sensors have to be introduced, for example, 
vision-based (cameras) or pressure sensors located on feet. 
Vision-based system is not reliable as long as it is not a pro-
fessional MoCap with at least the same price as IMU system 
itself. Pressure sensors operate under some heuristic that 
often introduces errors in estimation body displacement vec-
tor. Knowing that the RMoCap package introduces function 
that is a heuristic that can estimate the body displacement 
of MoCap data. The proposed heuristic is a novel extension 
of the method proposed in [10]. The extension in RMoCap 
package makes method capable to process data that do not 
contain information about acceleration.

1.2 � Open‑source software packages dedicated 
to motion capture analyzing

In this subsection, we will only discuss package for MoCap 
data analysis. There are dozens of open packages for con-
verting 2D image data into 3D MoCap (for example [5]) and 
for MoCap-based pattern recognition [9]; however, they are 
designed to solve different problems than our algorithms. 
Also kinetic (not kinematic) analysis performed, for exam-
ple, by MotionLab is out of our scope [25].

Our package is capable of freely converting not only HK 
into DK model (there are many examples of that in number 
of programming languages) but also DK into HK which is 
a more complex optimization task. For our best knowledge, 
this is a first open-source publicly available package that 
implements this type of conversion.

R language has very little packages directly dedicated for 
MoCap data analysis. As far as we know, there is only mocap 
[27] package that enables loading ASF/AMC files and con-
verting them into a list data structure. The visualization 
functions of that package seem to be based on old version 
of third-party libraries and are not operational any more. 
The second package we found, mocapGrip [14] encapsulates 
a python motion capture project dedicated for annotations 
analysis, which is utilized mostly in linguistic and psychol-
ogy. Both of those packages do not contain functions that 
can be helpful in motion processing and kinematic analysis. 
DBA algorithm is implemented in R language package [26] 
and DTW in package [8]; however, both of those imple-
mentations do not allow to use quaternion data. Also, DTW 
implementation is not flexible enough to access all algorithm 
parameters that we need. Due to this, RMoCap has its own 
implementations of both algorithms, independent from both 
packages.

Among important open-source packages created in other 
than R programming languages is Mokka,1 which is a motion 
capture kinematic and kinetic analyzer with graphical inter-
face that implements basic plots, media integration and 
data importing functions. It utilizes functions from an open 
source framework Biomechanical ToolKit (BTK) [2]. BTK 
supports C++, Matlab and Python programming languages. 
OpenSim is a software to create and analyze dynamic simu-
lations of movement [4]. An open source toolbox MoBILAB 
[23] can be used for analysis and visualization of mobile 
brain/body imaging data. HuMAns toolbox [32] includes a 
biomechanical model of a complete human body and pro-
poses a set of versatile tools for modeling, capture, analy-
sis and simulation of human and humanoid motion (it is an 
open-source software, distributed under the GPL License). 
MoCap Toolbox [3] is a set of functions written in Matlab 
for analyzing and visualizing motion capture data. It covers 
basic visualization and analysis approaches, such as general 
data handling, creating stick-figure images and animations, 
kinematic analysis (mean and standard deviation of veloc-
ity and acceleration), and performing Principal Component 
Analysis (PCA) on movement data.

Although all mentioned software contain useful methods, 
they do not cover new functionalities that are included in 
RMoCap that we initially presented in Sect. 1.1. All of them 
will be discussed in detail in the rest of this paper.

1.3 � Algorithms notation

All algorithms that are implemented in RMoCap package are 
described using standard mathematical notation or, if this 
notation might be too clumsy, with code in R language or 

1  http://biome​chani​cal-toolk​it.githu​b.io/mokka​/.

http://biomechanical-toolkit.github.io/mokka/
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pseudocode similar to R language. In case of mathematical 
notation, matrices are named with capital letter, numbers 
are in lowercase, angles are lowercase Greek letters and vec-
tors are lowercase letters with arrow. In R/R pseudocode, all 
fields of complex data types (i.e., named columns of lists, 
matrices, data frames) are accessed with $ operator. Vectors 
are defined with parentheses, while accessing object with 
certain index in data frame, list or matrix require square 
brackets. Dot symbol ”.” might be a part of the name of the 
variable. Hash symbol ”#” begins a single-line commentary. 
We use notation ”/* */” for commentaries in pseudocode.

1.4 � Test datasets and accepted input file formats

RMoCap package contains several MoCap recordings that 
can be used to test algorithms we have implemented. The 
MoCap data were recorded using Shadow 2.0 wireless 
motion capture system, which is high-end professional 
IMU-based solution. We use this hardware for our everyday 
work. More about recording process can be learned from 
[12]. Motion recordings are example karate techniques per-
formed by a world and national class professional (medal-
ists) karate athletes. There are both short recordings of single 
karate kicks and also longer karate kata motion sequences. 
Of course, our algorithms can read and operate on other 
recordings. There are two basic file formats RMoCap uses: 
Biovision Hierarchy file format (BVH), that is a very popular 
format to hold HK model [20] and also comma-separated 
vector (CSV) file format. Requirements for CSV are proper 
naming of columns:

•	 CSV must have a column with name Time that shows the 
acquisition time of single frame (in milliseconds);

•	 rotation or/and translation data columns for each body 
joint, each column of this type has to have name starting 
with body joint name (for example RightLeg) and ending 
.Dx,.Dy,.Dz for translation data (for example RightLeg.
Dx, the unit should be centimeters). Rotation data col-
umns are .Rx, .Ry, .Rz (for example RightLeg.Rx, the 
unit should be Euler angles in degrees – not radians).

In case of R language, CSV files are often stored in memory 
in data.frame structure. If data.frame columns have same 
number of joints definition in DK model as HK in BVH 
file, data can be easily converted from DK into HK (see 
example in Sect. 3). Most of the current MoCap systems 
and motion repositories store data in at least one of those 
formats. It requires basic knowledge of R to prepare a data.
frame imported from CSV to work with RMoCap.

1.5 � Installing R package RMoCap

The R package RMoCap [11] is distributed under the GPL-3 
license. It depends on the R packages smoother v. 1.1 [13], 
rgl v. 0.99.16 [1], RSpincalc v. 1.0.2 [6], subplex v. 1.5.4 
[15], signal v. 0.7.6 [18], compiler v. 3.5.0.

The R package RMoCap is hosted by GitHuba2 and its 
dependencies are available at https​://CRAN.R-proje​ct.org/ 
and can be installed as follows:

2 � Mapping from HK to DK model

In this section, we will present how to recalculate MoCap 
data from HK to DK model. In KH model, the rotation 
of each joint is governed by three-dimensional rotation 
described by Euler angles. Let us assume that the order of 
rotation is Z, Y, X and rotation angles are �, �, � , respectively. 
The rotation matrix has following form:

and the final rotation:

Root joint is the only joint that in HK that has both rotation 
TRoot
rans

 and translation DRoot
isp

 data. Taking into account offset 
of the root joint ORoot

ffset
 , the final displacement (3D position in 

DK model) of root joint DRoot
xyz

 is:

Then we need to calculate the translation matrix of root joint 
TRoot
rans

 that will be used later:

(1)

Mx =

⎡
⎢⎢⎣

1 0 0

0 cos(�) − sin(�)

0 sin(�) cos(�)

⎤
⎥⎥⎦
,

My =

⎡⎢⎢⎣

cos(�) 0 sin(�)

0 1 0

− sin(�) 0 cos(�)

⎤⎥⎥⎦
,

Mz =

⎡⎢⎢⎣

cos(�) − sin(�) 0

sin(�) cos(�) 0

0 0 1

⎤
⎥⎥⎦
,

(2)Rot = Mz ⋅My ⋅Mx.

(3)DRoot
xyz

= DRoot
isp

+ ORoot
ffset

.

(4)TRoot
rans

(4 × 4) =

⎡⎢⎢⎢⎣

⎡⎢⎢⎣
RRoot
ot

(3 × 3)

⎤⎥⎥⎦

⎡⎢⎢⎣
Dxyz(3 × 1)

⎤⎥⎥⎦
0 0 0 1

⎤⎥⎥⎥⎦
,

2  https​://githu​b.com/browa​rsoft​ware/RMoCa​p.

https://CRAN.R-project.org/
https://github.com/browarsoftware/RMoCap
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(3 × 3) and (3 × 1) indicates the dimensionality of matrices.
The calculation of final displacements (positions in DK 

model) of all joints has to be made according to hierarchy 
indicated in HK. This means that at first, we need to cal-
culate translation matrix of root joint, then positions of its 
direct descendants, then translation of descendants of those 
descendants, etc. until we calculate translation matrices of 
end site joints (joints without children).

A joint with index i which is neither root joint nor end site 
has only a rotation data. To calculate its translation matrix, 
we need to multiply translation matrix of the parent joint of 
joint i TParent(i)

rans  by a matrix composed of rotation matrix and 
offset of joint i:

End site joints do not have rotation data; due to this transla-
tion matrix of end site joint j is calculated by multiplying 
translation matrix of parent joint TParent(j)

rans  by matrix com-
posed of offset of end site j:

(5)

T
Jointi
rans (4 × 4) = TParent(i)

rans

⋅

⎡⎢⎢⎢⎢⎣

⎡⎢⎢⎣
R
Jointi
ot (3 × 3)

⎤⎥⎥⎦

⎡⎢⎢⎣
O

Jointi
ffset

(3 × 1)

⎤⎥⎥⎦
0 0 0 1

⎤⎥⎥⎥⎥⎦
.

(6)

T
EndSitej
rans (4 × 4) = TParent(j)

rans

⋅

⎡⎢⎢⎢⎢⎣

⎡⎢⎢⎣

1 0 0

0 0 1

0 1 0

⎤⎥⎥⎦

⎡⎢⎢⎣
O

EndSitej

ffset
(3 × 1)

⎤⎥⎥⎦
0 0 0 1

⎤⎥⎥⎥⎥⎦
.

The displacement Dxyz of all types of joints is in first three 
rows of fourth column of their Trans matrix:

Above procedures are implemented in RMoCap package 
in function read.mocap. This function loads data stored in 
BVH format from disc and generates object of class mocap 
that contains all original HK data and data frame with DK 
model.

Visualization of 3D data can be seen on Figs. 1 and 2.

3 � Mapping from DK to HK model

Let us face the following problem: we have 3D coordinates 
of body joints (direct kinematic description) and a hierarchi-
cal kinematic model that is compatible with direct one (it has 
the same number of joints). We want to recalculate direct 
kinematic parameters to hierarchical so that they describe 
the same motion.

(7)Dxyz = [T1,4
rans

, T2,4
rans

, T3,4
rans

].

Fig. 2   A three-dimensional 
interactive plot that visualize 
3D motion capture data
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Mapping from DK to HK is, similarly as mapping from 
HK to DK, an iterative procedure, that starts from the root 
node and explores its children setting appropriate rotation 
coefficients. In HK, each joint holds information about its 
rotation in Euler angles. Additionally, root joint (the joint 
that does not have a parent joint) has a translation data.

In algorithm proposed in this paper we assume that the 
rotation order of Euler angles will be ZYX and there is only 
one root joint with at least two direct descendants.

The below calculation has to be repeated for each frame 
of motion capture recording.

Among the basic steps of this mapping algorithm is to 
find 3D rotation matrix between vectors. As it is not a trivial 
procedure, we will describe this method in the following 
section.

3.1 � Finding n‑dimensional rotation matrix 
between vectors

The method of finding n-dimensional rotation matrix Rn 
that rotates vector �⃗x to �⃗y is not a basic but already known 
algebraic procedure. Let us assume that �⃗x and �⃗y are linearly 
independent. If this condition is false, the rotation is repre-
sented by identity matrix.

At first we will generate 2D rotation matrix R2 such that: 
x ⋅ R2 is linearly dependent to y.

where � is an angle on the plane between �⃗x to �⃗y , 
cos(𝛼) =

x⃗◦⃗y

|⃗x|⋅|⃗y| , sin(�) =
√
1 − cos2(�) and ◦ is a dot 

product.

(8)R2 =

[
cos(�) − sin(�)

sin(�) cos(�)

]
,

The projection matrix onto complemented subspace n-2 
subspace is:

where In is n – dimensional identity matrix.
Because the rotation happens in subspace designated by 

vectors �⃗a , �⃗y we can get n-dimensional substitute of R2 by 
changing the base of R2 to be n-dimensional and by complet-
ing it with P′:

Knowing how to calculate Rn , we can go to the first step 
of DK to HK mapping that is determination of rotation of 
root joint.

3.2 � Root joint rotation calculation in HK model

Among all joints in HK model, the root joint is a special case 
because of two factors:

•	 This is the only joint that has a translation data,
•	 as this joint does not have a parent we need two vectors 

in 3D space to unambiguously define its rotation.

Let HK be a MoCap data structure in hierarchical model, 
while DK a MoCap data structure in direct kinematic model. 
Calculation of translation data is straightforward (see below 
pseudocode):

(11)P = �⃗a ⋅ �⃗aT + �⃗b ⋅ �⃗bT.

(12)P� = In − �⃗a ⋅ �⃗aT − �⃗b ⋅ �⃗bT,

(13)Rn = In − �⃗a ⋅ �⃗at − �⃗b ⋅ �⃗bt + [ �⃗a �⃗b] ⋅ R2 ⋅ [ �⃗a �⃗b]
T.

In the next step, we will generate orthonormal pairs of 
vectors �⃗a , �⃗b from �⃗x , �⃗y using Gram–Schmidt process.

We need to normalize vector �⃗x:

and then by projection of vector �⃗y onto the line spanned by �⃗a

The projection matrix on subspace designated by unit vec-
tors �⃗a , �⃗b is:

(9)�⃗a =
�⃗x
||�⃗x||

,

(10)�⃗b = �⃗y − ( �⃗a ◦ �⃗y) ⋅ �⃗a.

Finding rotation of the root joint is, however, more com-
plex. At first we need to find any two direct descendants of 
the root. If there are more than two, the rest is irrelevant for 
this algorithm.

We choose one of these descendants (Child1) and calcu-
late rotation matrix that rotates vector designated by offset of 
HK root joint onto vector designated as difference between 
Child1 and Root joints coordinates in DK model.
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it was said in Sect. 3.1 operates on the 2D plane and there is 
no guarantee that the initial solution we found also maps all 
other direct descendants of the root joint. That is because the 
solution we initially obtained might be rotated around ������⃗map . 
To find the appropriate 3D rotation that also maps other chil-
dren of root we have to find additional rotation that applied 
after the first one correctly aligns both child-parent vectors. 
To do this, we can apply the following algorithm:

Where vector.to.unit is a function that normalizes the 
vector and rotation.matrix is a function that implements an 
algorithm from Sect. 3.1.

Having rotation matrix Rx2y, we can now calculate qua-
ternion after rotation by which we will rotate one vector onto 
another. In R, we can do it with function DCM2EA from 
package RSpincalc. Pseudocode 2 finds matrix that maps 
vector defined by an offset of root joint onto vector desig-
nated by position of child joint. The rotation matrix Rx2y as 
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Optimization from Pseudocode 3 can be done with Sim-
plex method that is implemented for example in function 
subplex from package subplex. Functions EV2Q that calcu-
lates quaternion from axis angle is from package RSpincalc. 
The variable HK in last line of above pseudocode contains 
correctly mapped root joint.

3.3 � All other joints

After processing the root joint, we iterate through all its chil-
dren. Those children become parents of the following algo-
rithm. All joints that have parent joint (joints with children 

and end sites) are processed in the same way. Because we 
want to find rotation angles relatively to the parent joint, we 
need to know the transformation matrix Trans of the parent 
joint. Trans is calculated in the same way as it is in mapping 
procedure from HK to DK model (see Sect. 2). See Pseu-
docode 4 for more details. 

Fig. 3   This plot presents exam-
ple rotation angles of hip joints 
in HK model generated from 
input DK data frame
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As the result in variable Rx2y.n, we have the rotation 
matrix of analyzed joint. After processing a parent joint 
(Parent.n), we find all children of this joint. Those joints are 
processed with Pseudocode 4. The program ends when there 
are no more joints in HK model.

Algorithms described in this section are implemented in 
RMoCap package in function df.to.bvh.

The following R code generates HK from DK and creates 
plot presented in Fig. 3. As can be seen Euler angles may 
contains nonlinearities (near 76 and 100 sample) that are 
present due to periodic domain of trigonometric functions; 
however, the effector trajectory remains smooth.

The more advanced examples are presented in Supple-
ments—R replication code.

4 � Motion direction correction

In Sect. 1.1, we have described the important issue of IMU-
based MoCap technology: it does not measure body displace-
ment directly—it has to be estimated. To overcome this limi-
tation, RMoCap package implements extension of heuristic 
approach proposed in [10]. After applying this method, we can 
estimate body displacement (motion) relatively to environment.

The proposed heuristic works in one of the two possible 
versions: first version that uses acceleration data and the sec-
ond, in which we directly indicate which body joint remains 
immobile during whole motion.

4.1 � Correction with acceleration data

This approach has three main assumptions:

1.	 During the whole motion always one feet remains on the 
same ground level (a person is not jumping, climbing etc.);

2.	 A person does not perform body displacement by sliding 
on the ground;

3.	 A base on which person is moving is flat.

At first we calculate magnitudes of acceleration of right MR 
and left foot ML and we smooth them with Gaussian ker-
nel. MR and ML are vectors that are obtained as a result of 
smoothing right foot ��������������������⃗RightFoot.a and left foot �����������������⃗LeftFoot.a 
acceleration signals, respectively.

where ��������������������⃗RightFoot.a is an acceleration signal (a vector of 3D 
acceleration vectors), G� is a Gaussian kernel and 

⨂
 is con-

volution operator.
In Fig. 4, we present acceleration magnitude plot obtained 

for MoCap data from Heian Shodan motion sample from 
RMoCap package. It can be clearly observed which foot is 
one with higher magnitude of acceleration (this foot moves) 
moves and which one with lower magnitude of acceleration 
remains on the ground. 

In the next step for each sample i of MR and MR , we check 
if MR[i] > ML[i] ∧MR[i + 1] > ML[i + 1] . If it is true, there 
is a motion of right foot in this sample and left foot remains 
on the ground. We perform displacement correction of all 
����������������⃗ALL.Dxyz displacement vectors (of all body joints vectors) 
in our dataset:

(14)
MR ←

|||��������������������⃗RightFoot.a
|||
⨂

G𝜎 ,

ML ←
|||�����������������⃗LeftFoot.a

|||
⨂

G𝜎 ,

(15)

����������������⃗ALL.Dxyz[i ∶ samples.count(������������������������⃗LeftFoot.Dxyz)] ←

����������������⃗ALL.Dxyz[i ∶ samples.count(������������������������⃗LeftFoot.Dxyz)]

− (������������������������⃗LeftFoot.Dxyz[i + 1] − ������������������������⃗LeftFoot.Dxyz[i]),
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Fig. 4   Acceleration magnitude plot obtained for MoCap data from 
Heian Shodan motion sample
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where i ∶ samples.count(������������������������⃗LeftFoot.Dxyz) is a range of sam-
ples to be corrected starting from i th sample and end-
ing on the last index of sample from the MoCap data-
set. ������������������������⃗LeftFoot.Dxyz[i] is an i th sample vector of left foot 
displacement.

The second condition we take into account is 
MR[i] < ML[i] ∧MR[i + 1] < ML[i + 1] . If it is true, there 
is a motion of left foot in this sample and right foot remains 
on the ground. We perform displacement correction of all 
����������������⃗ALL.Dxyz displacement vectors (of all body joints vectors) 
in our dataset:

In the next step, we need to correct the vertical (Y) coordi-
nate of tracked person so that foot that remains on the ground 

(16)

����������������⃗ALL.Dxyz[i ∶ samples.count( ��������������������������⃗RightFoot.Dxyz)] ←

����������������⃗ALL.Dxyz[i ∶ samples.count( ��������������������������⃗RightFoot.Dxyz)]

− ( ��������������������������⃗RightFoot.Dxyz[i + 1] − ��������������������������⃗RightFoot.Dxyz[i]).

would be on the same ground level GroundPosition.Dy, 
which might not be a true condition in original dataset (see 
Fig. 5a). Let us assume, that initial position of feet is correct 
(both feet are on the ground level). For each motion sample 
i of MR and MR we check if MR[i] ⩾ ML[i] . If it is true, there 
is a motion of right foot in this sample and left foot remains 
still on the ground. We perform displacement correction of 
all ALL.Dy displacement vector coordinates (of all body 
joints vectors) in our dataset:

If MR[i] < ML[i] the processing is analogical to above.
The overall results for large motion sample are visual-

ized in Fig. 6. Red silhouettes are original while green are 
corrected by our approach. An example R code that utilizes 
calculate.kinematic and plots results analogical to Figs. 4 
and 5 is presented below.

(17)
ALL.Dy[i] ← ALL.Dy[i]

− (LeftFoot.Dy[i] − GroundPosition.y).
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4.2 � Correction without acceleration data

In this approach of motion direction correction, we indicate 
which body joint should be immobile (to have constant posi-
tion) during the whole motion. We might want to do it in two 
main scenarios: we do not have acceleration data or/and we 
want to analyze motion relatively to some body joint. After 
indicating the constant joint we apply substantially the same 
approach as in (15); however, instead of ������������������������⃗LeftFoot.Dxyz , we 
use displacement vector of the chosen joint. The application 
of this method will be discussed in section about Motion 
analysis in RMoCap package.

5 � Motion averaging

The role of motion averaging algorithm is to generate sin-
gle MoCap data from many motion recordings of the same 
activity performed by the same person to generate a sin-
gle motion pattern. This motion pattern should be free of 
all random errors that might happen between repetitions 
of the same move. The averaging algorithm implemented 
in RMoCap is mocap.averaging method proposed in paper 
[12]. Because this method is already fully described in that 
open access paper, here we will only presents its basis and 
additional coverage checking method, which was not present 
in earlier published paper.

A mocap.averaging utilizes dynamic time warping bar-
ycenter averaging (DBA) heuristic algorithm [24] that is 

applied to data represented in HK model. Algorithm does 
not take into account translation of root joint which is not 
averaged. Each iteration of DBA utilizes dynamic time 
warping (DTW), where cost function is defined as:

where qi , qj are normalized quaternions, ◦ is a dot product 
and | | is an absolute value (q and -q correspond to the same 
rotation).

DBA is applied separately to each three-dimensional 
rotation signal and rotation of each joint is recalculated to 
quaternions. Because this MoCap averaging algorithm uses 
quaternions the barycenter averaging (that happens dur-
ing each DBA iteration) is replaced by norm-preserving 
quaternion averaging Markley’s approach [19]. Markley’s 
approach works as follow. Let us assume that we have to 
average k quaternions. At first, we iteratively generate matrix 
in the following form:

where qj is – ith quaternion to be averaged, j ∈
{
1, ..., k

}
 

and wj–ith weight of weight vector. To calculate the average 

(18)distance(qi, qj) = 1 −
|||qi◦qj

|||,

(19)M =

⎧
⎪⎪⎨⎪⎪⎩

M0 =

⎡⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎦
Mi = Mj−1 + wj ⋅ qj ⋅ q

T
j

,

Fig. 6   This figure presents 
original motion (red silhouettes) 
and corrected motion by calcu-
late.kinematic function (green 
silhouettes) (color figure online)
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quaternion qavg , we need to find eigenvector of M corre-
sponding to the maximum eigenvalue.

RMoCap has implementation of both weighted and not 
weighted (where ∀j ∈

{
1,… , k

}
wj = 1 ) Markley’s algo-

rithms in functions wavg.quaternion.markley and avg.qua-
ternion.markley, respectively.

The stop criterion of averaging algorithm for each rota-
tion signal is either maximal iterations count or coverage of 
the algorithm. The coverage happens when a module of dif-
ference of normalized DTW distances in DBA cost matrix of 
actual and previous iteration is below certain epsilon value 

or when normalized DTW distances in DBA cost matrix 
of actual iteration is below one tenth of epsilon value. The 
return signal from DBA has number of samples equals to 
the longest input signal from the averaged group. To smooth 
the final solution, we apply to each return signal weighted 
Markley’s algorithm in the process similar to convolution 
filtration with Gaussian kernel (see [12] for more details).

An example R code that utilizes mocap.averaging and 
draws averaging plots for each body joint is presented below. 
The plot analogical to the one we will obtain in R is pre-
sented in Fig. 7.

Fig. 7   This figure presents 
normalized distance after 
each iteration of DBA. Those 
distances are stored in DBA 
distance matrix for each body 
joint that is processed during 
averaging
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6 � Motion analysis

The motion analysis that is performed in RMoCap package 
is based on motion paths alignment and comparison. The 
aim of this comparison is to find those fragments in motion 
paths, where there are locally maximal differences between 
input and reference data. The analysis is performed on chain 
of body joints that are defined before analysis (they might be 
the same as in HK model, however this is not obligatory). 
We need to indicate which joint is the joint in the end of 
the chain (we will call it end joint) and which are its parent 
joints. We may want to align either 3D coordinates of refer-
ence and input body joints (for example a foot) or angles 
on the plain between vectors designated by tracked body 
joints (for example knee flexion angle) or Euler angles in 
certain coordinate frame (for example rotation angle towards 
X axis between thigh and leg), however the end joint has to 
be analyze as 3D coordinates. Euclidean distance is com-
monly used to all of those cases. This type of data evalua-
tion is based on evaluation of so called DTW align function 
(DTWaf) which is defined as follow:

•	 It is a vector or real values;
•	 It has the length of the DTW warping path (warping 

paths path1 and path2 that maps reference data on input 
data and vice versa has the same length);

•	 The value in each sample is calculated using following 
formula (see below pseudocode):

DTWaf holds information about distances between aligned 
signals. distance(x,y) is a distance function that was used in 
DTW. If more than one sample of one signal was warped onto 
another sample, DTWaf takes maximal distance value.

The motion analysis algorithm works as follow:

1.	 Both MoCaps have to be initially translated and rotated 
so that persons on them face same direction. To per-
form rotation, we choose vectors vreference and vinput in 
reference and input data derived from coordinates of 
body joints (for example, LeftThigh − RightThigh ) and 
we align those two vectors by rotation around Y axis. 
The optimal angle of rotation minimizes Euclidean dis-
tance between vreference and vinput . The optimization is 
done using Simplex method. This procedure works if 
the translation of the root joint in MoCap data is zero.

2.	 Because root joint translation in original data is zero, 
we need to perform motion direction correction without 
using acceleration data of both reference and input data. 
To do so, we use the procedure described in Sect. 4.2.

3.	 Next, we translate input data so that it initially has same 
coordinates of selected joint ������������������������⃗Joint.Dxyzinput as the same 
joint from reference data �����������������������������⃗Joint.Dxyzreference . After this 
operation both input and reference body motions start 
from the same point in space. 

(20)
�����������������������⃗ALL.Dxyzinput[i] ←

�����������������������⃗ALL.Dxyzinput[i]

− ( ������������������������⃗Joint.Dxyzinput[1] −
�����������������������������⃗Joint.Dxyzreference[1]).
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 This procedure is applied to each sample i of input 
MoCap.

4.	 We perform DTW on end joints of reference and input 
signal, we find DTWaf, we smooth it with Gaussian ker-
nel and next we calculate first derivative DTWaf’ using 
central difference numerical operator. We find local 
maxima in DTWaf’. Maximum is present in the moment 
of time i when DTWaf’(i) > 0 and DTWaf’(i) < 0 . We 
take into consideration only those maxima, which have 
relative value above certain threshold. Example results 
of DTWaf analysis is presented in Fig. 8.

5.	 Analysis of all other joints from kinematic chain is 
identical. At first, we perform DTW alignment of both 
input and reference signals; however, we use warping 

paths calculated in the previous step (for end joints). 
We calculate, smooth, find and threshold local maxima 
in DTWaf’ of a joint of kinematic chain using the same 
approach as above. We take into consideration only 
those maxima that are close enough to maxima detected 
in first step.

Figure  8 contains four sub-plots. Sub-plot (a) presents 
DTW alignment of left foot trajectory between reference 
and input signal. In this case, the left foot is the end joint and 
as we already mentioned distance function used by DTW is 
Euclidean metric. Sub-plot (b) presents DTWaf of left foot 
trajectory calculated according to Pseudocode 5. Original 
DTWaf is a solid black line, violet dashed line is DTWaf 
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Fig. 8   This image presents the subset of plots that are generated during analysis of mawashi geri kick with left leg
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smoothed with Gaussian kernel. Cyan circles indicate local 
maxima detected in smoothed signal by our algorithm. Red 
crosses are those maxima which values are over a threshold. 
As can be seen the largest difference in foot trajectory has 
been detected near 0.6 s and 1.4 s. Those two local maxima 
are indicated in Fig. 9 with yellow lines. Sub-plots (c) and 
(d) visualize similar analysis of DTWaf however of different 
body joints. In (c), DTWaf of left knee angle is visualized. 
This time we only show those local maxima that are within 
time span threshold of maxima detected in sub-plot (b) (see 
point 5 of motion analysis algorithm). Blue crosses preced-
ing maxima are sample point in smoothed DTWaf in which 
first derivative is greater than zero. Sub-plot (d) contains 
visualization with analysis of DTWaf rotation angle around 
Z axis of vector designated by left thigh and left leg.

The motion analysis algorithm is implemented in ana-
lyze.mocap function. Because R code for data preparation 
and function calls look clumsy after inserting necessary line 
brakes to fit into this paper an example code is presented in 
Supplements—R replication code. In Fig. 9 we present 3D 
visualization of motion analysis of mawashi geri kick with 
left leg performed by analyze.mocap function.

7 � Summary and discussion

Package RMoCap is a complete, advanced open-source tool 
for scientists, engineers and computer graphics who are 
familiar with R language. It provides them with MoCap data 
handling, statistical processing, visualizing and analysis with 

the help of high-level R programming language. RMoCap 
package uses well-established MoCap file exchange format 
and can be easily integrated with most of motion analy-
sis workflows. It also introduces implementations of both 
novel and already known MoCap processing methods. What 
is more is the first R package that is devoted entirely for 
MoCap processing and analysis purposes. Those are the 
most important feature of our programming library.

The main drawback of RMoCap is long time of data pro-
cessing, especially while converting from DK to HK model 
and data averaging. It is caused by many algebraic and opti-
mization procedures calls that happen during calculation. 
However, those functions are often called only once at the 
beginning or end of data analysis and can be computed in 
the batch.
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