Skip to main content
Log in

Con(dif)fused voice to convey secret: a dual-domain approach

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Owing to the rapid development and advancements in the field of networks and communication, sharing of multimedia contents over insecure networks has become vital. The confidentiality of audio signals is predominantly needed in military and intelligence bureau applications. The proposed algorithm addresses this issue by encrypting audio signal using chaotic maps in spatial and transform domain. Discrete Fourier transform (DFT), discrete cosine transform (DCT) and integer wavelet transform (IWT) approaches are considered for the experiment. The algorithm involves three-layer security of confusion and diffusion in the spatial domain, and confusion in the transform domain. The confusion in the transform domain is equivalent to diffusion in the spatial domain. Different sizes of audio samples are considered to validate the effectiveness of the proposed scheme. Experimental results prove that the DFT-assisted encryption scheme is more efficient than the DCT- and IWT-based methods because the DFT scheme employs effective diffusion through reversible phase coding. Effectiveness of the proposed method is substantiated using various metrics. Correlation coefficients arrive significantly closer to zero; number of samples changes rate (NSCR) value is at 100% and scrambling degree close to 1. Besides, the proposed scheme has a larger keyspace higher than 2128. Thus, the proposed algorithm has the potency to withstand the statistical, differential and brute force attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Engel, D., Stütz, T., Uhl, A.: A survey on JPEG2000 encryption. Multimed. Syst. 15, 243–270 (2009). https://doi.org/10.1007/s00530-008-0150-0

    Article  Google Scholar 

  2. Fallahpour, M.: Secure logarithmic audio watermarking scheme based on the human auditory system. Multimed. Syst. (2013). https://doi.org/10.1007/s00530-013-0325-1

    Article  Google Scholar 

  3. Yan, D., Wang, R., Yu, X., Zhu, J.: Steganography for MP3 audio by exploiting the rule of window switching. Comput. Secur. 31, 704–716 (2012). https://doi.org/10.1016/j.cose.2012.04.006

    Article  Google Scholar 

  4. Sadek, M.M., Khalifa, A.S., Mostafa, M.G.M.: Video steganography: a comprehensive review. Multimed. Tools Appl. 74, 7063–7094 (2015). https://doi.org/10.1007/s11042-014-1952-z

    Article  Google Scholar 

  5. Fallahpour, M., Megias, D.: High capacity audio watermarking using FFT amplitude interpolation. IEICE Electron. Express. 6, 1057–1063 (2009). https://doi.org/10.1587/elex.6.1057

    Article  MATH  Google Scholar 

  6. Cheddad, A., Condell, J., Curran, K., Mc Kevitt, P.: Digital image steganography: survey and analysis of current methods. Signal Processing. 90, 727–752 (2010). https://doi.org/10.1016/j.sigpro.2009.08.010

    Article  MATH  Google Scholar 

  7. Cox, I.J., Miller, M.L., Bloom, J.A., Fridrich, J., Kalker, T. eds: Preface to the first edition. In: Digital watermarking and steganography (second edition), pp. xv–xviii. Morgan Kaufmann, Burlington (2008)

  8. Lian, S.: Multimedia content encryption. Tech. Appl. (2008). https://doi.org/10.1201/9781420065282

    Article  MATH  Google Scholar 

  9. Abuturab, M.R.: Color image security system based on discrete Hartley transform in gyrator transform domain. Opt. Lasers Eng. 51, 317–324 (2013). https://doi.org/10.1016/j.optlaseng.2012.09.008

    Article  Google Scholar 

  10. Madain, A., Abu Dalhoum, A.L., Hiary, H., Ortega, A., Alfonseca, M.: Audio scrambling technique based on cellular automata. Multimed. Tools Appl. 71, 1803–1822 (2014). https://doi.org/10.1007/s11042-012-1306-7

    Article  Google Scholar 

  11. Ye, G.: Image scrambling encryption algorithm of pixel bit based on chaos map. Pattern Recognit. Lett. 31, 347–354 (2010). https://doi.org/10.1016/j.patrec.2009.11.008

    Article  Google Scholar 

  12. Zhou, N., Zhang, A., Zheng, F., Gong, L.: Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing. Opt. Laser Technol. 62, 152–160 (2014). https://doi.org/10.1016/j.optlastec.2014.02.015

    Article  Google Scholar 

  13. Dworkin, M.J., Barker, E.B., Nechvatal, J.R., Foti, J., Bassham, L.E., Roback, E., Dray Jr., J.F.: Announcing the advanced encryption standard (AES). Technol. Lab. Natl. Inst. Stand. 2009, 8–12 (2001)

    Google Scholar 

  14. Socek, D., Magliveras, S., Ćulibrk, D., Marques, O., Kalva, H., Furht, B.: Digital video encryption algorithms based on correlation-preserving permutations. Eurasip J. Inf. Secur. (2007). https://doi.org/10.1155/2007/52965

    Article  Google Scholar 

  15. McDevitt, T., Leap, T.: Multimedia cryptology. Cryptologia. 33, 142–150 (2009). https://doi.org/10.1080/01611190802300408

    Article  Google Scholar 

  16. Mosa, E., Messiha, N.W., Zahran, O., Abd El-Samie, F.E.: Chaotic encryption of speech signals. Int. J. Speech Technol. 14, 285–296 (2011). https://doi.org/10.1007/s10772-011-9103-7

    Article  Google Scholar 

  17. Wang, Y., Wong, K.-W., Liao, X., Chen, G.: A new chaos-based fast image encryption algorithm. Appl. Soft Comput. 11, 514–522 (2011). https://doi.org/10.1016/j.asoc.2009.12.011

    Article  Google Scholar 

  18. Rajaram, G.: Audio encryption using higher dimensional chaotic map. Int. J. Recent Trends Eng. 1, 103–107 (2009)

    Google Scholar 

  19. Ghasemzadeh, A., Esmaeili, E.: A novel method in audio message encryption based on a mixture of chaos function. Int. J. Speech Technol. (2017). https://doi.org/10.1007/s10772-017-9452-y

    Article  Google Scholar 

  20. Belmeguenai, A., Ahmida, Z., Ouchtati, S., Djemii, R.: A novel approach based on stream cipher for selective speech encryption. Int. J. Speech Technol. (2017). https://doi.org/10.1007/s10772-017-9439-8

    Article  Google Scholar 

  21. Farsana, F.J., Gopakumar, K.: A novel approach for speech encryption : Zaslavsky map as Pseudo random number generator. Procedia Procedia Comput. Sci. 93, 816–823 (2016). https://doi.org/10.1016/j.procs.2016.07.302

    Article  Google Scholar 

  22. Eldin, S.M.S., Khamis, S.A., Hassanin, A.-A.I.M., Alsharqawy, M.A.: New audio encryption package for TV cloud computing. Int. J. Speech Technol. 18, 131–142 (2015). https://doi.org/10.1007/s10772-014-9253-5

    Article  Google Scholar 

  23. Rao, R.: Efficient audio encryption algorithm for online applications using hybrid transposition and multiplicative non binary system. In: Presented at the (2013)

  24. Sheela, J., Kaggere, S., Tandur, S.: A novel audio cryptosystem using chaotic maps and DNA encoding. J. Comput. Netw. Commun. 2017, 1–12 (2017). https://doi.org/10.1155/2017/2721910

    Article  Google Scholar 

  25. Wang, H., Hempel, M., Peng, D., Wang, W., Sharif, H., Member, S., Chen, H.: Index-based selective audio encryption for wireless multimedia sensor networks. IEEE Trans. Multimed. 12, 215–223 (2010)

    Article  Google Scholar 

  26. Kwon, G.-R., Wang, C., Lian, S., Hwang, S.: Advanced partial encryption using watermarking and scrambling in MP3. Multimed. Tools Appl. 59, 885–895 (2012). https://doi.org/10.1007/s11042-011-0771-8

    Article  Google Scholar 

  27. Farsana, F.J., Devi, V.R., Gopakumar, K.: Applied computing and informatics an audio encryption scheme based on fast walsh hadamard transform and mixed chaotic keystreams. Appl. Comput. Informatics. 2019, 1–11 (2019). https://doi.org/10.1016/j.aci.2019.10.001

    Article  Google Scholar 

  28. Yang, Y.G., Tian, J., Sun, S.J., Xu, P.: Quantum-assisted encryption for digital audio signals. Optik (Stuttg). 126, 3221–3226 (2015). https://doi.org/10.1016/j.ijleo.2015.07.082

    Article  Google Scholar 

  29. Lima, J.B., da Silva Neto, E.F.: Audio encryption based on the cosine number transform. Multimed. Tools Appl. 75, 8403–8418 (2016). https://doi.org/10.1007/s11042-015-2755-6

    Article  Google Scholar 

  30. Alwahbani, S., Bashier, E.: Speech scrambling based on chaotic maps and one time pad. In: Presented at the (2013)

  31. Liu, H., Kadir, A., Li, Y.: Audio encryption scheme by confusion and diffusion based on multi-scroll chaotic system and one-time keys. Optik (Stuttg). 127, 7431–7438 (2016). https://doi.org/10.1016/j.ijleo.2016.05.073

    Article  Google Scholar 

  32. Ballesteros, D., Renza, D., Camacho, S.: High Scrambling degree in audio through imitation of an unintelligible signal. In: Presented at the (2016)

  33. Belazi, A., Khan, M., Abd, A.A., Belghith, E.S.: Efficient cryptosystem approaches: S-boxes and permutation—substitution-based encryption. Nonlinear Dyn. (2016). https://doi.org/10.1007/s11071-016-3046-0

    Article  Google Scholar 

  34. Sathiyamurthi, P., Ramakrishnan, S.: Speech encryption using chaotic shift keying for secured speech communication. Eurasip J. Audio Speech Music Process. (2017). https://doi.org/10.1186/s13636-017-0118-0

    Article  Google Scholar 

  35. Chang, D., Li, Z., Wang, M., Zeng, Y.: A novel digital programmable multi-scroll chaotic system and its application in FPGA-based audio secure communication. AEU Int. J. Electron. Commun. 88, 20–29 (2018). https://doi.org/10.1016/j.aeue.2018.03.007

    Article  Google Scholar 

Download references

Acknowledgements

Authors wish to acknowledge SASTRA Deemed University, Thanjavur, India for extending infrastructural support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rengarajan Amirtharajan.

Additional information

Communicated by F. Wu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmi, C., Ravi, V.M., Thenmozhi, K. et al. Con(dif)fused voice to convey secret: a dual-domain approach. Multimedia Systems 26, 301–311 (2020). https://doi.org/10.1007/s00530-019-00644-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-019-00644-6

Keywords

Navigation