Skip to main content
Log in

Gaussian Hermite polynomial based lossless medical image compression

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

The role of compression is inevitable in the storage and transmission of medical images. The polynomial based image compression is proposed in this work for the compression of abdomen CT medical images. The input images are preprocessed by min–max normalization; the pixels are scanned and subjected to polynomial approximation. The polynomial approximated coefficients are subjected to llyods quantization and encoded by arithmetic coder. The medical image compression using Gaussian Hermite polynomial gives superior results when compared with the legendre polynomial based image compression and JPEG lossless compression techniques in terms of Peak to signal noise ratio (PSNR), Mean square Error (MSE) and other picture quality metrics. The algorithms are tested on real-time DICOM abdomen CT image and can be used for data transfer in teleradiology application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cabral, J.E., Kim, Y.: Multimedia systems for telemedicine and their communications requirements. IEEE Commun. Mag. 34(7), 20–27 (1996)

    Article  Google Scholar 

  2. Leotta, D.F., Kim, Y.: Requirements for picture archiving and communications. IEEE Eng. Med. Biol. Mag. 12(1), 62–69 (1993)

    Article  Google Scholar 

  3. Neuman, C.P., Schonbach, D.I.: Discrete (Legendre) orthogonal polynomials—a survey. Int. J. Numer. Meth. Eng. 8(4), 743–770 (1974)

    Article  MathSciNet  Google Scholar 

  4. Paton, K.: Picture description using Legendre polynomials. Comput. Graph. Image Process. 4(1), 40–54 (1975)

    Article  Google Scholar 

  5. Nappi, M., Vitulano, D.: Linear prediction image coding using iterated function systems. Image Vis. Comput. 17(10), 771–776 (1999)

    Article  Google Scholar 

  6. Gruter, R., Egger, O., Vesin, J.M., Kunt, M.: Rank-order polynomial subband decomposition for medical image compression. IEEE Trans. Med. Imaging 19(10), 1044–1052 (2000)

    Article  Google Scholar 

  7. Mukundan, R.: Transform coding using discrete tchebichef polynomials. In: Palma de Mallorca, Spain: 6th IASTED international conference of visualization imaging and image processing (VIIP 2006), 28–30 Aug 2006. Visualization, Imaging, and Image Processing—2006, 541, Paper 023 (2006)

  8. Krishnamoorthi, R., Malarchelvi, P.D.: Selective combinational encryption of grayscale images using orthogonal polynomials based transformation. Int. J. Comput. Sci. Netw. Secur. 8(5), 195–204 (2008)

    Google Scholar 

  9. Li, G., Wen, C.: Legendre polynomials in signal reconstruction and compression. In: 2010 5th IEEE conference on industrial electronics and applications (pp. 1636–1640). IEEE (2010)

  10. Krishnamoorthy, R., Rajavijayalakshmi, K., Punidha, R.: Near-lossless image coding based on orthogonal polynomials. Int. J. Comput. Inf. Eng. 5(12), 1574–1578 (2011)

    Google Scholar 

  11. George, L.E., Sultan, B.: Image compression based on wavelet, polynomial and Quadtree. J. Appl. Comput. Sci. Math. 11(5), 15–20 (2011)

    Google Scholar 

  12. Goel, N., Gabarda, S.: Lossy and lossless image compression using Legendre polynomials. In: 2016 conference on advances in signal processing (CASP) (pp. 315–320). IEEE (2016)

  13. Al-Khafaji, G., Rajab, M.A.: Lossless and lossy polynomial image compression. OSR J. Comput. Eng. 18, 56–62 (2016)

    Google Scholar 

  14. Ghadah, A.K., Rafaa, Y.: Lossy image compression using wavelet transform, polynomial prediction and block truncation coding. IOSR J. Comput. Eng. (IOSR-JCE) 19(4), 34–38 (2017)

    Google Scholar 

  15. Chauhan, P., Gupta, B., Ballabh, U.: Polynomial based fractal image compression using DWT screening. In: 2017 4th international conference on signal processing, computing and control (ISPCC) (pp. 553–558). IEEE (2017)

  16. Aubert, P., Vuillaume, T., Maurin, G., Jacquemier, J., Lamanna, G., Emad, N.: Polynomial data compression for large-scale physics experiments. Comput. Softw. Big Sci. 2(1), 6 (2018)

    Article  Google Scholar 

  17. Ghadah, A.-K., Murooj, A.D.: Fixed predictor polynomial coding for image compression. Int. J. Eng. Trends Technol. 61.3, 182–189 (2018)

    Google Scholar 

  18. Ghadah, A.-K., Sara, A.A.: The first and second order polynomial models with double scalar quantization for image compression. Int. J. Eng. Res. Manag. 05(07), 62–68 (2018)

    Google Scholar 

  19. Uma, M.S., Srinivasa, R.V.: Lossless medical image compression algorithm using tetrolet transformation. J. Ambient Intell. Hum. Comput. 28, 1–9 (2020)

    Google Scholar 

  20. Santhosh, B., Kapinaiah, V.: Compression of medical images based on devils curve coordinate system. In: Smart intelligent computing and applications (pp. 649–657). Springer, Singapore (2019)

  21. Devadoss, C.P., Sankaragomathi, B.: Near lossless medical image compression using block BWT–MTF and hybrid fractal compression techniques. Cluster Comput. 22(5), 12929–12937 (2019)

    Article  Google Scholar 

  22. Li, G., Hegde, S., Nagapadma, R.: Medical image compression scheme using number theoretic transform. In: Computer vision and machine intelligence in medical image analysis (pp. 43–53). Springer, Singapore (2020)

  23. Ali, M., Hadi, A.A.: Image compression based with multi discrete laguerre wavelets transform. J. Southwest Jiaotong Univ. 55, 2 (2020)

    Article  Google Scholar 

  24. Khan, S.U., Ullah, N., Ahmed, I., Chai, W.Y., Ullah, S.: A novel hybrid approach for medical image compression. Curr. Med. Imaging. 14(6), 845–852 (2018)

    Article  Google Scholar 

  25. Liu, Z., Xu, X., Liu, T., Liu, Q., Wang, Y., Shi, Y., Wen, W., Huang, M., Yuan, H., Zhuang, J.: Machine vision guided 3d medical image compression for efficient transmission and accurate segmentation in the clouds. In: Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 12,687–12,696) (2019)

  26. Kumar, R.N., Jagadale, B.N., Bhat, J.S.: A lossless image compression algorithm using wavelets and fractional Fourier transform. SN Appl. Sci. 1(3), 266 (2019)

    Article  Google Scholar 

  27. Lone, M.R.: A high speed and memory efficient algorithm for perceptually-lossless volumetric medical image compression. J. King Saud Univ. Comput. Inf. Sci. (2020). https://doi.org/10.1016/j.jksuci.2020.04.014

    Article  Google Scholar 

  28. Kumar, R.S., Manimegalai, P.: Near lossless image compression using parallel fractal texture identification. Biomed. Signal Process. Control 1(58), 101862 (2020)

    Article  Google Scholar 

  29. Dhouib, D., Naït-Ali, A., Olivier, C., Naceur, M.S.: ROI-based compression strategy of 3D MRI brain datasets for wireless communications. IRBM (2020). https://doi.org/10.1016/j.irbm.2020.05.001

    Article  Google Scholar 

  30. Wen, C.” Legendre polynomials in signal reconstruction and compression. In: 2010 5th IEEE conference on industrial electronics and applications (pp. 1636–1640). IEEE (2010)

  31. Morgan, A.P., Watson, L.T., Young, R.A.: A Gaussian derivative based version of JPEG for image compression and decompression. IEEE Trans. Image Process. 7(9), 1311–1320 (1998)

    Article  Google Scholar 

  32. Kumar, S.N., Fred, A.L., Varghese, P.S.: Compression of CT images using contextual vector quantization with simulated annealing for telemedicine application. J. Med. Syst. 42(11), 218 (2018)

    Article  Google Scholar 

  33. Kumar, R., Patbhaje, U., Kumar, A.: An efficient technique for image compression and quality retrieval using matrix completion. J. King Saud Univ. Comput. Inf. Sci. (2019). https://doi.org/10.1016/j.jksuci.2019.08.002

    Article  Google Scholar 

  34. Deng, Q., Zeng, H., Zhang, J., Tian, S., Cao, J., Li, Z., Liu, A.: Compressed sensing for image reconstruction via back-off and rectification of greedy algorithm. Signal Process. 1(157), 280–287 (2019)

    Article  Google Scholar 

  35. Al-Shebani, Q., Premaratne, P., Vial, P.J., McAndrew, D.J.: The development of a clinically tested visually lossless Image compression system for capsule endoscopy. Signal Process. Image Commun. 1(76), 135–150 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors S. N. Kumar and Jins Sebastin would also like to acknowledge the support provided by Schmitt Centre for Biomedical Instrumentation (SCBMI) of Amal Jyothi College of Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Kumar.

Additional information

Communicated by Y. Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.N., Ahilan, A., Haridhas, A.K. et al. Gaussian Hermite polynomial based lossless medical image compression. Multimedia Systems 27, 15–31 (2021). https://doi.org/10.1007/s00530-020-00689-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-020-00689-y

Keywords

Navigation