Skip to main content

Advertisement

Log in

Habitat mapping using deep neural networks

  • Special Issue Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Habitat mapping is an important and challenging task that helps in monitoring, managing, and preserving ecosystems. It becomes more challenging when marine habitats are mapped, as it is difficult to get quality images in an underwater environment. Moreover, achieving good location accuracy in underwater environments is an additional issue. Sonar imagery has good quality but is hard to be analyzed. Therefore, camera imagery is used for research purposes. Our research targets marine habitats - more specifically, coral reef marine habitats. Recognition of coral reef in underwater images poses a significant difficulty due to the nature of the data. Many species of coral reef have similar characteristics, i.e. higher inter-class similarity and lower intra-class similarity. Spatial borders between coral reef classes are hard to separate, as they tend to appear together in groups. For these reasons, the classification of coral reef species requires aid from marine biologists. This research work presents a technique for accurate coral reef classification using deep convolutional neural networks. The proposed approach has been validated on Moorea Labeled Corals (MLC), an imbalanced dataset, which is a subset of Moorea Coral Reef Long Term Ecological Research (MCR LTER) packaged for computer vision research. A custom valid patch dataset is extracted using the annotation files provided with the dataset. Two image enhancement algorithms and data-driven feature extraction techniques are employed using several pre-trained deep convolutional neural networks as feature extractors. Local-SPP technique is combined with feature extractors and followed by 2-layers multi-layer perceptron (MLP) classifier to achieve high classification rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Nancy Knowlton, Smithsonain, The Ocean Portal Team, [Online]. Available: https://ocean.si.edu/ocean-life/invertebrates/corals-and-coral-reefs [Accessed on 2020/09/28 01:18:41].

References

  1. Diegues, A., Borges Sousa, J.: A survey on automatic habitat mapping. In: 8th International Workshop on Marine Technology: MARTECH 2018, SARTI, pp. 62–63 (2018)

  2. Diegues, A., Pinto, J., Ribeiro, P.: Automatic habitat mapping using convolutional neural networks. In: 2018 IEEE OES Autonomous Underwater Vehicle Symposium, Nov 2018 (2018)

  3. Shihavuddin, A., Gracias, N., Garcia, R., Gleason, A., Gintert, B.: Image-based coral reef classification and thematic mapping. Remote Sens. 5(4), 1809–1841 (2013)

    Article  Google Scholar 

  4. Beijbom, O., Edmunds, P.J., Kline, D.I., Mitchell, B.G., Kriegman, D.: Automated annotation of coral reef survey images. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, June 2012, pp. 1170–1177 (2012)

  5. Duarte, A., Codevilla, F., Gaya, J.D.O., Botelho, S.S.C.: A dataset to evaluate underwater image restoration methods. In: OCEANS 2016—Shanghai, Apr 2016, pp. 1–6 (2016)

  6. Mahmood, A., Bennamoun, M., An, S., Sohel, F., Boussaid, F., Hovey, R., Kendrick, G., Fisher, R.B.: Coral classification with hybrid feature representations. In: 2016 IEEE International Conference on Image Processing (ICIP), Sept 2016, pp. 519–523 (2016)

  7. Gómez-Ríos, A., Tabik, S., Luengo, J., Shihavuddin, A., Krawczyk, B., Herrera, F.: Towards highly accurate coral texture images classification using deep convolutional neural networks and data augmentation. Expert Syst. Appl. 118, 315–328 (2019). (online)

    Article  Google Scholar 

  8. Jan, B., Farman, H., Khan, M., Imran, M., Islam, I.U., Ahmad, A., Ali, S., Jeon, G.: Deep learning in big data analytics: a comparative study. Comput. Electr. Eng. 75, 275–287 (2019). (online)

    Article  Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2009, pp. 248–255. IEEE (2009)

  10. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  11. Liu, T., Abd-Elrahman, A., Morton, J., Wilhelm, V.L.: Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system. GISci. Remote Sens. 55(2), 243–264 (2018). https://doi.org/10.1080/15481603.2018.1426091. (online)

    Article  Google Scholar 

  12. Castelluccio, M., Poggi, G., Sansone, C., Verdoliva, L.: Land use classification in remote sensing images by convolutional neural networks. CoRR. (online). http://arxiv.org/abs/1508.00092. (2015)

  13. Guirado, E., Tabik, S., Alcaraz-Segura, D., Cabello, J., Herrera, F.: Deep-learning versus obia for scattered shrub detection with google earth imagery: Ziziphus lotus as case study. Remote Sens. 9(12), (2017). http://www.mdpi.com/2072-4292/9/12/1220(online)

  14. Mascaro, J., Asner, G.P., Knapp, D.E., Kennedy-Bowdoin, T., Martin, R.E., Anderson, C., Higgins, M., Chadwick, K.D.: A tale of two “forests”: random forest machine learning aids tropical forest carbon mapping. PLoS One 9(1), 1–9 (2014). https://doi.org/10.1371/journal.pone.0085993. (online)

    Article  Google Scholar 

  15. Diesing, M., Green, S.L., Stephens, D., Lark, R.M., Stewart, H.A., Dove, D.: Mapping seabed sediments: comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Cont. Shelf Res. 84, 107–119 (2014). ((online))

    Article  Google Scholar 

  16. Petropoulos, G.P., Arvanitis, K., Sigrimis, N.: Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping. Expert Syst. Appl. 39(3), 3800–3809 (2012). (online)

    Article  Google Scholar 

  17. Pizarro, O., Rigby, P., Johnson-Roberson, M., Williams, S.B., Colquhoun, J.: Towards image-based marine habitat classification. In: OCEANS 2008, Sept 2008, pp. 1–7 (2008)

  18. Stokes, M.D., Deane, G.B.: Automated processing of coral reef benthic images. Limnol. Oceanogr. Methods 7(2), 157–168 (2009). https://doi.org/10.4319/lom.2009.7.157. ((online))

    Article  Google Scholar 

  19. Mary, N.A.B., Dharma, D.: Coral reef image classification employing improved ldp for feature extraction. J. Vis. Commun. Image Represent. 49, 225–242 (2017)

    Article  Google Scholar 

  20. Hasan, R.C., Ierodiaconou, D., Monk, J.: Evaluation of four supervised learning methods for benthic habitat mapping using backscatter from multi-beam sonar. Remote Sens. 4(11), 3427–3443 (2012). http://www.mdpi.com/2072-4292/4/11/3427(online)

  21. Rathore, M.M., Son, H., Ahmad, A., Paul, A., Jeon, G.: Creal-time big data stream processing using gpu with spark over hadoop ecosystem. Int. J. Parallel Prog. 46, 630–646 (2018). https://doi.org/10.1007/s10766-017-0513-2. ((online))

    Article  Google Scholar 

  22. Elawady, M.: Sparse coral classification using deep convolutional neural networks. CoRR (2015). (online). http://arxiv.org/abs/1511.09067

  23. Mahmood, A., Bennamoun, M., An, S., Sohel, F., Boussaid, F., Hovey, R., Kendrick, G., Fisher, R.B.: Automatic annotation of coral reefs using deep learning. In: OCEANS 2016 MTS/IEEE Monterey, Sept 2016, pp. 1–5 (2016)

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  25. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  26. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

  27. Berthold, T., Leichter, A., Rosenhahn, B., Berkhahn, V., Valerius, J.: Seabed sediment classification of side-scan sonar data using convolutional neural networks. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Nov 2017, pp. 1–8 (2017)

  28. Wei, S., Wu, W., Jeon, G., Ahmad, A., Yang, X.: Improving resolution of medical images with deep dense convolutional neural network. Concurr. Comput. Pract. Exp. 32(1), e5084 (2020). https://doi.org/10.1002/cpe.5084. (online)

    Article  Google Scholar 

  29. Liu, F., Chen, L., Lu, L., Ahmad, A., Jeon, G., Yang, X.: Medical image fusion method by using Laplacian pyramid and convolutional sparse representation. Comput. Pract. Exp, Concurr (2019). https://doi.org/10.1002/cpe.5632. (online)

    Book  Google Scholar 

  30. Ashraf, R., Ahmed, M., Jabbar, S., Khalid, S., Ahmad, A., Din, S., Jeon, G.: Content based image retrieval by using color descriptor and discrete wavelet transform. J. Med. Syst. 42(3), 44 (2018)

    Article  Google Scholar 

  31. Shihavuddin, A., Gracias, N., Garcia, R., Gleason, A.: Image-based coral reef classification and thematic mapping. Remote Sens. 5(4), 1809–1841 (2013)

    Article  Google Scholar 

  32. Blanchet, J.-N., Déry, S., Landry, J.-A., Osborne, K.: Automated annotation of corals in natural scene images using multiple texture representations. PeerJ 4, e2026v2 (2016). (preprints)

    Google Scholar 

  33. Gupta, E.S., Kaur, Y.: Review of different histogram equalization based contrast enhancement techniques. Int. J. Adv. Res. Comput. Commun. Eng. 3(7), 7585–7589 (2014)

    Google Scholar 

  34. Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., ter Haar Romeny, B., Zimmerman, J.B., Zuiderveld, K.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  35. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Graphics Gems IV. Academic Press Professional, Inc., pp. 474–485 (1994)

  36. Kanmani, M., Narasimhan, V.: Swarm intelligent based contrast enhancement algorithm with improved visual perception for color images. Multimed. Tools Appl. 77(10), 12701–12724 (2018)

    Article  Google Scholar 

  37. Adoniscik: Color difference—Wikipedia, the free encyclopedia. https://www.en.wikipedia.org/w/index.php?title=Color_difference&oldid=936888327 (2020) (online). Accessed 6 Feb 2020

  38. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Ur Rahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasir, M., Rahman, A.U. & Gohar, M. Habitat mapping using deep neural networks. Multimedia Systems 27, 679–690 (2021). https://doi.org/10.1007/s00530-020-00695-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-020-00695-0

Keywords

Navigation