Skip to main content
Log in

DSTnet: a new discrete shearlet transform-based CNN model for image denoising

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Due to the superior performance and fast running speed, deep learning methods have been widely employed in image processing fields. However, most deep learning-based denoising methods require a specific noise level to train their models, and denoising models are built to remove specific levels of noise, which lacks the flexibility to deal with spatially variant noise. In this paper, we present a discrete shearlet transform (DST)-based denoising convolutional network (DSTnet). The proposed method first decomposes an image by DST and gets several subband images, then these subband images are used as input samples into the convolutional neural networks (CNNs) blocks. The proposed method has a good compromise between denoising performance and computation time. The DSTnet not only has a good efficiency in noise removing and detail preservation but also has the ability to handle a wide range of noise levels, which are suitable for real image denoising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Liang, Y.X., Ouyang, K., Jing, L., Rosenblum, D.S., Zheng, Y., et al.: UrbanFM: inferring fine-grained urban flows. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery and data mining pp 3132–3142 (2019)

  2. Ouyang, K., Liang, Y.X., Liu, Y., et al.: Fine-grained urban flow inference. IEEE Trans. Knowl. Data Eng. (2020). https://doi.org/10.1109/TKDE.2020.3017104

    Article  Google Scholar 

  3. Han, M., Lyu, Z., Qiu, T., et al.: A review on intelligence dehazing and color restoration for underwater images. IEEE Trans. Syst. Man Cyber Syst. 50(5), 1820–1832 (2020)

    Article  Google Scholar 

  4. Lyu, Z., Zhang, C., Han, M.: A nonsubsampled countourlet transform based CNN for real image denoising. Signal Process. Image Commun. 82, 115727 (2020). https://doi.org/10.1016/j.image.2019.115727

    Article  Google Scholar 

  5. Khadidos, A.O., Khadidos, A.O., Khan, F.Q., et al.: Bayer image demosaicking and denoising based on specialized networks using deep learning. Multimed. Syst. (2020). https://doi.org/10.1007/s00530-020-00707-z

    Article  Google Scholar 

  6. Du, Q.: 3D point cloud registration denoising method for human motion image using deep learning algorithm. Multimed. Syst. 26, 75–82 (2020). https://doi.org/10.1007/s00530-019-00630-y

    Article  Google Scholar 

  7. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  8. Gu, S., Zhang, L., Zuo, W., et al.: Weighted nuclear norm minimization with application to image denoising in. IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR) 2014, 2862–2869 (2016)

    Google Scholar 

  9. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  10. Papyan, V., Elad, M.: Multi-scale patch-based image restoration. IEEE Trans. Image Process. 25(1), 249–261 (2016)

    Article  MathSciNet  Google Scholar 

  11. Chen, Y., Pock, T.: Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1256–1272 (2017)

    Article  Google Scholar 

  12. Zhang, K., Zuo, W., Chen, Y., et al.: Beyond a gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

  13. Schmidt, U., Rother, C., Nowozin, S., et al.: Discriminative non-blind deblurring in. IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR) 2013, 604–611 (2013)

    Google Scholar 

  14. Zuo, W., Ren, D., Zhang, D., et al.: Learning iteration-wise generalized shrinkage–thresholding operators for blind deconvolution. IEEE Trans. Image Process 25(4), 1751–1764 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Sun, J., Tappen, M.F.: Separable Markov random field model and its applications in low level vision. IEEE Trans. Image Process. 22(1), 402–407 (2013)

    Article  MathSciNet  Google Scholar 

  16. Schmidt, U., Jancsary, J., Nowozin, S., et al.: Cascades of regression tree fields for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 38(4), 677–689 (2016)

    Article  Google Scholar 

  17. Zhang, K., Zuo, W., Zhang, L.: FFDNet: toward a fast and flexible solution for CNN-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  18. Lim, W.Q.: The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans. Image Process. 19(5), 1166–1180 (2010)

    Article  MathSciNet  Google Scholar 

  19. Lehtinen, J., Munkberg, J., Hasselgren, J., et al.: Noise2noise: learning image restoration without clean data. arXiv preprint arXiv:1803.04189 (2018)

  20. Agostinelli, F., Anderson, M.R., Lee, H.: Robust image denoising with multi-column deep neural networks. Neural Inf. Process. Syst. (NIPS). pp 1493–1501 (2013)

  21. Jain, V., Seung, S.: Natural image denoising with convolutional networks. Adv. Neural Inf. Process. Syst. (NIPS) 25(2), 224–228 (2009)

    Google Scholar 

  22. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. Adv. Neural Inf. Process Syst. 25, 341–349 (2012)

    Google Scholar 

  23. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising: Can plain neural networks compete with BM3D? in. IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR) 2012, 2392–2399 (2012)

    Google Scholar 

  24. Schmidt, U., Roth, S.: Shrinkage fields for effective image restoration. IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR) 1, 2774–2781 (2014)

    Google Scholar 

  25. Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. Neural Inf. Process Syst. (NIPS) 1, 2802–2810 (2016)

    Google Scholar 

  26. Liu, P., Zhang, H., Zhang, K., et al.: Multi-level wavelet-CNN for image restoration. IEEE Conf. Comput. Vis. Pattern Recogn. Workshops (CVPR) 2018, 773–782 (2018)

    Google Scholar 

  27. Tai, Y., Yang, J., Liu, X., et al.: Memnet: a persistent memory network for image restoration in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp 4539–4547 (2017)

  28. Guo, S., Yan, Z., Zhang, K., et al.: Toward convolutional blind denoising of real photographs[J]. arXiv preprint arXiv:1807.04686 (2018)

  29. Zhang, K., Zuo, W., Gu, S., et al.: Learning deep CNN denoiser prior for image restoration. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp 3929–3938 (2017)

  30. Lim, W.Q.: Nonseparable shearlet transform. IEEE Trans. Image Process 22(5), 2056–2065 (2013)

    Article  MathSciNet  Google Scholar 

  31. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions[J]. arXiv preprint arXiv:1511.07122, (2015)

  32. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks, in Neural Information Processing Systems (NIPS).pp 1097–1105 (2012)

  33. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. International Conference on Machine Learning pp 448–456 (2015)

  34. Kingma, D., Ba Adam, J.: A method for stochastic optimization. In: International Conference for Learning Representations (2015)

  35. Xie, D., Xiong, J., Pu, S.: All you need is beyond a good init: Exploring better solution for training extremely deep convolutional neural networks with orthonormality and modulation. IEEE Conf. Comput. Vis. Pattern Recogn. (CVPR) 2017, 6176–6185 (2017)

    Google Scholar 

  36. Levin, A., Nadler, B.: Natural image denoising: optimality and inherent bounds, in 2011 IEEE conference on computer vision and pattern recognition (CVPR). pp 2833–2840 (2011)

  37. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks[J]. Adv. Neural Inf. Process Syst. 1, 341–349 (2012)

    Google Scholar 

  38. Liu, D., Wen, B., Jiao, J.X., et al.: Connecting image denoising and high-level vision tasks via deep learning. IEEE Trans. Image Process. 29(1), 3695–3706 (2020)

    Article  Google Scholar 

  39. Yan, C., Gong, B., Wei, Y., et al.: Deep multi-view enhancement hashing for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/TPAMI.2020.2975798

    Article  Google Scholar 

  40. Yan, C., Shao, B., Zhao, H.R., et al.: 3D Room layout estimation from a single RGB image. IEEE Trans. Multimed. 22(11), 3014–3024 (2020)

    Article  Google Scholar 

  41. Yan, C., Li, Z., Zhang, Y., et al.: Depth image denoising using nuclear norm and learning graph model. ACM Trans. Multimed. Comput. Commun. Appl. 16(4), 1–17 (2020)

    Article  Google Scholar 

  42. Li, D., Han, M., Wang, J.: Chaotic time series prediction based on a novel robust echo state network. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 787–799 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (DUT2018TB06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Han.

Additional information

Communicated by Y. Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, Z., Zhang, C. & Han, M. DSTnet: a new discrete shearlet transform-based CNN model for image denoising. Multimedia Systems 27, 1165–1177 (2021). https://doi.org/10.1007/s00530-021-00753-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-021-00753-1

Keywords

Navigation