Skip to main content
Log in

A novel biometric crypto system based on cryptographic key binding with user biometrics

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract

Cryptography plays a significant role in ensuring data security and confidentiality. The security provided by a crypto system mainly depends on the secrecy of the cryptographic key. If the secret key gets compromised, then it may lead to compromise of the protected data. Biometric cryptosystem provides a solution for securing the cryptographic key by binding the secret key with user biometric data. In this paper, we have proposed a novel biometric crypto system involving key binding mechanism. New objective functions have been introduced to create helper data by binding the secret key with biometric data of the user. In the retrieval phase, local minima of the objective functions act as anchors to get the secret key. Performance evaluation shows that the proposed method achieves more than 98% success rate even in presence of limited noise in the biometric data. Further, performance metrics viz., FAR, GAR, GWDR and IWDR have been obtained for cryptographic key sizes of 256, 512, 1024 and 2048 bits. Security analysis shows that the proposed method is robust against brute force attack and correlation attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dooley, J.F.: A Brief History of Cryptology and Cryptographic Algorithms. Springer, New York (2013)

    Book  Google Scholar 

  2. Preneel, B.: Understanding Cryptography: A Textbook for Students and Practitioners. Springer, London (2010)

    Google Scholar 

  3. Schneier, B.: The Non-Security of Secrecy. Commun. ACM 47(10), 120–120 (2004)

    Article  Google Scholar 

  4. Piper, F., Murphy, S.: Cryptography: A Very Short Introduction. Oxford University Press, London (2002)

    Book  Google Scholar 

  5. Stallings, W.: Cryptography and Network Security Principles and Practices. Prentice Hall, New York (2005)

    Google Scholar 

  6. Goldreich, O.: Foundations of Cryptography Basic Tools. Cambridge University Press (2004)

    Book  Google Scholar 

  7. Callas, J.: The Future of Cryptography. Inf. Syst. Secur. 16(1), 15–22 (2007)

    Article  Google Scholar 

  8. Hirata, S., Takahashi, K.: Cancelable biometrics with perfect secrecy for correlation-based matching. In: Tistarelli, M., Nixon, M. (eds.) Advances in Biometrics, ser. Lecture Notes in Computer Science, vol. 5558, pp. 868–878. Springer, Berlin (2009)

    Google Scholar 

  9. Bolle, R.M., Connel, J.H., Ratha, N.K.: Biometrics perils and patches. Pattern Recogn. 35(12), 2727–2738 (2002)

    Article  Google Scholar 

  10. Sutcu, Y., Li, Q., Memon: Protecting biometric templates with sketch: theory and practice. IEEE Trans. Inf. Forensics Secur. 2(3), 503–512 (2007)

    Article  Google Scholar 

  11. Ratha, N.K., Connell, J., Bolle, R.M.: Enhancing security and privacy in biometrics-based authentication systems. IBM Syst. J. 40(3), 614–634 (2001)

    Article  Google Scholar 

  12. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Taylor & Francis Group LLC, London (2008)

    MATH  Google Scholar 

  13. Lincke, S.J., Hollan, A.: Network security: focus on security, skills, and stability. In: 37th ASEE/IEEE Frontiers in Education Conference, Milwaukee (2007).

  14. Ratha, N.K.: Privacy protection in high security biometrics applications. In: Kumar, A., Zhang, D. (eds.) Ethics and Policy of Biometrics, ser. Lecture Notes in Computer Science, vol. 6005, pp. 62–69. Springer, Berlin (2010)

    Chapter  Google Scholar 

  15. Jin, Z., Teoh, A.B.J., Goi, B.M., Tay, Y.H.: Biometric cryptosystems: a new biometric keybinding and its implementation for fingerprint minutiae based representation. Elsevier J. Pattern Recogn. 16, 50–62 (2016)

    Article  Google Scholar 

  16. Sadhya, D., Singh, S.K., Chakraborty, B.: Review of key-binding-based biometric data protection schemes. IET Biom. 5(4), 263–275 (2016)

    Article  Google Scholar 

  17. Soutar, C., Roberge, D., Stoianov, A., Gilroy, R., Kumar, B.V.K.V.: Biometric Encryption. Chapter 22 in ICSA Guide to Cryptography, pp. 1–28. McGraw-Hill (1999)

    Google Scholar 

  18. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Sixth ACM Conference on Computer and Communications Security, pp. 28–36. ACM Press (1999)

  19. Juels, A., Sudan, M.: A fuzzy vault scheme. In: IEEE Int. Symp. On Information Theory, pp. 1–7 (2002)

  20. Blanton, M., Aliasgari, M.: Analysis of reusability of secure sketches and fuzzy extractors. IEEE Trans. Inf. Forensics Secur. 8(9), 1433–1445 (2013)

    Article  Google Scholar 

  21. Al-Tarawneh, M. S., Woo, W.L., & Dlay, S.S.: Fuzzy vault crypto biometric key based on fingerprint vector features. In: 2008 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, pp. 452–456 (2008)

  22. Dang, T.K., Truong, Q.C., Le, T.T.B., Truong, H.: Cancellable fuzzy vault with periodic transformation for biometric template protection. IETBiometrics 5(3), 229–235 (2016)

    Google Scholar 

  23. Clancy, T. C., Kiyavash N., & Lin, D. J.: Secure smartcard-based fingerprint authentication. In: Proc ACM SIGMM 2003 Multimedia, Biometrics Methods and Applications Workshop, pp. 45–52 (2003)

  24. Li, P., Yang, X., Cao, K., Tao, X., Wang, R., Tian, J.: An alignment-free fingerprint cryptosystem based on fuzzy vault scheme. J. Netw. Comput. Appl. 33(3), 207–220 (2010)

    Article  Google Scholar 

  25. Marino, R.A., Alvarez, F.H., Encinas, L.H.: A crypto-biometric scheme based on iristemplates with fuzzy extractors. Inf. Sci. 195, 91–102 (2012)

    Article  Google Scholar 

  26. Salas, M.: A secure framework for OTA smart device ecosystems using ECC and biometrics. Springer Commun. Comput. Inf. Sci. 381, 204–381 (2013)

    Google Scholar 

  27. Yoon, E. J., Yoo, K. E.: A biometric based authenticated key agreement scheme using ECC for wireless sensor networks. In: International Conference on Management and Service Science, Gyeongju, Korea, pp. 699–705 (2014)

  28. Liew, C. Z., Shaw, R., Li, L., Yang, Y.: Survey on biometric data security and chaotic encryption strategy with bernoulli mapping. In: International Conference on Medical Biometrics, Shenzhen, China, pp. 174–180 (2014)

  29. Eskander, G.S., Sabourin, R., Granger, E.: A bio-cryptographic system based on offline signature images. Inf. Sci. 259, 170–191 (2014)

    Article  Google Scholar 

  30. Amirthalingam, G., Radhamani, G.: New chaff point based fuzzy vault for multimodal biometric cryptosystem using particle swarm optimization. Elsevier J. King Saud Univ. Comput. Inf. Sci. 28, 381–394 (2016)

    Google Scholar 

  31. Chitra, D., Sujitha, V.: Security analysis of prealigned fingerprint template using fuzzy vault scheme. Cluster Comput. 22, 12817–12825 (2018)

    Article  Google Scholar 

  32. Elrefaei, L. A., Al-Mohammadi, A. M.: Machine vision gait-based biometric cryptosystem using a fuzzy commitment scheme. J. King Saud Univ. Comput. Inf. Sci. 1–14 (2019)

  33. Ponce-Hernandez, W., Blanco-Gonzalo, R., Liu-Jimenez, J., Sanchez-Reillo, R.: Fuzzy vault scheme based on fixed-length templates applied to dynamic signature verification. IEEE Access 8, 11152–11164 (2020)

    Article  Google Scholar 

  34. Asthana, R., Walia, G.S., Gupta, A., Rishi, S., Kumar, A.: A secure multimodal biometric system based on diffused graphs and optimal score fusion. J. IET Biom. 8(4), 231–242 (2019)

    Article  Google Scholar 

  35. Walia, G.S., Aggarwal, K., Singh, K., Kunwar, S.: Design and analysis of adaptive graph based cancelable multi-biometrics approach. IEEE Trans. Depend. Secure Comput. (2020). https://doi.org/10.1109/tdsc.2020.2997558

    Article  Google Scholar 

  36. Asthana, R., Walia, G.S., Gupta, A., Raza, S.: A novel approach of multi-stage tracking for precise localization of target in video sequences. J. Expert Syst. Appl. (2017). https://doi.org/10.1016/j.eswa.2017.02.007

    Article  Google Scholar 

  37. Walia, G.S., Gupta, K., Sharma, K.: Quality based adaptive score fusion approach for multimodal biometric system. J. Appl. Intell. 50, 1086–1099 (2020)

    Article  Google Scholar 

  38. Chenggang, Y., Gong, B., Yuxuan, W., Gao, Y.: Deep multi-view enhancement hashing for image retrieval. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2020)

  39. Chenggang, Y., Zhisheng, L., Yongbing, Z., Yutao, L., Xiangyang, J., Yongdong, Z.: Depth image denoising using nuclear norm and learning graph model. ACM Trans. Multimed. Comput. Commun. Appl. 16, 1–7 (2020)

    Google Scholar 

  40. Chenggang, Y., Shao, B., Zhao, H., Ning, R., Zhang, Y., Xu, F.: 3D Room layout estimation from a single RGB image. IEEE Trans. Multimed. 22, 3014–3024 (2020)

    Article  Google Scholar 

  41. Ouyang, K., Liang, Y., Liu, Y., Tong, Z., Ruan, S., Zheng, Y., Rosenblum: Fine-grained urban flow inference. IEEE Trans. Knowl. Data Eng. (2020)

  42. Ouyang, K., Liang, Y., Jing, L., Ruan, S., Liu, Y., Zhang, J., Rosenblum, D. S., Zheng, Y.: UrbanFM: inferring fine-grained urban flows. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD '19) (2019).

  43. Alfaisal, A., Mokbel, C.: Convolutional neural network biometric cryptosystem for the protection of the Blockchain’s private key. ScienceDirect Proc. Comput. Sci. 160(2019), 235–240 (2019)

    Google Scholar 

  44. Uludag, U., Pankanti, S., Prabhakar, S., Jain, A.K.: Biometric cryptosystems: issues and challenges. Proc. IEEE 92(6), 948–960 (2004)

    Article  Google Scholar 

  45. Daugman, J.: How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 14(1), 21–30 (2004)

    Article  Google Scholar 

  46. https://www4.comp.polyu.edu.hk/~csajaykr/IITD/Database_Iris.htm

  47. http://biometrics.idealtest.org/dbDetailForUser.do?id=7

  48. Al-Waisy, A.S., Qahwaji, R., Ipson, S., Al-Fahdawi, S., Nagem, T.A.M.: A multi-biometric iris recognition system based on a deep learning approach. Pattern Anal. Appl. Springer 21, 783–802 (2017)

    Article  MathSciNet  Google Scholar 

  49. Subban, R., Susitha, N., Mankame, D.P.: Efficient iris recognition using Haralick features based extraction and fuzzy particle swarm optimization. Clust. Comput. 21(1), 79–90 (2017)

    Article  Google Scholar 

  50. Ricco, D., Galdi, C., Manzo, R.: Biometric/cryptographic keys binding based on function minimization. In: 12th International Conference on Signal-Image Technology & Internet-based Systems, pp. 144–150 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Asthana.

Additional information

Communicated by Y. Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asthana, R., Walia, G.S. & Gupta, A. A novel biometric crypto system based on cryptographic key binding with user biometrics. Multimedia Systems 27, 877–891 (2021). https://doi.org/10.1007/s00530-021-00768-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-021-00768-8

Keywords

Navigation