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Abstract

As a crucial task in Computer Vision, object detection has substan-
tially improved in recent years, with the aid of deep learning and
increasingly abundant datasets. However, compared with natural image
detection, medical CT images require more precision due to the obvi-
ous clinical implications. Detecting multiple lesions or clusters with
relatively few training samples and indistinctive feature representation
is extremely problematic. In this paper, we propose comprehensive
improvements to the original YOLOv3, such as data augmentation, fea-
ture attention enhancement and feature complementarity enhancement
to increase general lesion area detection performance. Ablation stud-
ies use the open DeepLesion dataset to validate these improvements
and confirm the effectiveness of each amendment. Comparisons between
state-of-the-art counterparts demonstrated that the proposed lesion
object detector has enhanced salient accuracy (under two commonly-
used metrics) and an exceptional speed-accuracy trade-off. The proposed
model achieved 57.5% mAP and 85.07% sensitivity at 4 False Positives
(FPs) per image, while running at reliable 35.6 Frames Per Second (FPS).
These findings indicate that the proposed detector is more practicable
than other currently available Computer Aided Diagnostics (CAD).
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1 Introduction

Cancer is a heterogeneous disease with generally poor prognosis and extremely
high mortality [1]. While other rarer lesions cause substantial morbidity and
mortality, the prevalence of lung and breast cancers account for more than 20
percent of all recorded cases. Unfortunately, many of those diagnosed with a
type of lung cancer or breast cancer are diagnosed at a late (metastatic) stage,
which substantially reduces the number of effective treatment options. In the
metastatic stage, cancer cells proliferate, migrate and colonize substrate within
adjoining organs. At this point, the surgical resection is no longer an option
at best and any intervention only inhibits further metastatic action. Thus,
accurate diagnosis increases the likelihood of receiving a curative intervention
and the chance of survival.

Computed Tomography (CT) plays an essential role in cancer screening.
It utilizes different Hounsfield Unit (HU) window levels and widths to assist
radiologists to identify lesions by analyzing correlations between slices along
the z-axis. However, this routine procedure is both time-consuming and labor-
intensive, which creates a backlog of CT scans and slows the diagnostic process.
Missed opportunities for early diagnosis are not extraordinary in cancer screen-
ing because CT scans have relatively low specificity and sensitivity for various
lesions. However, the Computer Aided Diagnosis (CAD) system has the poten-
tial to identify suspected cases earlier and to reduce the ratio of human errors.
In addition, an accurate and efficient CAD system will undoubtedly be a foun-
dational element, combined with the Internet of Things (IoT) for an intelligent
medical system. However, Computer Aided Detection (CADet), a component
of CAD, remains the most challenging due to heterogeneous lesions in terms
of shape, size and location.

Object detection is a vital task in Computer Vision (CV), which is rela-
tively sophisticated compared to other tasks in CV, such as classification and
localization. To be specific, the detector aims to simultaneously determine both
the object’s location and the corresponding confidence score. The former is
usually encoded using a pair of coordinates with left-top and right-bottom cor-
ner orientation while the latter is the probability of object presence to certain
class for all labeled classes in specific dataset.

Over the past few years, the detection frameworks based on deep con-
volutional networks have become more commonplace and have yielded dis-
tinguished results in terms of speed and accuracy within natural image
domains[2][3][4][5]. These pioneering works have encouraged researchers to
consider applying this knowledge to object detection in medical domain
[6][7][8][9][10][11][12]. However, there are methodological differences and there-
fore relatively mature detectors need to be adapted. For example, there is a



vast difference between natural RGB images and medical gray-level images
generated by CT scan technology. Besides, the detection frameworks applied
in medicine are data-driven, task-specific and individualized.

The aim of this study is to comprehensively enhance the lesion detection
performance, which is different from detection in the natural scenario. The
main contributions of our proposed framework can be summarized as:
(i) A new data augmentation strategy;
(ii) Incorporating feature enhancement modules into the feature extraction
stage;
(iii) Our approach has achieved a better tradeoff between speed and accuracy
on DeepLesion.

2 Related Work

In this section, we introduce several representative deep object detectors with
their characteristics. We then illustrate methods to improve the backbone by
employing multi-scale feature fusion. Finally, we list more targeted detection
frameworks for medical imaging and analyze the respective drawbacks.

2.1 One-stage Object Detectors

Due to their robust and accurate performance, convolution operations could
be implemented to exploit deep representative features in images belonging to
almost all domains[13]. These domains vary from natural RGB images[14][15]
to gray-level medical CT images[7], making the application of convolution
operations very diverse[16]. For example, they could be implemented for tasks
such as 2D/3D detection, pose estimation, and so forth; Meanwhile, as deep
learning becomes prevalent and thrives, almost all successful state-of-the-art
object detection frameworks proposed in recent years are based on convo-
lutional neural networks. The experimental results apparently indicate that
convolution-based detectors (also named deep object detectors) outperform
the traditional detectors in both speed and accuracy, bearing great promise.
In fact, pioneering deep object detectors, such as Region-based Convolutional
Neural Network (R-CNN)[17], have achieved comprehensive advances. Since
then, researchers have proposed a series of representative deep object detectors,
which can be categorized as one-stage and two-stage detectors.

One-stage detectors directly predict bounding boxes and generate corre-
sponding confidence scores without the region proposal stage. The represen-
tative YOLO[18] is a typical one-stage detector, which is designed with a
simpler network and achieves approximately one order of magnitude faster
speed than R-CNN, making the real-time application more realistic. Unlike
YOLO, SSD[19] adopts anchors with different scales and aspect ratios on each
feature. Therefore, SSD conducts further predictions based on multiple scales.
While one-stage detector accuracy is relatively low, many researchers are con-
sidering how to improve and refine networks or other components so as to
pursue the performance of the two-stage detectors.



Our proposed method is improved over YOLOv3[4], which is an incremental
improvement to yolo9000[20] and achieves a better trade-off between detection
speed and accuracy.

2.2 Multi-scale Feature Fusion

VGG[21], widely implemented for classification tasks, is modified as backbone
in earlier version deep detectors, such as Faster Region-based CNN (Faster R-
CNN) and SSD. After several down-sampling operations, the smallest feature
maps at the end are finally fed into the trailing detection head, i.e. classification
and regression. These single-scale features have the larger reception field and
are therefore more appropriate for detecting relatively large objects. However,
small or even tiny objects, which account for the majority of some difficult
datasets, such as COCO[15] and DeepLesion[7], become barely visible given
such scale of the feature map.

To tackle this problem, SSD makes the final predictions on feature maps
with different scales. FPN[3] expands down-sampling stages by adding extra
up-sampling operations, such as bilinear (or nearest) interpolation and decon-
volution. In this way, each feature scale can be seen as one pyramidal level.
Lateral connection is then used on each level to concatenate original features
through the down-sampling phase with up-sampled features. It forms final fea-
ture representations from which contextual information is derived. Inspired
by FPN, YOLOv3 and DSSD[5] improve small objects’ detection accuracy in
YOLOv2 and SSD respectively by modifying backbones. Rather than concate-
nating each levels features to make final predictions, Feature-Fused SSD[22]
selects two of the most appropriate feature levels to combine. FSSD[23] firstly
fuses several features with different scales at once, then generates pyramidal
features from such fused features. In our proposed method, the scenario of
employing FPN is different from that of the frameworks described.

2.3 Object Detection in Medical Field

Motivated by mature detection frameworks based on natural image scenario,
researchers generalize the object detection in the natural area to that in
medicine by adjusting these frameworks. However, due to the large difference
in medical images, object detection in medical field would be more individ-
ualized and task-specific: In order to yield higher mean Average Precision
(mAP), GSSD[6] improves upon the SSD baseline by intercalating four-phase
enhanced liver lesion CT images in combination with group convolution. The
key 1×1 convolution is also imposed before each SSD detection head to fuse
multi-phase features. Even though the input data becomes more abundant
and could potentially compensate for the over-fitting problem, injecting con-
trasting medium to form such kind of dataset may do much more harm to
patients than plain scanning. In addition, the dataset used is exclusive, which
may be deemed less persuasive in comparison with those methods conducted
on a publicly available dataset.



In previous works, Ding et al.[11] improved the pulmonary nodule detection
framework over standard CT imaging by implementing 3D convolutions into
the False Positive Reduction (FPR) phase. The entire detection pipeline firstly
introduces RPN and ROI pooling to generate 2D detection candidates, as pro-
posed in Faster R-CNN. This then expands such candidates to 3D patches and
intercalates a trailing FPR module to further increase the detection precision.
Dou et al.[12] also employed 3D CNNs to extract more discriminative feature
representations. However, 3D convolutions are more resource-consuming and
computationally-intensive than 2D convolutions. This way requires very large
graphical memory and strong GPU computational capability, which can not
be conditioned in common laboratories. Likewise, Chiao et al.[10] introduced
Mask R-CNN[24] for ultrasound imaging so as to build an automatic breast
cancer diagnostics system. This model intercalates both detection and segmen-
tation of breast lesions. It is worth noting that both [10] and [11] are two-stage
based methods, their detecting speeds are relatively slow.

The above frameworks are all aimed at detecting specific types of targets,
such as nodules, lesions or benign masses. However, these frameworks may be
lacking in generalizability. A universal medical detector that identifies almost
all lesions in various organs and tissues. Fortunately, there is a large-scale
medical object detection dataset, known as DeepLesion[7], which is open-access
and provided by NIH in 2018. DeepLesion contains eight different types of
lesions and it will be described further in Section 4.

In the original paper on DeepLesion, Faster R-CNN[2] was implemented
and yielded great performance, but it was still suboptimal under the strict eval-
uation metrics. Continuous investigations have been conducted by researchers
since the DeepLesion dataset was publicly accessible. For example, ULDor[8]
adopted Mask R-CNN[24] to develop a universal lesion detector. This model
constructs pseudo-masks to train Mask R-CNN feasibly and achieves better
performance.

Likewise, improving upon Region-based Fully Convolutional Network
(R-FCN), 3DCE[9] increases detection sensitivity by a substantial margin com-
pared to the original Faster R-CNN. This model utilizes a central key slice with
neighboring slices as input images, then passes those through a feature extrac-
tor separately and concatenates features to fetch 3D contextual information.
The backbone is fine-tuned and extra layers are added. However, we would
suggest that the training scheme may rely heavily upon pre-trained weights
because the input channel of the first convolution of the backbone is cautiously
designed i.e., 3-channels per image. Also, pre-trained weights commonly used
in object detection is achieved through training on huge scale ImageNet[25]
classification tasks, which is a considerably time-consuming process.

As such, we propose the following framework to comprehensively improve
one-stage object detector YOLOv3, expecting to achieve a reasonable detection
precision and recall compared with two-stage detectors. Our primary aim is
to develop a universal detector, which can identify eight types of lesions in



CT scans from chest to abdomen. Therefore, it tends to be more robust and
practical than detectors designed specifically for one type of lesions.

3 Methods

In this study, we aim to design an accurate and comprehensively improved
one-stage medical universal detector by elaborating three key components. As
has been mentioned, medical imaging is quite different from the natural image.
Therefore, we implement a new data augmentation strategy as a substitute for
randomized contrast in natural scenarios. To refine and strengthen extracted
features from the backbone, we design two feature enhancement modules.
Anonymized lesions in medical CT datasets are generally small, therefore an
effective way is to set more anchors with smaller sizes and more aspect ratios.
The overall proposed network architecture is shown in Fig 1.

Fig. 1 Overall network architecture. Modifications are highlighted in rounded rectangles
with different colors. Numbers from 1 to 3 indicate data augmentation, feature strengthening
and anchors adjustment & expansion, consequently. This is described and elaborated upon
in Section 3 (below). Best viewed in color.

3.1 Data Augmentation

A crucial factor of affecting detection accuracy is how to pre-process input
data. Incorporating effective data augmentation strategy could alleviate over-
fitting problem caused by the relatively insufficient training data to some
extent.

During radiologists’ routine diagnosis, another crucial basis is the views
of CT scans, which are called HU window level and window width. Under
different HU window levels, radiologists could focus on the lesions in different
locations(e.g. lung, liver, pelvis, soft tissue, etc). In addition, under different
window widths, the contrast between the focused location and its surrounding
part is different. In this work, we initially do HU restriction in accordance
with the window level provided by expert radiologists, which means fixing



the window level. Then we impose randomized increment on both the upper
and lower bounds of such window level, implementing randomized window
width, which could also be deemed as the contrast randomization in medical
CT-image domain. Note that such randomization is not arbitrary. Once the
increment exceeds 500, the contrast may become extremely low in some cases,
thus making some lesions scarcely visible. See Fig 2 for visualization.

Fig. 2 CT scans through different HU window widths when the window level is fixed.
Intervals below each scan are HU windows. Each increment imposed upon the bounds is
highlighted in red. The lesion is marked with a green bounding boxes. Best viewed in color.

Besides the aforementioned new strategy of data augmentation, several
commonly-used affine transformation strategies are also incorporated into
training, including randomized translation, rotation, shear, scale, vertical and
horizontal flipping. The parameters set in them are 10%, 10◦, 10◦, 10% and 0.5
probability respectively. Note that no adjacent slice and data augmentation is
used during testing and detecting.

3.2 Feature Enhancement

Incorporating residual blocks and multi-scale feature predictions into detection
network, YOLOv3[4] achieves great detection results in the natural scenario.
However, we hypothesize that such results are still suboptimal for medical
lesion detection in terms of insufficient feature representation, due to the
indistinguishable contrast between lesions and non-lesions. Besides, the lesion
targets pending to be detected are relatively medium-scale or small-scale.

We address this potential problem by initially deepening the backbone net-
work. Our proposed detector also incorporates FPN to implement multi-scale
prediction. One common principle of designing such prediction is that the lower
or shallower pyramidal level is suitable for detecting smaller-sized objects,
while the higher or deeper level for detecting larger-sized objects[3][4][5]. Fol-
lowing this principle, initially, we append two extra downsampling stages in
encoding part by expanding the original Darknet[4]. In this way, we add two
extra upsampling stages in decoding part correspondingly, which means that
two more pyramidal levels are generated. Hence, we could enable the network
to extract semantically stronger features, and impose two more prediction lay-
ers to make detector more robust to objects with various sizes. For clarity, (P0,
P1, ..., P7) stands for each pyramidal level from shallow to deep hereinafter.



According to the aforementioned expansion, we set prediction layers after P3-
P7. However, the objects in DeepLesion dataset are generally small-scaled. To
enhance the detection accuracy, we adjust prediction layers by shifting them
from P3-P7 to P2-P6. Note that P7 is kept to maintain the overall pyramidal
network structure and the capability of extracting deep features, as depicted
in Fig 3.

Fig. 3 Network architecture after deepening and adjusting

Based on the aforementioned preliminary network refinement, we further
propose two feature enhancement modules embedded in network. We will
elaborate them in subsequent part of this section.

3.2.1 Feature Attention Enhancement

The attention mechanism is initially proposed in the machine translation
domain and has become a key element of Natural Language Processing
(NLP)[26]. Recently, the attention mechanism has more been adopted for
image classification tasks[27][28] and appears to enhance accuracy. There are
two main approaches to implement the attention mechanism in such tasks,
i.e. channel-wise attention and pixel-wise attention. In our preliminary explo-
ration, we initially attempted to use channel-wise attention in the backbone.
However, the final mAP drops substantially, which indicates that this way is
not suitable for the entire detection framework. Therefore, we hypothesize that
the global pooling operation causes some deviations, since the input of detec-
tion task is the whole image and certain objects may appear in an arbitrary
region. Hence, we adopt pixel-wise attention and embed an Attention Gate
(AG) module into the backbone.

Similar to the correlation calculations between query and key in the origi-
nal scenario to which the attention mechanism is applied, this module finally
generates an attention map. Then pixel-wise multiplication with input fea-
tures is conducted. This process strengthens the salient features in foreground
regions while suppressing those in the non-pertinent surrounding background,



making our detection framework focuses on lesion areas. Besides a series of
operations, the gating feature is also determinant to generate an attention
map. The features on P7 are chosen as global gating features since they have
the largest reception field and strongest semantic information, enabling them
to guide each AG set on P2-P6 before lateral connection. The detailed struc-
ture of AG is depicted in Fig 4. The process for generating attention maps is
described elsewhere 1.

Fig. 4 Detailed AG structure. Input features derived from each P2-P6 layer before lateral
connection, while gating feature is fixed.

Note that our detector could also be regarded as a pixel-wise task, in
which several predictions are generated on each grid cell of feature maps. The
strengthening and suppression functions of AG directly affect objectness score,
which is one value within the prediction vector. Meanwhile, since there is only
one class in the lesion detection task, the objectness score also determines con-
fidence score, which could be considered as an indicator. When the confidence
value is greater than the predetermined threshold, the prediction is selected
as a positive sample, otherwise it is selected as a negative sample. Take one
false positive sample for example, its confidence score will decrease and may
become a true negative under the suppression of AG. Hence, the precision will
be improved to some extent.

map = σ{C1∗1∗1[relu[Cin(F
l
input)⊕ up[Cgate(Fgate)]]]}, l ∈ [P2, P5] (1)

Where ⊕ and σ are channel-wise concatenation and sigmoid function,
respectively. C, F , and up represent Convolution, Features and upsample,
respectively.

3.2.2 Feature Complementarity Enhancement

When designing a FPN-based detector, it is necessary to abide by a common
principle. The shallower or lower pyramidal level, the more suitable for detect-
ing small-sized objects while the deeper or higher levels are more appropriate
for large-sized objects. However, we assume that this concept is a little unclear.
There may be no guarantee that each level is absolutely suitable for detecting



objects from specific pre-defined anchors. In other words, features before each
prediction head seem to be relatively independent and remain to be locally
fine-tuned to optimally match the scale of objects pending to be detected.
Hence, we try modifying the network architecture right before each prediction
head, enabling it to fetch complementary information from adjacent pyramidal
level, both spatially and semantically.

The embedded module Adjacent Feature Complementation (AFC) could
be competent for this task, which is divided into two phases, i.e. feature fusing
and feature restoring. In the former phase, features from three sequential lev-
els are initially resized to the same scale, then these are concatenated together
across the channel axis. The subsequent two 1× 1 convolution operations play
the crucial role of feature fusion and local fine-tuning. During the latter phase,
adopting interpolation or pooling to restore the same spatial scale. Then the
convolution operation is conducted to restore channel scale as the original
channel scale. At this point, each feature level is restored to its original scale.
Finally, adding the restored feature and the original feature. To stabilize unan-
ticipated circumstances, we also employ the shortcut structure as proposed in
residual block[29]. The aforementioned process is clearly depicted in Fig 5.

3.3 Anchors Adjustment & Expansion

The detection head is the key component in object detection, which connects
both the output of CNN backbones, i.e. the extracted feature, and the pre-
diction of the whole object detector. Hence, the detail concerning the amount
of predicted boxes regressed from anchors (also named prior boxes or default
boxes) is also non-negligible.

In the original YOLOv3, the anchor point set in the detection head is spe-
cific to the dataset, rather than fixed[19]. Specifically, they are generated by
the K-means algorithm based on the width and height distribution of the over-
all ground truth (GT) box in the COCO dataset. Conversely, the dataset we
use is the medical lesion dataset, which is very different from a natural image
data set in terms of data distribution. In the Deeplesion dataset, there are
more small targets and in order to improve the sensitivity for detecting small
lesions, we use more anchor points in the prediction layer after the shallower
P2, P3 and P4 levels. Therefore, we re-clustered the DeepLesion dataset to
generate specially designed anchor points, which is shown in Table 1.

4 Experiments

In this section, we initially introduce the training schedule, the datasets and
evaluation metrics used in our experiments. Then, we analyze the effectiveness
of our methodology by ablation study and the comparison with the state-of-
the-arts. All experiments are conducted on GeForce GTX 1080Ti GPU with
11 GB graphical memory, Intel Core i7-7700K CPUs with 8 threads and 15.6
GB physical memory.



Fig. 5 The detailed structure of AFC. (a) feature fusing phase; (b) feature restoring phase.
The input derive from the current and its two adjacent levels of features before prediction
heads. Best viewed in color.

4.1 Dataset

We conducted the experiments over publicly available DeepLesion dataset. In
this dataset, the lesion types are very diverse, including bone, abdomen, medi-
astinum, liver, lung, kidney, soft tissue and pelvis. It is large-scale because
the number reaches up to 32,725 lesions on 32,120 axial CT slices from 10,594
studies of 4,427 unique patients. The official standard splits the overall 32,120
CT images with the proportion of 70%, 15% and 15% to generate training set,
validation set and test set, respectively. The crucial labeled information com-
prises the bounding boxes of lesions, z-axes spacing and HU windows, which
are indispensable for object detection task itself and our proposed methodol-
ogy. In addition, the labeled lesion types are only given in the testing set to
help to visualize and evaluate the detection results of each type, which means
the detection is actually a single-class task.



Table 1 Anchor configuration in each prediction layer
following certain pyramidal level after adjusting detection
heads.

Pyramidal level Anchors Configuration

P2 (15,15),(20,20),(28,22),(20,14),(14,20)
P3 (24,28),(30,29),(30,36),(30,20),(20,30)
P4 (41,33),(39,48),(58,43),(44,29),(29,44)
P5 (52,62),(73,60),(69,93)
P6 (102,85),(124,132),(193,168)

Total number of anchors: 5*3+3*2=21

4.2 Training Schedule

Our detector was trained with PyTorch v1.1.0 deep learning framework. Due
to limited graphical memory, the batch size was set to 8 for all experiments.
During data loading, the number of workers was set to 8, which is exactly the
number of CPU threads. Stochastic Gradient Descent (SGD) was employed as
the optimizer, with weight decay of 0.0005 and momentum of 0.9. The initial
learning rate was 0.001, and then be decreased by 10 times when the current
training process reaches 80% and 90% of total epochs, which was set to 80 for
training DeepLesion. The training will eventually converge after several epochs
when learning rate is 1e-5.

4.3 Evaluation Metrics

In this section, the main metrics are introduced to evaluate our detector in
subsequent ablation studies and comparisons.

4.3.1 Mean Average Precision

Average Precision (AP) is generally defined as the approximate area under
the precision-recall (PR) curve of a certain class. Whereas, mean Average
Precision (mAP) is the mean value of APs added up by each class. For the
single-class detection task, mAP is identical to AP. To scatter and finally
draw PR curve, we should dynamically calculate the progressive recall value
and its corresponding precision value, according to all positive predicted boxes
with sorted confidence scores from high to low. Such calculating process is
also named all-points interpolation method (See (3)), which is suggested by
PASCAL VOC 2012 standard and is extensively adopted. The paired recall
and precision value is calculated from the current number of true positives
(TPs) and false positives (FPs), see 2.



precision =
TPs

TPs+ FPs
=

TPs

All Detections

recall =
TPs

All Ground Truths

with P =

{
TP, if IOU(p,GT ) > threshold
FP, if IOU(p,GT ) < threshold

(2)

Where IOU(p,GT ) stands for the Intersection over Union between one
specific predicted box and corresponding ground truth box, while the threshold
is set to 0.5 by default.

AP =

1∑
r=0

(rn+1 − rn) ∗ pinterp(rn+1)

with pinterp(rn+1) = max
r̂:r̂>rn+1

p(r̂)

mAP =
1

Nc

Nc−1∑
c=0

APc

(3)

Where the middle equation indicates searching for the precision envelop
at the right side of recall point, to gradually obtain the final estimated area
under PR curve.

4.3.2 Sensitivity at various FPs per image

Different from the constant AP metric, another stricter metric we employed is
the sensitivity (recall) at various FPs per image. As its name implies, it is a
metric to evaluate the capability of detector under varying levels of strictness.
To implement this, we should set different confidence threshold, which is used
for distinguishing between positive and negative samples before doing NMS.
For illustration, if confidence threshold is set from 0.01 to 0.001, a definite
consequence would be the increase of recall and the decline of precision. This is
because slightly more TPs and dramatically more FPs are introduced, see (3).
Hence, by continuously changing this threshold, we can obtain recall values
under different FPs per image. The metric fixes FPs per image (usually be
0.5, 1, 2, 4 and 8), in order to see whether the detector could find more true
positives as much as possible under the same fault tolerance.



4.4 Ablation Study

In this section, we will gradually confirm the effectiveness of each component
of improvement by conducting ablation study over DeepLesion dataset and
giving quantitative analysis.

According to the two evaluation metrics, we conducted ablation over
DeepLesion dataset. From Table 2 and Table 3, we observed: by adding each
improved component, either Recall or mAP continuously increased, which
demonstrates that each improvement could play a specific role in enhancing
accuracy. Specifically, data-augmentation (DA) has two functions. On the one
hand, conducting HU restriction and randomized increment can strengthen
the difference between the lesion area and its sorrounding area, which makes
it easier for the network to locate the lesion area. On the other hand, to
alleviate over-fitting problem, several common affine transformation strategies
are used to expand the dataset. Table 2 shows the effectiveness of the data-
augmentation we proposed. Besides, Feature Srengthening(FS) also shows
positive effect, which includes Attention Gate(AG) and Adjacent Feature Com-
plementation(AFC) structure. The former strengthens the salient features in
foreground regions while suppressing those in the non-pertinent surrounding
background. The latter could fuse different scale complementary information
from semantic and semantic aspect. Furthermore, feature fusing phase and fea-
ture restoring phase are integrated to Feature Complementation(AFC), where
feature fusing phase could fuse different scale adjacent features to obtain more
semantic and spatial information while feature restoring phase combines low-
level semantic information and high-level semantic information to compensate
the detail information during the process of upsampling. Finally, according to
dataset distribution, Anchors Adjustments & Expansion(AE) module resets
anchors to detect lesions, which also enhences the performance of our proposed
approach.

Meanwhile, the detection speed drops continuously, which is because the
backbone is more sophisticated. Then, the number of corresponding training
parameters increase. In spite of this, our proposed detector is still a real-time
one, which FPS is greater than 30. Since DeepLesion provides a coarse lesion
type of each CT slice, we calculate AP of each lesion type, which is provided in
Table 4. It could be found that lesions located in the bones, abdomen and soft
tissue are relatively more difficult to detect, in comparison with other types. We
generated a PR Curve and Free-response Receiver Operation Characteristic
(FROC) curve to make results more intuitive, see Fig 6.

To further verify the effectness of our AG structure, several typical atten-
tion structions are compared. At first, channel attention(CA) is embeded into
network and then final mAP drops, we infer that the global pooling operation
causes some of the deviation since the input of detection task is the whole
image and certain objects may appear in an arbitrary region. In addtion, other
attention modules are compared in 5. We could find that our proposed AG
module has obtained the best mAP score. Meanwhile, the Recall score is close
to CBAM.



Fig. 6 Ablation w.r.t. PR Curve (left) and FROC Curve (right) on the official split test
set of DeepLesion.

Table 2 Ablation w.r.t. Recall(%),mAP(%) and detecting speed (FPS)
on the official split test set of DeepLesion.

Components Recall mAP Detecting Speed

Baseline 82.8 47.9 63.9
Baseline+DA 84.7 48.7 63.9

Baseline+DA+AE 84.4 55.1 48.5
Baseline+DA+AE+FS(Proposed) 85.8 57.5 35.6

Where DA, AE and FS are short for Data Augmentation, Anchors
Adjustments & Expansion, and Feature Strengthening, respectively.

Table 3 Ablation w.r.t. Sensitivity(%) at various FPs per image on the
official split test set of DeepLesion.

Components 0.5 1 2 4 8

Baseline 52.02 62.55 71.89 79.51 85.14
Baseline+DA 52.63 63.81 73.29 80.63 86.38

Baseline+DA+AE 58.88 67.81 75.74 82.42 85.57
Baseline+DA+AE+FS(Proposed) 61.27 70.43 78.67 85.07 87.01

Detection results are visualized in Fig 7. As can be seen: (1) Some predic-
tion boxes are better regressed and therefore achieve higher confidence scores
compared to results from the baseline detector (first column); (2) Even as the
baseline detector can identify one true lesion, there still exists a duplicate box
for one GT or false positive somewhere else (second column); (3) The proposed
detector can at least locate the lesion area, while the baseline finally generates
nothing but the original image pending to be detected.



Table 4 Ablation w.r.t. AP(%) of each lesion type on the official split test
set of DeepLesion.

Components BN AB ME LV LU KD ST PV

Baseline 37.1 37.2 58.7 52.4 56.2 37.3 40.3 43.5
Baseline+DA 34.7 37.9 58.6 53.6 59.1 42.6 38.4 41.4

Baseline+DA+AE 46.3 43.7 65.0 60.2 66.4 49.0 41.8 46.0
proposed 47.8 45.3 66.9 63.7 66.4 52.9 46.3 52.0

Each abbreviation form of type from left to right indicates bone, abdomen,
mediastinum, liver, lung, kidney, soft tissue and pelvis respectively.

Table 5 Ablation w.r.t. Recall(%) and mAP(%) on the official split test set of DeepLesion.

Components Recall mAP

Baseline 82.8 47.9
Baseline+CA[30] 83.5 49.3
Baseline+SE[27] 83.2 50.8
Baseline+RA[31] 82.6 48.4

Baseline+CBAM[30] 84.3 51.1
Baseline+AG 83.9 52.2

Where CA, SE, RA and AG are channel attention, SE module, residual attention module and
attention gate, respectively.

Fig. 7 Detection visualization of the comparison between baseline and proposed detector.
The red and green bounding boxes represent predictions and ground truths. Each column
from left to right shows the lesions on liver, lung, kidney and pelvis, respectively. Best viewed
in color.

4.5 Comparison and Analysis

In this section, we compare our proposed detector with other state-of-the-art
ones by comprehensively analyzing the trade-off between detection accuracy
and efficiency over the official test set. Table 6 shows detection sensitivity at



various FPs per image of each method, while displaying corresponding detec-
tion speeds. The typical two-stage detectors, i.e. Faster R-CNN[2] and Mask
R-CNN[24], are supposed to be more accurate than our one-stage detector,
due to the coarse-to-fine pipeline guided by RPN. Conversely, their detection
sensitivities at each FPs per image are completely inferior to ours. In addi-
tion, even though other one-stage detectors, i.e. RetinaNet[32], Efficientdet[33]
and so on, are close (and in some cases superior) to ours in terms of detection
efficiency, our detectors detection accuracy consistently outperforms them.

Table 6 Sensitivity(%) at various FPs per image and runtime of
various methods on the official split test set of DeepLesion.

Methods 0.5 1 2 4 runtime

RetinaNet[32] 45.80 54.17 62.50 69.80 28 ms
YOLOv3[4] 52.02 62.55 71.89 79.51 16 ms

Faseter R-CNN[2] 56.90 67.26 75.57 81.62 32 ms
Mask R-CNN[24] 39.82 52.66 65.58 77.73 –

ULDor[8] 52.86 64.80 74.84 84.38 –
3DCE, 3slices[9] 55.70 67.26 75.37 82.21 –
3DCE, 9slices[9] 59.32 70.68 79.09 84.34 56 ms
3DCE, 27slices[9] 62.48 73.37 80.70 85.65 114 ms

Ours 61.27 70.43 78.67 85.07 28 ms

Table 7 mAP(%) and AP(%) of each lesion type of various methods on the
official split test set of DeepLesion.

Methods Total BN AB ME LV LU KD ST PV

Faster R-CNN[2] 48.4 52.4 39.1 51.2 54.9 58.2 41.9 43.6 36.8
RetinaNet[32] 51.0 53.9 43.0 55.5 52.4 61.2 42.4 45.5 42.1
Tan et al.[33] 56.8 52.4 42.8 60.6 57.4 67.7 50.3 43.1 40.7

Duan et al.[34] 52.1 54.3 44.7 51.0 55.2 65.7 47.4 40.9 37.5
Zhou et al.[35] 54.2 50.5 44.1 53.5 55.8 64.7 48.2 41.9 44.0
Wang et al.[13] 57.3 – – – – – – – –
3DE, 3 slices[9] 50.6 43.4 42.4 52.2 54.3 63.3 42.6 42.1 42.3
3DE, 9 slices[9] 54.4 49.2 46.8 57.7 56.4 66.3 48.0 44.1 47.0

Ours 57.5 47.8 45.3 66.9 63.7 66.4 52.9 46.3 52.0

The most competitive counterparts are ULDor[8] and 3DCE[9], which also
adopt the two-stage pipeline in the backbone network. ULDor uses pseudo
masks and hard negative example mining strategy to enhance accuracy. Regret-
fully, this is still inferior to proposed detector. 3D contextual information is
introduced during training and testing in 3DCE, making the whole detector
much more sophisticated and therefore time-consuming. When the number of
input slices is increased to 9, 3DCE is already much slower than our proposed
detector, even as the majority of feature maps of slices could be cached and



reused for the next inference. 3DCE with 27 input slices achieves the best
result among different methods. The sensitivity at 4 FPs per image (which is a
commonly used standard for comparison) is 85.65% compared to our detector
which was 85.07%, demonstrating that our detector is slightly inferior from this
perspective. In spite of this, our detector runs in real-time (28ms, 35.6FPS)
and is about three times faster than that with 114ms, 8.8FPS. To make the
results of comparison more intuitive, we generated FROC curves of several
methods at the top of Fig 8. The sensitivity and corresponding inference time
of several methods are also scattered and depicted at the bottom of Fig 8.

Fig. 8 FROC Curves of various methods (left); Real-time analysis of various methods
(right) on the official split test set of DeepLesion.

Comparisons concerning mAP and APs are provided in Table 4, where
the similar phenomena and trend could be discovered. In particular, Wang
et al. [13] proposed a universal detector across almost all image domains (11
different datasets), establishing a universal detection benchmark. Although
Wang et al.[13] sacrifices a huge amount of time and resources during training,
the mAP associated with our detector is 57.5%, which is still comparable to
57.3%. Secondly, our detector outperforms others when detecting lesions of
mediastinum and liver, with an improvement of more than 7 points in AP.

In summary, our detector achieves the best trade-off between accuracy
and efficiency by comparing with other state-of-the-art detectors. Specifically,
our proposed method not only achieves high accuracy in medical CT-image
detection, but also maintains a relatively good detection speed.

5 Conclusion

In this paper, we propose an accurate one-stage universal lesion detector based
on YOLOv3. In data preprocessing stage, a new data augmentation strategy
is proposed to highlight the lesion area and avoid over-fitting risk. Besides,
our detector could fuse more semantic and sptial complementary information,
allowing the network to focus on the lesion area and obtain more accurate
detection results. Experiments conducting with DeepLesion dataset confirm



the effectiveness of such contributions. By comparison with state-of-the-art
detectors, we achieved comparable results with regard to Sensitivity at Various
FPs per image and mAP, while maintaining ideal inference speed.
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