Skip to main content
Log in

Failure recovery algorithms for multimedia servers

  • Regular papers
  • Published:
Multimedia Systems Aims and scope Submit manuscript

Abstract.

In this paper, we present two novel disk failure recovery methods that utilize the inherent characteristics of video streams for efficient recovery. Whereas the first method exploits the inherent redundancy in video streams (rather than error-correcting codes) to approximately reconstruct data stored on failed disks, the second method exploits the sequentiality of video playback to reduce the overhead of online failure recovery in conventional RAID arrays. For the former approach, we present loss-resilient versions of JPEG and MPEG compression algorithms. We present an inherently redundant array of disks (IRAD) architecture that combines these loss-resilient compression algorithms with techniques for efficient placement of video streams on disk arrays to ensure that on-the-fly recovery does not impose any additional load on the array. Together, they enhance the scalability of multimedia servers by (1) integrating the recovery process with the decompression of video streams, and thereby distributing the reconstruction process across the clients; and (2) supporting graceful degradation in the quality of recovered images with increase in the number of disk failures. We present analytical and experimental results to show that both schemes significantly reduce the failure recovery overhead in a multimedia server.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shenoy, P., Vin, H. Failure recovery algorithms for multimedia servers. Multimedia Systems 8, 1–19 (2000). https://doi.org/10.1007/s005300050001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s005300050001

Navigation