Max-Planck-Institut für Mathematik in den Naturwissenschaften Leipzig

Low-rank approximation of integral operators by interpolation

by

 $Steffen\ B\"{o}rm\ and\ Lars\ Grasedyck$

Preprint no.: 72 2002

Low-rank approximation of integral operators by interpolation

Steffen Börm and Lars Grasedyck

Max Planck Institute of Mathematics in the Sciences Inselstr. 22–26, D-04103 Leipzig, Germany

August 27, 2002

A central component of the analysis of panel clustering techniques for the approximation of integral operators is the so-called η -admissibility condition "min $\{\operatorname{diam}(\tau),\operatorname{diam}(\sigma)\} \leq 2\eta\operatorname{dist}(\tau,\sigma)$ " that ensures that the kernel function is approximated only on those parts of the domain that are far from the singularity.

Typical techniques based on a Taylor expansion of the kernel function require the distance of such a subdomain to be "far enough" from the singularity such that the parameter η has to be smaller than a given constant depending on properties of the kernel function.

In this paper, we demonstrate that any η is sufficient if interpolation instead of Taylor expansion is used for the kernel approximation, which paves the way for grey-box panel clustering algorithms.

1 Introduction

1.1 Model problem

Let Ω be a subdomain or submanifold of \mathbb{R}^d . We consider a Fredholm integral operator of the form

$$G[u](x) = \int_{\Omega} g(x, y)u(y)dy$$

with an asymptotically smooth kernel function g, i.e., there exist constants C_{as1} and C_{as2} and a singularity degree $s \in \mathbb{N}$ such that for all $z \in \{x_j, y_j\}$ the inequality

$$|\partial_z^n g(x,y)| \le C_{as1} (C_{as2} ||x-y||)^{-n-s} n! \tag{1}$$

holds. This kind of operator occurs, e.g., in the integral equation formulation of the Poisson problem in \mathbb{R}^3 , where g is the singularity function $g(x,y) = \|x - y\|^{-1}$. A standard Galerkin discretisation of \mathcal{G} for a basis $(\varphi_i)_{i \in I}$, $V := \operatorname{span}\{\varphi_i : i \in I\}$, yields a matrix G with entries

$$G_{i,j} := \int_{\Omega} \int_{\Omega} \varphi_i(x) g(x,y) \varphi_j(y) \, dx \, dy.$$
 (2)

Since the support of the kernel g is in general not local, one expects a dense matrix G.

The algorithmic complexity for computing and storing a dense matrix is quadratic in the number of degrees of freedom, therefore different approaches have been introduced to avoid dense matrices: for translation-invariant kernel functions and simple geometries, the matrix G has Toeplitz structure, which can be exploited by algorithms based on the fast Fourier transformation. If the underlying geometry can be described by a small number of smooth maps, wavelet techniques can be used in order to compress the resulting dense matrix [3]. Our approach is a refined combination of the panel clustering method [6] and hierarchical matrices [1, 4, 5], which are based on the idea of replacing the kernel function locally by degenerate approximations.

1.2 Low rank approximation

Let $r \times s \subseteq I \times I$ be a sub-block of the product index set. We define the corresponding domains

$$\tau := \bigcup_{i \in r} \operatorname{supp}(\varphi_i), \quad \sigma := \bigcup_{i \in s} \operatorname{supp}(\varphi_i)$$

and (minimal) axially parallel boxes B_{τ}, B_{σ} containing τ, σ .

We assume that $\operatorname{dist}(B_{\tau}, B_{\sigma}) > 0$ holds, which implies that $g|_{B_{\tau} \times B_{\sigma}}$ is smooth. For the corresponding sub-matrix $R := K|_{r \times s}$ we seek a low rank matrix \tilde{R} such that the approximation error $\|R - \tilde{R}\|$ is of the same size as the discretisation error $\inf_{v \in V} \|u - v\|$ for the (unknown) solution u. The aim of this paper is to prove that the matrix \tilde{R} of rank k can easily be constructed by interpolation of the kernel g in such a way that the approximation error behaves like

$$||R - \tilde{R}|| = \mathcal{O}(C_{r,s}^{-k})$$

for a constant $C_{r,s} < 1$, i.e., exponential convergence with respect to the order k even if B_{τ} and B_{σ} are arbitrarily close to each other.

2 Interpolation scheme

2.1 Interpolation operators

We denote the space of k-th order polynomials in one spatial variable by \mathcal{P}_k and fix a family $(\mathcal{I}_k)_{k\in\mathbb{N}_0}$ of interpolation operators

$$\mathcal{I}_k: C([-1,1]) \to \mathcal{P}_k$$

corresponding to interpolation points $(x_{i,k})_{i=0}^k$ and associated Lagrange polynomials $(\mathcal{L}_{i,k})_{i=0}^k$, such that for all $u \in C([-1,1])$

$$\mathcal{I}_k u = \sum_{i=0}^k u(x_{k,i}) \mathcal{L}_{k,i}.$$
 (3)

The operators are projections, i.e., for all $p \in \mathcal{P}_k$

$$\mathcal{I}_k p = p \tag{4}$$

holds. For each $k \in \mathbb{N}_0$, we introduce the Lebesgue constant $\Lambda_k \in \mathbb{R}_{\geq 1}$ by requiring that

$$\|\mathcal{I}_k u\|_{\infty, [-1,1]} \le \Lambda_k \|u\|_{\infty, [-1,1]} \tag{5}$$

holds for all $u \in C([-1,1])$.

We assume that there are constants $C_{\lambda}, \lambda \in \mathbb{R}_{>0}$ satisfying

$$\Lambda_k \le C_\lambda (k+1)^\lambda \tag{6}$$

for all $k \in \mathbb{N}$. For standard interpolation schemes, this estimate is fulfilled. E.g., for Chebyshev interpolation (cf. [7]), we even have $\Lambda_k \leq 2\log(k+1)/\pi + 1 \leq k+1$.

If J = [a, b] is an arbitrary closed interval, the transformed interpolation operator is given by $\mathcal{I}_k^J := (\mathcal{I}_k(u \circ \Phi_J)) \circ \Phi_J^{-1}$, where $\Phi_J : [-1, 1] \to J$, $x \mapsto ((b-a)x + (b+a))/2$ is the affine mapping from the reference interval to J. The properties (4) and (5) carry over to \mathcal{I}_k^J , the corresponding interpolation points and Lagrange polynomials are given by $x_{k,i}^J := \Phi_J(x_{k,i})$ and $\mathcal{L}_{k,i}^J := \mathcal{L}_{k,i} \circ \Phi_J^{-1}$.

2.2 Multidimensional interpolation operator

Let us fix an axially parallel box $B \subseteq \mathbb{R}^d$ with

$$B = J_1 \times \cdots \times J_d$$

where $(J_j)_{j=1}^d$ are closed intervals.

The corresponding k-th order tensor product interpolation operator is given by

$$\mathcal{I}_k^B := \mathcal{I}_k^{J_1} \otimes \dots \otimes \mathcal{I}_k^{J_d}. \tag{7}$$

This is a projection mapping from C(B) to

$$Q_k := \operatorname{span}\{p_1 \otimes \cdots \otimes p_d : p_i \in \mathcal{P}_k \text{ for all } i \in \{1, \dots, d\}\}$$

and the following stability result holds:

Lemma 2.1 (Stability) For $k \in \mathbb{N}_0$, $m \in \{1, ..., d\}$ and $u \in C(B)$, we have

$$\left\| \left(\bigotimes_{i=1}^m \mathcal{I}_k^{J_i} \right) \otimes \left(\bigotimes_{i=m+1}^d I \right) u \right\|_{\infty,B} \leq \Lambda_k^m \|u\|_{\infty,B},$$

i.e., applying interpolation to the first m coordinate directions is stable. In the case d=m, this estimate takes the form

$$\|\mathcal{I}_k^B u\|_{\infty,B} \le \Lambda_k^d \|u\|_{\infty,B}.$$

Proof. We use the representation

$$\left(\bigotimes_{i=1}^{m} \mathcal{I}_{k}^{J_{i}}\right) \otimes \left(\bigotimes_{i=m+1}^{d} I\right) = \prod_{i=1}^{m} \left(\left(\bigotimes_{j=1}^{i-1} I\right) \otimes \mathcal{I}_{k}^{J_{i}} \otimes \left(\bigotimes_{j=i+1}^{d} I\right)\right)$$

and apply the one-dimensional estimate to each of the factors.

3 Approximation

Our analysis is based on the following approximation result from [2, Lemma 3.12].

Lemma 3.1 (Melenk) Let $J \subseteq \mathbb{R}$ be a closed finite interval. Let $u \in C^{\infty}(J)$ such that there are constants $C_u, \gamma_u \in \mathbb{R}_{\geq 0}$ satisfying

$$||u^{(n)}||_{\infty,J} \le C_u \gamma_u^n n!$$

for all $n \in \mathbb{N}_0$. Then we have

$$\min_{v \in \mathcal{P}_k} \|u - v\|_{\infty, J} \le C_u 4e(1 + \gamma_u |J|)(k+1) \left(1 + \frac{2}{\gamma_u |J|}\right)^{-(k+1)}.$$
 (8)

Theorem 3.2 (Interpolation error) Let $u \in C^{\infty}(B)$ such that there are constants $C_u, \gamma_u \in \mathbb{R}_{\geq 0}$ satisfying

$$\|\partial_j^n u\|_{\infty,B} \le C_u \gamma_u^n n! \tag{9}$$

for all $j \in \{1, ..., d\}$ and $n \in \mathbb{N}_0$. Then we have

$$||u - \mathcal{I}_k^B u||_{\infty, B} \le 8e\Lambda_k^d C_u (1 + \gamma_u \operatorname{diam}(B))(k+1) \left(1 + \frac{2}{\gamma_u \operatorname{diam}(B)}\right)^{-(k+1)}.$$
 (10)

Proof. Since \mathcal{I}_k is a projection, we have for all $v \in \mathcal{P}_k$

$$||u - \mathcal{I}_k^{J_i}u||_{\infty,J_i} = ||(u - v) - \mathcal{I}_k^{J_i}(u - v)||_{\infty,J_i} \le (1 + \Lambda_k)||u - v||_{\infty,J_i}.$$

Due to (9), we can combine this estimate with Lemma 3.1 and find

$$\left\| u - \left(\bigotimes_{j=1}^{i-1} I \right) \otimes \mathcal{I}_k^{J_i} \otimes \left(\bigotimes_{j=i+1}^d I \right) u \right\|_{\infty, B}$$

$$\leq C_u 4e(1 + \Lambda_k)(1 + \gamma_u |J_i|)(k+1) \left(1 + \frac{2}{\gamma_u |J_i|}\right)^{-(k+1)} \\
\leq C_u 8e\Lambda_k (1 + \gamma_u \operatorname{diam}(B))(k+1) \left(1 + \frac{2}{\gamma_u \operatorname{diam}(B)}\right)^{-(k+1)}$$

To conclude the proof, we apply this estimate to the following telescope sum:

$$\begin{aligned} \|u - \mathcal{I}_{k}^{B}u\|_{\infty,B} &\leq \sum_{i=1}^{d} \left\| \left(\bigotimes_{j=1}^{i-1} \mathcal{I}_{k}^{J_{j}}\right) \otimes \left(\bigotimes_{j=i}^{d} I\right) u - \left(\bigotimes_{j=1}^{i} \mathcal{I}_{k}^{J_{j}}\right) \otimes \left(\bigotimes_{j=i+1}^{d} I\right) u \right\| \\ &= \sum_{i=1}^{d} \left\| \left(\bigotimes_{j=1}^{i-1} \mathcal{I}_{k}^{J_{j}}\right) \otimes \left(I - \mathcal{I}_{k}^{J_{i}}\right) \otimes \left(\bigotimes_{j=i+1}^{d} I\right) u \right\| \\ &\stackrel{L.2.1}{\leq} \sum_{i=1}^{d} \Lambda_{k}^{i-1} \left\| \left(\bigotimes_{j=1}^{i-1} I\right) \otimes \left(I - \mathcal{I}_{k}^{J_{i}}\right) \otimes \left(\bigotimes_{j=i+1}^{d} I\right) u \right\| \\ &\leq 8e\Lambda_{k}^{d} dC_{u} (1 + \gamma_{u} \operatorname{diam}(B)) (k+1) \left(1 + \frac{2}{\gamma_{u} \operatorname{diam}(B)}\right)^{-(k+1)}. \end{aligned}$$

4 Application to the model problem

4.1 Approximation of the kernel

Let $r \times s \subseteq I \times I$ denote the index sub-set and $\tau \times \sigma$ the support of the corresponding basis functions from Section 1. For both τ and σ we fix axially parallel closed *bounding* boxes B_{τ} and B_{σ} satisfying

$$\tau \subseteq B_{\tau}, \quad \sigma \subseteq B_{\sigma} \quad \text{and} \quad \operatorname{dist}(B_{\tau}, B_{\sigma}) > 0.$$

The k-th order cluster interpolation operator is defined in terms of the multidimensional interpolation operator (7) by $\mathcal{I}_k^{\tau} := \mathcal{I}_k^{B_{\tau}}$. We define the constants

$$C_g := \frac{C_{\text{as1}}}{(C_{\text{as2}}\operatorname{dist}(B_{\tau}, B_{\sigma}))^s} \quad \text{and} \quad \gamma_g := \frac{1}{C_{\text{as2}}\operatorname{dist}(B_{\tau}, B_{\sigma})}$$

The function $x \mapsto g(x,y)$ fulfils the assumption (9) due to (1). Theorem 3.2 yields

$$||g(\cdot,y) - \mathcal{I}_k^{\tau}[g(\cdot,y)]||_{\infty,B_{\tau}}$$

$$\leq 8ed\Lambda_k^d C_g(1+\gamma_g \operatorname{diam}(B_{\tau}))(k+1) \left(1+\frac{2}{\gamma_g \operatorname{diam}(B_{\tau})}\right)^{-(k+1)}.$$

Analogously, we get for the interpolation operator $\mathcal{I}_k^\sigma := \mathcal{I}_k^{B\sigma}$

$$||g(x,\cdot) - \mathcal{I}_k^{\sigma}[g(x,\cdot)]||_{\infty,B_{\sigma}}$$

$$\leq 8ed\Lambda_k^d C_g (1 + \gamma_g \operatorname{diam}(B_\sigma))(k+1) \left(1 + \frac{2}{\gamma_g \operatorname{diam}(B_\sigma)}\right)^{-(k+1)}.$$

Depending on the diameters of B_{τ} and B_{σ} we define the kernel approximation

$$\tilde{g}(x,y) := \begin{cases} \mathcal{I}_k^{\tau}[g(\cdot,y)](x) & \text{if } \operatorname{diam}(B_{\tau}) \leq \operatorname{diam}(B_{\sigma}) \\ \mathcal{I}_k^{\sigma}[g(x,\cdot)](y) & \text{otherwise} \end{cases}$$
 (11)

For $C_{\text{diam}} := \min\{\text{diam}(B_{\tau}), \text{diam}(B_{\sigma})\}$ we get the estimate

$$||g - \tilde{g}||_{\infty, B_{\tau} \times B_{\sigma}} \le 8ed\Lambda_k^d C_g (1 + \gamma_g C_{\text{diam}})(k+1) \left(1 + \frac{2}{\gamma_g C_{\text{diam}}}\right)^{-(k+1)}. \tag{12}$$

4.2 Approximation of the matrix block

We define the entries of the matrix \tilde{R} by

$$\tilde{R}_{ij} := \int_{\mathcal{T}} \int_{\mathcal{T}} \phi_i(x) \tilde{g}(x,y) \phi_j(y) \, \mathrm{d}x \, \mathrm{d}y.$$

In the case diam $(B_{\tau}) \leq \text{diam}(B_{\sigma})$, we have $\tilde{g}(x,y) = \mathcal{I}_k^{\tau}[g(\cdot,y)](x)$, i.e.,

$$\tilde{g}(x,y) = \sum_{\nu \in K} g(x_{K,\nu}, y) \mathcal{L}_{K,\nu}(x)$$

with $K := \{0, \dots, k\}^d$ and

$$x_{K,\nu} := (x_{k,\nu_1}, \dots, x_{k,\nu_d})$$
 and $\mathcal{L}_{K,\nu} := \mathcal{L}_{k,\nu_1} \otimes \dots \otimes \mathcal{L}_{k,\nu_d}$

due to (3). We have the representation $\tilde{R} = XY^{\top}$ with

$$X_{i\nu} = \int_{\tau} \phi_i(x) \mathcal{L}_{K,\nu} dx$$
 and $Y_{j\nu} = \int_{\sigma} \phi_j(y) g(x_{K,i}, y) dx$

for $i \in r$, $j \in s$ and $\nu \in K$, which implies rank $\tilde{R} \leq \#K = (k+1)^d$. By the same arguments, we can prove that rank $\tilde{R} \leq (k+1)^d$ holds for the second case diam $(B_{\tau}) \geq \text{diam}(B_{\sigma})$, too.

Lemma 4.1 The error in the Frobenius norm $||M||_F = \left(\sum_{i,j} M_{ij}^2\right)^{1/2}$ is bounded by

$$||R - \tilde{R}||_F$$

$$\leq \sqrt{\#r\#s}C_{g,r,s} \ \Lambda_k^d(k+1) \ \left(1 + 2C_{as2}\frac{\operatorname{dist}(B_{\tau}, B_{\sigma})}{\min\{\operatorname{diam}(B_{\tau}), \operatorname{diam}(B_{\sigma})\}}\right)^{-(k+1)},$$
 (13)

where the constant $C_{q,r,s}$ is

$$C_{g,r,s} := 8ed \left(\max_{i} \|\phi_{i}\|_{L^{1}} \right)^{2} C_{\text{as}1} C_{\text{as}2}^{-s} \text{dist}(B_{\tau}, B_{\sigma})^{-s} \left(1 + \frac{\min\{\text{diam}(B_{\tau}), \text{diam}(B_{\sigma})\}\}}{C_{\text{as}2} \text{dist}(B_{\tau}, B_{\sigma})} \right)$$

Proof. The element-wise error is bounded by

$$|R_{i,j} - \tilde{R}_{i,j}| \stackrel{(12)}{\leq} \int_{\Omega} \int_{\Omega} |\phi_i(x)\phi_j(y)| dx dy$$

$$8ed\Lambda_k^d C_g (1 + \gamma_g C_{\text{diam}})(k+1) \left(1 + \frac{2}{\gamma_g C_{\text{diam}}}\right)^{-(k+1)}$$

$$\leq C_{g,r,s} \Lambda_k^d (k+1) \left(1 + 2C_{\text{as2}} \frac{\text{dist}(B_\tau, B_\sigma)}{\min\{\text{diam}(B_\tau), \text{diam}(B_\sigma)\}}\right)^{-(k+1)}$$

Since $\Lambda_k^d(k+1)$ is bounded by a polynomial and since C_{as2} and $dist(B_\tau, B_\sigma)$ are positive, we get exponential convergence with respect to the order k. In order to find a uniform bound of the rate of the exponential convergence, one typically demands the *standard admissibility*

$$\min\{\operatorname{diam}(B_{\tau}),\operatorname{diam}(B_{\sigma})\} \leq \operatorname{dist}(B_{\tau},B_{\sigma}),$$

or η -admissibility

$$\min\{\operatorname{diam}(B_{\tau}),\operatorname{diam}(B_{\sigma})\} \leq 2\eta\operatorname{dist}(B_{\tau},B_{\sigma})$$

for a fixed $\eta > 0$.

References

- [1] Steffen Börm, Lars Grasedyck, and Wolfgang Hackbusch. Introduction to hierarchical matrices with applications. Technical Report 18, Max Planck Institute for Mathematics in the Sciences, 2002.
- [2] Steffen Börm, Maike Löhndorf, and J. Markus Melenk. Approximation of integral operators by variable-order interpolation. Technical report, Max Planck Institute for Mathematics in the Sciences, 2002. to appear.
- [3] Wolfgang Dahmen and Reinhold Schneider. Wavelets on manifolds I: Construction and domain decomposition. SIAM J. of Math. Anal., 31:184–230, 1999.
- [4] Wolfgang Hackbusch. A sparse matrix arithmetic based on \mathcal{H} -matrices. Part I: Introduction to \mathcal{H} -matrices. Computing, 62:89–108, 1999.
- [5] Wolfgang Hackbusch and Boris Khoromskij. A sparse matrix arithmetic based on H-matrices. Part II: Application to multi-dimensional problems. Computing, 64:21–47, 2000.
- [6] Wolfgang Hackbusch and Zenon Paul Nowak. On the fast matrix multiplication in the boundary element method by panel clustering. *Numerische Mathematik*, 54:463–491, 1989.
- [7] T.J. Rivlin. The Chebyshev Polynomials. Wiley-Interscience, 1984.