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A central component of the analysis of panel clustering techniques for the
approximation of integral operators is the so-called n-admissibility condition
“min{diam(7),diam(c)} < 2ndist(7,0)” that ensures that the kernel func-
tion is approximated only on those parts of the domain that are far from the
singularity.

Typical techniques based on a Taylor expansion of the kernel function
require the distance of such a subdomain to be “far enough” from the sin-
gularity such that the parameter n has to be smaller than a given constant
depending on properties of the kernel function.

In this paper, we demonstrate that any n is sufficient if interpolation in-
stead of Taylor expansion is used for the kernel approximation, which paves
the way for grey-box panel clustering algorithms.

1 Introduction

1.1 Model problem

Let © be a subdomain or submanifold of R?. We consider a Fredholm integral operator
of the form

Glul(z) = /Q o(z,y)uly)dy

with an asymptotically smooth kernel function g, i.e., there exist constants Cas; and
Cas2 and a singularity degree s € N such that for all z € {z;, y;} the inequality

’a?g(xvy)’ < Casl(CaSQHx - y”)inisn! (1)



holds. This kind of operator occurs, e.g., in the integral equation formulation of the
Poisson problem in R3, where g is the singularity function g(z,y) = [z — y|~'. A
standard Galerkin discretisation of G for a basis (¢;)ier, V :=span{y; : i € I}, yields
a matrix G with entries

Gy = /Q /Q oi(2) g, 103 () Az dy. )

Since the support of the kernel g is in general not local, one expects a dense matrix G.

The algorithmic complexity for computing and storing a dense matrix is quadratic in
the number of degrees of freedom, therefore different approaches have been introduced to
avoid dense matrices: for translation-invariant kernel functions and simple geometries,
the matrix G has Toeplitz structure, which can be exploited by algorithms based on
the fast Fourier transformation. If the underlying geometry can be described by a
small number of smooth maps, wavelet techniques can be used in order to compress the
resulting dense matrix [3]. Our approach is a refined combination of the panel clustering
method [6] and hierarchical matrices [1, 4, 5], which are based on the idea of replacing
the kernel function locally by degenerate approximations.

1.2 Low rank approximation

Let r x s C I x I be a sub-block of the product index set. We define the corresponding
domains

T := Uje,supp(;), 0 = Ujessupp(y;)

and (minimal) axially parallel boxes B;, B, containing 7, 0.

We assume that dist(B;, B,) > 0 holds, which implies that ¢g|p, xp, is smooth. For
the corresponding sub-matrix R := K|, xs we seek a low rank matrix R such that the
approximation error | R — R|| is of the same size as the discretisation error infy,cy ||u—v||
for the (unknown) solution u. The aim of this paper is to prove that the matrix R of
rank k can easily be constructed by interpolation of the kernel g in such a way that the
approximation error behaves like

IR - R|| = O(C;.))
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for a constant C, s < 1, i.e., exponential convergence with respect to the order k£ even if
B, and B, are arbitrarily close to each other.

2 Interpolation scheme

2.1 Interpolation operators

We denote the space of k-th order polynomials in one spatial variable by P, and fix a
family (Zx)ren, of interpolation operators

T : C([-1,1]) — Py



corresponding to interpolation points (mi7k)f:0 and associated Lagrange polynomials
(L k)¥ o, such that for all u € C([-1,1])

k

Tru =Y u(@pi) L 3)

i=0
The operators are projections, i.e., for all p € Py
Ip=p (4)

holds. For each k£ € Ny, we introduce the Lebesgue constant Aj, € R>; by requiring that

1Tl oo,~1,1) < Akllwlloo,[=1,1] (5)

holds for all uw € C([—1,1]).
We assume that there are constants C)y, A € Ry satisfying

Ak < CA(]{: + 1)/\ (6)

for all £k € N. For standard interpolation schemes, this estimate is fulfilled. E.g., for
Chebyshev interpolation (cf. [7]), we even have Ax < 2log(k+1)/m+1<k+ 1.

If J = [a,b] is an arbitrary closed interval, the transformed interpolation operator is
given by Z}/ := (Z(uo ®;)) o @;1, where ®;: [-1,1] = J, . — ((b—a)z + (b+a))/2
is the affine mapping from the reference interval to J. The properties (4) and (5) carry
over to I,;] , the corresponding interpolation points and Lagrange polynomials are given
by xg,i = y(xp,) and Eéi =Ly;0 @}1.

2.2 Multidimensional interpolation operator

Let us fix an axially parallel box B C R? with
B=J x---xJyg,

where (Jj);l:1 are closed intervals.
The corresponding k-th order tensor product interpolation operator is given by

IB=1l e - 01l (7)
This is a projection mapping from C(B) to
Qi :=span{p; @ ---Q@pq : p; € Py foralli e {1,...,d}}
and the following stability result holds:

Lemma 2.1 (Stability) For k € No, m € {1,... ,d} and u € C(B), we have

(@) (&):

< Aflulloo, B,

00,B




i.e., applying interpolation to the first m coordinate directions is stable. In the case
d = m, this estimate takes the form

IZE ulloo,p < Afllulloo,5-
Proof. We use the representation
m d m i—1 d
Ji Ji
(&) o (@ 1) -TT( (@) o7t e [ @
i=1 i=m+1 i=1 j=1 j=i+1

and apply the one-dimensional estimate to each of the factors. [

3 Approximation

Our analysis is based on the following approximation result from [2, Lemma 3.12].

Lemma 3.1 (Melenk) Let J C R be a closed finite interval. Let w € C*°(J) such that
there are constants Cy, v, € R>q satisfying

[t e, < Curfim

for all n € Ng. Then we have

9\ ~(+D)
in [|u — vloey < Cude(l +yulJ)k+1) (1 + . 8
i = vl < Cue(t 4 7l )k+ 1) (14 =) ®

Theorem 3.2 (Interpolation error) Let u € C*™(B) such that there are constants
Cu,vu € R>q satisfying
107 ulloo,B < Curyym! (9)

forall j € {1,...,d} and n € Ng. Then we have

5 —(k+1)
~IP < 8eAC, (1 iam(B D1+ ——er : 1
= TPl < 8eAC1 + (B e+ 1) (14— 2 ) (10)

Proof. Since 7y, is a projection, we have for all v € Py
o= T ulloo,s; = 10w = 0) = T (1 = 0) oo, < (14 Ag) e = vlloc, -

Due to (9), we can combine this estimate with Lemma 3.1 and find

i—1 d
u- (R orfie| @ I|u
j=1 j=i+1

o0,B



9\ —(k+D)
< Cyde(l+ Ap)(1 + vl i) (K + 1) (1 + 5 |J-|>

9 —(k+1)
< i Yudiam(B) '
< CuBeAy(1 + yydiam(B))(k + 1) (1 " ’Yudiam(B)>

To conclude the proof, we apply this estimate to the following telescope sum:

d i—1 d i d
lu — TPulloop <Y | QT | @ | RI|u- | RT) | @ | R 1|u

i=1 Jj=1 j=i j=1 Jj=it+1
d i—1 5 d

-l @n ) eu-mre | @ 1)
=1 7j=1 Jj=i+1

r21 ¢, i1 d

<SHY AR eu-He | Q T|u
i=1 j=1 j=i+1

~(k41)
< 8eA? i Yudiam(B) '

4 Application to the model problem

4.1 Approximation of the kernel

Let r x s C I x I denote the index sub-set and 7 x ¢ the support of the corresponding
basis functions from Section 1. For both 7 and o we fix axially parallel closed bounding
bores B, and B, satisfying

7CB;, 0CB, and dist(B;,B,) > 0.

The k-th order cluster interpolation operator is defined in terms of the multidimensional
interpolation operator (7) by Z] := I,f 7. We define the constants

Cas 1 1

= d =
Co = CmastBo B 4 1T G (B, By

The function x — g(z,y) fulfils the assumption (9) due to (1). Theorem 3.2 yields

l9C,y) = Zilg (s Y)lloo B,

< 8edA4C, (1 + v, diam(B,))(k +1) [ 1+ 2
- k=9 s i g diam(B;) '

Analogously, we get for the interpolation operator Z7] := Ilf “

lg(z; ) = Z¥[9(x; Nloo, B,



< 8edA4C,(1 + v, diam(B,))(k + 1) 1y 2 R
= Se0 Ty Ty Ze ygdiam(By) '

Depending on the diameters of B, and B, we define the kernel approximation

i) = {Iﬂg(-,y)](x) if diam(B;) < diam(B,)

. (11)
I70g(z,-)|(y) otherwise

For Cgjam := min{diam(B;), diam(B,)} we get the estimate

—(k+1)
g — Glloo.B.x B, < 8edALC,(1+ v,Caiam)(k + 1) <1 + ) - (12)

Vg Cdiam

4.2 Approximation of the matrix block
We define the entries of the matrix R by

Ry = [ [ 6i@a(e.0)0,0) do dy.
In the case diam(B;) < diam(B,), we have g(z,y) = Z[[g(-, y)|(x), i.e.,

9, y) =Y 9(xruy)Liu(z)

veK
with K := {0,... ,k}? and
TKy = (xk,zqv s 7xk,z/d) and ‘CK,V = Ek,ul Q- £k,1/d
due to (3). We have the representation R = XY | with
X = [i)trydo and Vi, = [ 6wg(eniy) do
T g
for i € r, j € s and v € K, which implies rank R < #K = (k+ 1)%. By the same
arguments, we can prove that rank R < (k 4+ 1)? holds for the second case diam(B,) >
diam(B,), too.
1/2
Lemma 4.1 The error in the Frobenius norm ||M||r = (Z” ij) is bounded by
IR — Rl|r

dist(B;, B,) —(k+1)
<4/ d ’
< V#r#sCors Ak +1) <1 + 20 min{diam(B;), diam(BJ)}> ’ (13)

where the constant Cy s is

2 . . .
diam(B, ), diam(B,
Cyrs = Sed (max\\@\\Ll) Cos1 Coidist(By, By)~* (1 . min{diam(By), diam( )}>

Caszdist(B;, By)



Proof. The element-wise error is bounded by

- (12)
Rij— Rijl < /Q /Q 16:(2); (4)|dz dy

. 9 —(k+1)
8edA;Cy(1 + vgCliam)(k + 1) ( 1+
’Yngiam

dist(B,, B,) (kD)
min{diam(B, ), diam(B,)}

< Cg,r,sAg(k + 1) <1 + 2Cas2

Since Ag(k:—f— 1) is bounded by a polynomial and since C,g2 and dist(B;, B, ) are positive,
we get exponential convergence with respect to the order k. In order to find a uniform
bound of the rate of the exponential convergence, one typically demands the standard
admissibility

min{diam(B;),diam(B,)} < dist(B;, By),
or n-admissibility

min{diam(B;),diam(B,)} < 2ndist(B;, B,)
for a fixed n > 0.
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