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A central component of the analysis of panel clustering techniques for the
approximation of integral operators is the so-called η-admissibility condition
“min{diam(τ),diam(σ)} ≤ 2ηdist(τ, σ)” that ensures that the kernel func-
tion is approximated only on those parts of the domain that are far from the
singularity.

Typical techniques based on a Taylor expansion of the kernel function
require the distance of such a subdomain to be “far enough” from the sin-
gularity such that the parameter η has to be smaller than a given constant
depending on properties of the kernel function.

In this paper, we demonstrate that any η is sufficient if interpolation in-
stead of Taylor expansion is used for the kernel approximation, which paves
the way for grey-box panel clustering algorithms.

1 Introduction

1.1 Model problem

Let Ω be a subdomain or submanifold of R
d. We consider a Fredholm integral operator

of the form

G[u](x) =
∫

Ω
g(x, y)u(y)dy

with an asymptotically smooth kernel function g, i.e., there exist constants Cas1 and
Cas2 and a singularity degree s ∈ N such that for all z ∈ {xj , yj} the inequality

|∂n
z g(x, y)| ≤ Cas1(Cas2‖x − y‖)−n−sn! (1)
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holds. This kind of operator occurs, e.g., in the integral equation formulation of the
Poisson problem in R

3, where g is the singularity function g(x, y) = ‖x − y‖−1. A
standard Galerkin discretisation of G for a basis (ϕi)i∈I , V := span{ϕi : i ∈ I}, yields
a matrix G with entries

Gi,j :=
∫

Ω

∫
Ω

ϕi(x)g(x, y)ϕj(y) dx dy. (2)

Since the support of the kernel g is in general not local, one expects a dense matrix G.
The algorithmic complexity for computing and storing a dense matrix is quadratic in

the number of degrees of freedom, therefore different approaches have been introduced to
avoid dense matrices: for translation-invariant kernel functions and simple geometries,
the matrix G has Toeplitz structure, which can be exploited by algorithms based on
the fast Fourier transformation. If the underlying geometry can be described by a
small number of smooth maps, wavelet techniques can be used in order to compress the
resulting dense matrix [3]. Our approach is a refined combination of the panel clustering
method [6] and hierarchical matrices [1, 4, 5], which are based on the idea of replacing
the kernel function locally by degenerate approximations.

1.2 Low rank approximation

Let r × s ⊆ I × I be a sub-block of the product index set. We define the corresponding
domains

τ := ∪i∈rsupp(ϕi), σ := ∪i∈ssupp(ϕi)

and (minimal) axially parallel boxes Bτ , Bσ containing τ, σ.
We assume that dist(Bτ , Bσ) > 0 holds, which implies that g|Bτ×Bσ is smooth. For

the corresponding sub-matrix R := K|r×s we seek a low rank matrix R̃ such that the
approximation error ‖R−R̃‖ is of the same size as the discretisation error infv∈V ‖u−v‖
for the (unknown) solution u. The aim of this paper is to prove that the matrix R̃ of
rank k can easily be constructed by interpolation of the kernel g in such a way that the
approximation error behaves like

‖R − R̃‖ = O(C−k
r,s )

for a constant Cr,s < 1, i.e., exponential convergence with respect to the order k even if
Bτ and Bσ are arbitrarily close to each other.

2 Interpolation scheme

2.1 Interpolation operators

We denote the space of k-th order polynomials in one spatial variable by Pk and fix a
family (Ik)k∈N0 of interpolation operators

Ik : C([−1, 1]) → Pk
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corresponding to interpolation points (xi,k)ki=0 and associated Lagrange polynomials
(Li,k)ki=0, such that for all u ∈ C([−1, 1])

Iku =
k∑

i=0

u(xk,i)Lk,i. (3)

The operators are projections, i.e., for all p ∈ Pk

Ikp = p (4)

holds. For each k ∈ N0, we introduce the Lebesgue constant Λk ∈ R≥1 by requiring that

‖Iku‖∞,[−1,1] ≤ Λk‖u‖∞,[−1,1] (5)

holds for all u ∈ C([−1, 1]).
We assume that there are constants Cλ, λ ∈ R>0 satisfying

Λk ≤ Cλ(k + 1)λ (6)

for all k ∈ N. For standard interpolation schemes, this estimate is fulfilled. E.g., for
Chebyshev interpolation (cf. [7]), we even have Λk ≤ 2 log(k + 1)/π + 1 ≤ k + 1.

If J = [a, b] is an arbitrary closed interval, the transformed interpolation operator is
given by IJ

k := (Ik(u ◦ ΦJ)) ◦ Φ−1
J , where ΦJ : [−1, 1] → J, x �→ ((b − a)x + (b + a))/2

is the affine mapping from the reference interval to J . The properties (4) and (5) carry
over to IJ

k , the corresponding interpolation points and Lagrange polynomials are given
by xJ

k,i := ΦJ(xk,i) and LJ
k,i := Lk,i ◦ Φ−1

J .

2.2 Multidimensional interpolation operator

Let us fix an axially parallel box B ⊆ R
d with

B = J1 × · · · × Jd,

where (Jj)dj=1 are closed intervals.
The corresponding k-th order tensor product interpolation operator is given by

IB
k := IJ1

k ⊗ · · · ⊗ IJd
k . (7)

This is a projection mapping from C(B) to

Qk := span{p1 ⊗ · · · ⊗ pd : pi ∈ Pk for all i ∈ {1, . . . , d}}
and the following stability result holds:

Lemma 2.1 (Stability) For k ∈ N0, m ∈ {1, . . . , d} and u ∈ C(B), we have∥∥∥∥∥
(

m⊗
i=1

IJi
k

)
⊗
(

d⊗
i=m+1

I

)
u

∥∥∥∥∥
∞,B

≤ Λm
k ‖u‖∞,B ,
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i.e., applying interpolation to the first m coordinate directions is stable. In the case
d = m, this estimate takes the form

‖IB
k u‖∞,B ≤ Λd

k‖u‖∞,B.

Proof. We use the representation

(
m⊗

i=1

IJi
k

)
⊗
(

d⊗
i=m+1

I

)
=

m∏
i=1

⎛
⎝
⎛
⎝ i−1⊗

j=1

I

⎞
⎠⊗ IJi

k ⊗
⎛
⎝ d⊗

j=i+1

I

⎞
⎠
⎞
⎠

and apply the one-dimensional estimate to each of the factors.

3 Approximation

Our analysis is based on the following approximation result from [2, Lemma 3.12].

Lemma 3.1 (Melenk) Let J ⊆ R be a closed finite interval. Let u ∈ C∞(J) such that
there are constants Cu, γu ∈ R≥0 satisfying

‖u(n)‖∞,J ≤ Cuγn
un!

for all n ∈ N0. Then we have

min
v∈Pk

‖u − v‖∞,J ≤ Cu4e(1 + γu|J |)(k + 1)
(

1 +
2

γu|J |
)−(k+1)

. (8)

Theorem 3.2 (Interpolation error) Let u ∈ C∞(B) such that there are constants
Cu, γu ∈ R≥0 satisfying

‖∂n
j u‖∞,B ≤ Cuγn

un! (9)

for all j ∈ {1, . . . , d} and n ∈ N0. Then we have

‖u − IB
k u‖∞,B ≤ 8eΛd

kCu(1 + γudiam(B))(k + 1)
(

1 +
2

γudiam(B)

)−(k+1)

. (10)

Proof. Since Ik is a projection, we have for all v ∈ Pk

‖u − IJi
k u‖∞,Ji = ‖(u − v) − IJi

k (u − v)‖∞,Ji ≤ (1 + Λk)‖u − v‖∞,Ji .

Due to (9), we can combine this estimate with Lemma 3.1 and find∥∥∥∥∥∥u −
⎛
⎝ i−1⊗

j=1

I

⎞
⎠⊗ IJi

k ⊗
⎛
⎝ d⊗

j=i+1

I

⎞
⎠u

∥∥∥∥∥∥
∞,B
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≤ Cu4e(1 + Λk)(1 + γu|Ji|)(k + 1)
(

1 +
2

γu|Ji|
)−(k+1)

≤ Cu8eΛk(1 + γudiam(B))(k + 1)
(

1 +
2

γudiam(B)

)−(k+1)

.

To conclude the proof, we apply this estimate to the following telescope sum:

‖u − IB
k u‖∞,B ≤

d∑
i=1

∥∥∥∥∥∥
⎛
⎝ i−1⊗

j=1

IJj

k

⎞
⎠⊗

⎛
⎝ d⊗

j=i

I

⎞
⎠u −

⎛
⎝ i⊗

j=1

IJj

k

⎞
⎠⊗

⎛
⎝ d⊗

j=i+1

I

⎞
⎠u

∥∥∥∥∥∥
=

d∑
i=1

∥∥∥∥∥∥
⎛
⎝ i−1⊗

j=1

IJj

k

⎞
⎠⊗ (I − IJi

k ) ⊗
⎛
⎝ d⊗

j=i+1

I

⎞
⎠u

∥∥∥∥∥∥
L.2.1≤

d∑
i=1

Λi−1
k

∥∥∥∥∥∥
⎛
⎝ i−1⊗

j=1

I

⎞
⎠⊗ (I − IJi

k ) ⊗
⎛
⎝ d⊗

j=i+1

I

⎞
⎠u

∥∥∥∥∥∥
≤ 8eΛd

kdCu(1 + γudiam(B))(k + 1)
(

1 +
2

γudiam(B)

)−(k+1)

.

4 Application to the model problem

4.1 Approximation of the kernel

Let r × s ⊆ I × I denote the index sub-set and τ × σ the support of the corresponding
basis functions from Section 1. For both τ and σ we fix axially parallel closed bounding
boxes Bτ and Bσ satisfying

τ ⊆ Bτ , σ ⊆ Bσ and dist(Bτ , Bσ) > 0.

The k-th order cluster interpolation operator is defined in terms of the multidimensional
interpolation operator (7) by Iτ

k := IBτ
k . We define the constants

Cg :=
Cas1

(Cas2 dist(Bτ , Bσ))s
and γg :=

1
Cas2 dist(Bτ , Bσ)

The function x �→ g(x, y) fulfils the assumption (9) due to (1). Theorem 3.2 yields

‖g(·, y) − Iτ
k [g(·, y)]‖∞,Bτ

≤ 8edΛd
kCg(1 + γg diam(Bτ ))(k + 1)

(
1 +

2
γg diam(Bτ )

)−(k+1)

.

Analogously, we get for the interpolation operator Iσ
k := IBσ

k

‖g(x, ·) − Iσ
k [g(x, ·)]‖∞,Bσ
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≤ 8edΛd
kCg(1 + γgdiam(Bσ))(k + 1)

(
1 +

2
γgdiam(Bσ)

)−(k+1)

.

Depending on the diameters of Bτ and Bσ we define the kernel approximation

g̃(x, y) :=

{
Iτ

k [g(·, y)](x) if diam(Bτ ) ≤ diam(Bσ)
Iσ

k [g(x, ·)](y) otherwise
. (11)

For Cdiam := min{diam(Bτ ),diam(Bσ)} we get the estimate

‖g − g̃‖∞,Bτ×Bσ ≤ 8edΛd
kCg(1 + γgCdiam)(k + 1)

(
1 +

2
γgCdiam

)−(k+1)

. (12)

4.2 Approximation of the matrix block

We define the entries of the matrix R̃ by

R̃ij :=
∫

τ

∫
σ

φi(x)g̃(x, y)φj(y) dx dy.

In the case diam(Bτ ) ≤ diam(Bσ), we have g̃(x, y) = Iτ
k [g(·, y)](x), i.e.,

g̃(x, y) =
∑
ν∈K

g(xK,ν , y)LK,ν(x)

with K := {0, . . . , k}d and

xK,ν := (xk,ν1, . . . , xk,νd
) and LK,ν := Lk,ν1 ⊗ · · · ⊗ Lk,νd

due to (3). We have the representation R̃ = XY � with

Xiν =
∫

τ
φi(x)LK,ν dx and Yjν =

∫
σ

φj(y)g(xK,i, y) dx

for i ∈ r, j ∈ s and ν ∈ K, which implies rank R̃ ≤ #K = (k + 1)d. By the same
arguments, we can prove that rank R̃ ≤ (k + 1)d holds for the second case diam(Bτ ) ≥
diam(Bσ), too.

Lemma 4.1 The error in the Frobenius norm ‖M‖F =
(∑

i,j M2
ij

)1/2
is bounded by

‖R − R̃‖F

≤
√

#r#sCg,r,s Λd
k(k + 1)

(
1 + 2Cas2

dist(Bτ , Bσ)
min{diam(Bτ ),diam(Bσ)}

)−(k+1)

, (13)

where the constant Cg,r,s is

Cg,r,s := 8ed
(

max
i

‖φi‖L1

)2

Cas1C
−s
as2dist(Bτ , Bσ)−s

(
1 +

min{diam(Bτ ),diam(Bσ)}
Cas2dist(Bτ , Bσ)

)
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Proof. The element-wise error is bounded by

|Ri,j − R̃i,j|
(12)

≤
∫

Ω

∫
Ω
|φi(x)φj(y)|dx dy

8edΛd
kCg(1 + γgCdiam)(k + 1)

(
1 +

2
γgCdiam

)−(k+1)

≤ Cg,r,sΛd
k(k + 1)

(
1 + 2Cas2

dist(Bτ , Bσ)
min{diam(Bτ ),diam(Bσ)}

)−(k+1)

Since Λd
k(k+1) is bounded by a polynomial and since Cas2 and dist(Bτ , Bσ) are positive,

we get exponential convergence with respect to the order k. In order to find a uniform
bound of the rate of the exponential convergence, one typically demands the standard
admissibility

min{diam(Bτ ),diam(Bσ)} ≤ dist(Bτ , Bσ),

or η-admissibility

min{diam(Bτ ),diam(Bσ)} ≤ 2η dist(Bτ , Bσ)

for a fixed η > 0.
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