Skip to main content
Log in

Reduction of Smith Normal Form Transformation Matrices

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Smith normal form computations are important in group theory, module theory and number theory. We consider the transformation matrices for the Smith normal form over the integers and give a presentation of arbitrary transformation matrices for this normal form. Our main contribution is an algorithm that replaces already computed transformation matrices by others with small entries. We combine methods from lattice basis reduction with a procedure to reduce the sum of the squared entries of both transformation matrices. This algorithm performs well even for matrices of large dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Gruber, P. M., Lekkerkerker, C. G.: Geometry of numbers. Amsterdam: North-Holland 1987.

  • Hafner, J. L., McCurley, K. S.: Asymptotically fast triangularization of matrices over rings. SIAM J. Comput. 20(6): 1068–1083 (1991).

    Google Scholar 

  • Havas, G., Holt, D. F., Rees, S.: Recognizing badly presented ℤ-modules. Linear Algebra Appl. 192, 137–163 (1993).

    Google Scholar 

  • Havas, G., Majewski, B. S.: Integer matrix diagonalization. J. Symbolic Comput. 24, 399–408 (1997).

    Google Scholar 

  • Havas, G., Majewski, B. S., Matthews, K. R.: Extended gcd and Hermite normal form algorithms via lattice basis reduction. Exp. Math. 7, 125–136 (1998).

    Google Scholar 

  • Kannan, R., Bachem, A.: Polynomial algorithms for computing the smith and hermite normal forms of an integer matrix. SIAM J. Comput. 8(4), 499–507 (1979).

    Google Scholar 

  • Lagarias, J. C., Lenstra, H. W., Schnorr, C. P.: Korkin-zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica 10, 333–348 (1990).

    Google Scholar 

  • Lazebnik, F.: On systems of linear diophantine equations. Math. Mag. 69(4), 261–266 (1996).

    Google Scholar 

  • Lenstra, A. K., Lenstra, H.W., Jr., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982).

    Google Scholar 

  • MAGMA HTML Help Document, V2.11 (May 2004). Available at “http://magma.maths.usyd.edu.au/magma/htmlhelp/MAGMA.htm”.

  • Schnorr, C. P., Euchner, M.: Lattice basis reduction: Improved practical algorithms for solving subset sum problems. Math. Programming 66, 181–199 (1994).

    Google Scholar 

  • Sims, C. C.: Computation with finitely presented groups. Cambridge University Press 1994.

  • Smith, H. J. S.: On systems of linear indeterminate equations and congruences. Philos. Trans. Royal Soc. London 151, 293–326 (1861).

    Google Scholar 

  • Storjohann, A.: Algorithms for matrix canonical forms. Ph.D. thesis, ETH Zürich 2000.

  • Wagner, C.: Normalformenberechnung von Matrizen über euklidischen Ringen. Ph.D. thesis, Institut für Experimentelle Mathematik, Universität/GH Essen 1997.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Jäger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jäger, G. Reduction of Smith Normal Form Transformation Matrices. Computing 74, 377–388 (2005). https://doi.org/10.1007/s00607-004-0104-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-004-0104-0

AMS Subject Classifications

Keywords

Navigation