Skip to main content
Log in

Numerical Solution of Weakly Singular Linear Volterra Integro-differential Equations

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper, we show that a known technique of smoothing can be successfully employed in the numerical solution of weakly singular linear Volterra integro-differential equations and we introduce a Nyström-type method whose order of convergence is also estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anselone, P. M.: Collectively compact operator approximation theory and applications to integral equations. Englewood Cliffs, NJ: Prentice-Hall 1971.

  • Atkinson, K. E.: A survey of numerical methods for the solution of Fredholm integral equations of the second kind. Philadelphia: SIAM 1976.

  • P. Baratella A. Palamara Orsi (2004) ArticleTitleA new approach to the numerical solution of weakly singular Volterra integral equations JCAM 163 401–418 Occurrence Handle2005a:65157

    MathSciNet  Google Scholar 

  • H. Brunner (1983) ArticleTitleNonpolynomial spline collocation for Volterra equations with weakly singular kernels SIAM J. Numer. Anal. 20 1106–1119 Occurrence Handle10.1137/0720080 Occurrence Handle0533.65087 Occurrence Handle85d:65069

    Article  MATH  MathSciNet  Google Scholar 

  • H. Brunner (2004) Collocation methods for volterra integral and related functional equations Cambridge University Press Cambridge

    Google Scholar 

  • H. Brunner A. Pedas G. Vainikko (2001) ArticleTitlePiecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels SIAM J. Numer. Anal. 39 957–982 Occurrence Handle10.1137/S0036142900376560 Occurrence Handle2002f:65190

    Article  MathSciNet  Google Scholar 

  • G. Criscuolo G. Mastroianni G. Monegato (1990) ArticleTitleConvergence properties of a class of product formulas for weakly singular integral equations Math. Comp. 55 213–230 Occurrence Handle90m:65230

    MathSciNet  Google Scholar 

  • T. Diogo N. B. Franco P. Lima (2004) ArticleTitleHigh-order product integration methods for a Volterra integral Equation with logarithmic singular kernel Commun. Pure Appl. Anal. 3 217–235 Occurrence Handle2005b:65146

    MathSciNet  Google Scholar 

  • T. Diogo S. McKee T. Tang (1994) ArticleTitleCollocation methods for second-kind Volterra integral equations with weakly singular kernels Proc. Roy. Soc. Edinburgh Sect. A 124 199–210 Occurrence Handle95c:45011

    MathSciNet  Google Scholar 

  • G. Monegato L. Scuderi (1998) ArticleTitleHigh-order methods for weakly singular integral equations with non-smooth input functions Math. Comp. 67 1493–1515 Occurrence Handle10.1090/S0025-5718-98-01005-9 Occurrence Handle99a:65192

    Article  MathSciNet  Google Scholar 

  • Norbury, J., Stuart, A. M.: Volterra integral equations and a new Gronwall inequality. I. The linear case; II. The nonlinear case. Proc. Roy. Soc. Edinburgh Sect. A 106, 361–373;375–384 (1987).

    Google Scholar 

  • Palamara A. Orsi (1996) ArticleTitleProduct integration for Volterra integral equations of the second kind with weakly singular kernels Math. Comp. 65 1201–1212 Occurrence Handle96j:65147

    MathSciNet  Google Scholar 

  • A. Pedas G. Vainikko (2004) ArticleTitleNumerical solution of weakly singular Volterra integral equations with change of variables Proc. Estonian Acad. Sci. Phys. Math. 53 99–106 Occurrence Handle2005e:65217

    MathSciNet  Google Scholar 

  • A. Pedas G. Vainikko (2004) ArticleTitleSmoothing transformation and piecewise polynomial collocation for weakly singular Volterra integral equations Computing 73 271–293 Occurrence Handle10.1007/s00607-004-0088-9 Occurrence Handle2005k:65295

    Article  MathSciNet  Google Scholar 

  • I. H. Sloan (1981) ArticleTitleAnalysis of general quadrature methods for integral equations of the second kind Numer. Math. 38 263–278 Occurrence Handle10.1007/BF01397095 Occurrence Handle0456.45012 Occurrence Handle82m:65128

    Article  MATH  MathSciNet  Google Scholar 

  • I. H. Sloan W. E. Smith (1982) ArticleTitleProperties of interpolatory product integration rules SIAM J. Numer. Anal. 19 427–442 Occurrence Handle10.1137/0719027 Occurrence Handle83e:41032

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Baratella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baratella, P., Palamara Orsi, A. Numerical Solution of Weakly Singular Linear Volterra Integro-differential Equations. Computing 77, 77–96 (2006). https://doi.org/10.1007/s00607-005-0148-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-005-0148-9

Mathematics Subject Classiffication

Keywords

Navigation