Skip to main content
Log in

Hybrid curve fitting

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We consider a parameterized family of closed planar curves and introduce an evolution process for identifying a member of the family that approximates a given unorganized point cloud {p i } i =1,..., N . The evolution is driven by the normal velocities at the closest (or foot) points (f i ) to the data points, which are found by approximating the corresponding difference vectors p i -f i in the least-squares sense. In the particular case of parametrically defined curves, this process is shown to be equivalent to normal (or tangent) distance minimization, see [3], [19]. Moreover, it can be generalized to very general representations of curves. These include hybrid curves, which are a collection of parametrically and implicitly defined curve segments, pieced together with certain degrees of geometric continuity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aigner, M., Jüttler, B.: Robust computation of foot points on implicitly defined curves. In: Mathematical Methods for Curves and Surfaces: Tromsø 2004 (M. Dæhlen et al., eds.). Nashboro Press 2005, pp. 1–10.

  • M. Alhanaty M. Bercovier (2001) ArticleTitleCurve and surface fitting and design by optimal control methods Comput. Aided Des. 33 167–182 Occurrence Handle10.1016/S0010-4485(00)00089-0

    Article  Google Scholar 

  • Blake, A., Isard, M.: Active contours. Springer 2000.

  • H. Hagen G. Brunnett P. Santarelli (1993) ArticleTitleVariational principles in curve and surface design Surv. Math. Ind. 3 1–27 Occurrence Handle0770.41009 Occurrence Handle1210046

    MATH  MathSciNet  Google Scholar 

  • Hoff K. E. et al.: Fast computation of generalized Voronoi diagrams using graphics hardware. SIGGRAPH '99 Proc. pp. 277–286.

  • Hoschek, J., Lasser, D.: Fundamentals of computer aided geometric design. A.K. Peters/Wellesley, Mass. 1996.

  • S.-M. Hu J. Wallner (2005) ArticleTitleA second-order algorithm for orthogonal projection onto curves and surfaces Comput. Aided Geom. Des. 22 251–260 Occurrence Handle02232442 Occurrence Handle10.1016/j.cagd.2004.12.001 Occurrence Handle2122491

    Article  MATH  MathSciNet  Google Scholar 

  • H. W. Engl M. Hanke A. Neubauer (1996) Regularization of inverse problems Kluwer Academic Publishers Dordrecht Occurrence Handle0859.65054

    MATH  Google Scholar 

  • S. Osher J. Sethian (1988) ArticleTitleFronts propagating with curvature dependent speed, algorithms based on a Hamilton-Jacobi formulation J. Comp. Phys. 79 12–49 Occurrence Handle0659.65132 Occurrence Handle10.1016/0021-9991(88)90002-2 Occurrence Handle965860

    Article  MATH  MathSciNet  Google Scholar 

  • Osher, S., Fedkiw, R. P.: Level set methods and dynamic implicit surfaces. Springer 2003.

  • D. F. Rogers N. G. Fog (1989) ArticleTitleConstrained B-spline curve and surface fitting Comput. Aided Des. 21 641–648 Occurrence Handle0687.65008 Occurrence Handle10.1016/0010-4485(89)90162-0

    Article  MATH  Google Scholar 

  • B. Sarkar C.-H. Menq (1991) ArticleTitleParameter optimization in approximating curves and surfaces to measurement data Comput. Aided Geom. Des. 8 267–280 Occurrence Handle0746.65016 Occurrence Handle10.1016/0167-8396(91)90016-5 Occurrence Handle1130265

    Article  MATH  MathSciNet  Google Scholar 

  • H. Pottmann S. Leopoldseder (2003) ArticleTitleA concept for parametric surface fitting which avoids the parametrization problem Comput. Aided Geom. Des. 20 343–362 Occurrence Handle1069.65531 Occurrence Handle10.1016/S0167-8396(03)00078-5 Occurrence Handle2007709

    Article  MATH  MathSciNet  Google Scholar 

  • Pottmann, H., Leopoldseder, S., Hofer, M.: Approximation with active B-spline curves and surfaces. Proc. Pacific Graphics 2002, IEEE Press, pp. 8–25.

  • H. Pottmann et al. (2005) ArticleTitleIndustrial geometry: recent advances and applications in CAD Comput. Aided Des. 37 751–766 Occurrence Handle10.1016/j.cad.2004.08.013

    Article  Google Scholar 

  • N. J. Redding (2000) ArticleTitleImplicit polynomials, orthogonal distance regression and the closest point on a curve IEEE Trans. Pattern Anal. Mach. Intell. 22 191–199 Occurrence Handle10.1109/34.825757

    Article  Google Scholar 

  • T. Speer M. Kuppe J. Hoschek (1998) ArticleTitleGlobal reparametrization for curve approximation Comput. Aided Geom. Des. 15 869–877 Occurrence Handle0910.68214 Occurrence Handle10.1016/S0167-8396(98)00024-7 Occurrence Handle1647131

    Article  MATH  MathSciNet  Google Scholar 

  • Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comp. Vision 1.4, 321–331 (1987).

    Google Scholar 

  • Wang, W., Pottmann, H., Liu, Y.: Fitting B-spline curves to point clouds by squared distance minimization. ACM Trans. on Graphics 25.2 (2006).

    Google Scholar 

  • Yang, H. et al.: Evolution of T-spline level sets with distance field constraints for geometry reconstruction and image segmentation (submitted). FSP report no. 1 (2005), available at www.ig.jku.at.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jüttler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aigner, M., Jüttler, B. Hybrid curve fitting. Computing 79, 237–247 (2007). https://doi.org/10.1007/s00607-006-0201-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-006-0201-3

AMS Subject Classifications

Keywords

Navigation