Skip to main content
Log in

A sparse grid space-time discretization scheme for parabolic problems

  • Published:
Computing Aims and scope Submit manuscript

Summary

In this paper, we consider the discretization in space and time of parabolic differential equations where we use the so-called space-time sparse grid technique. It employs the tensor product of a one-dimensional multilevel basis in time and a proper multilevel basis in space. This way, the additional order of complexity of a direct space-time discretization can be avoided, provided that the solution fulfills a certain smoothness assumption in space-time, namely that its mixed space-time derivatives are bounded. This holds in many applications due to the smoothing properties of the propagator of the parabolic PDE (heat kernel). In the more general case, the space-time sparse grid approach can be employed together with adaptive refinement in space and time and then leads to similar approximation rates as the non-adaptive method for smooth functions. We analyze the properties of different space-time sparse grid discretizations for parabolic differential equations from both, the theoretical and practical point of view, discuss their implementational aspects and report on the results of numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adjerid, S., Flaherty, J., Wang, Y.: Adaptive method-of-lines techniques for parabolic systems. Tech Rep., Rensselaer Polytechnic Institute (1993)

  • Arney D. and Flaherty J. (1989). An adaptive local mesh refinement method for time-dependent partial differential equations. Appl Numer Math 5: 257–274

    Article  MATH  MathSciNet  Google Scholar 

  • Balder, R.: Adaptive Verfahren für elliptische und parabolische Differentialgleichungen. Dissertation, Technische Universität München (1994)

  • Balder R. and Zenger C. (1996). The solution of the multi-dimensional real Helmholtz equation on sparse grids. SIAM J Sci Comput 17: 631–646

    Article  MATH  MathSciNet  Google Scholar 

  • Baszenski, G., Delvos, F.: Multivariate Boolean midpoint rules. In: (Brass, H., Hämmerlin, G., eds.) Numerical Integration IV, vol. 112. Birkhäuser, pp 1–11 (1993)

  • Becker R. and Rannacher R. (1996). A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J Numer Math 4: 237–264

    MATH  MathSciNet  Google Scholar 

  • Bieterman M. and Babuska I. (1986). An adaptive method of lines with error control for parabolic problems. J Comput Phys 63: 33–66

    Article  MATH  MathSciNet  Google Scholar 

  • Bonk, T.: Ein rekursiver Algorithmus zur adaptiven numerischen Quadratur mehrdimensionaler Funktionen. Dissertation, Institut für Informatik, Technische Universität München (1994)

  • Braess D. (2001). Finite elements: theory, fast solvers and applications in solid mechanics. Cambridge University Press, London

    MATH  Google Scholar 

  • Bungartz, H.-J.: An adaptive Poisson solver using hierarchical bases and sparse grids. In: Iterative methods in linear algebra. Elsevier, Amsterdam, pp 293–310 (1992)

  • Bungartz, H.-J.: Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung. Dissertation, Technische Universität München (1992)

  • Bungartz H.-J. and Griebel M. (2004). Sparse grids. Acta Numer 13: 1–121

    Article  MathSciNet  Google Scholar 

  • Chui C. and Wang Y. (1992). A general framework for compactly supported splines and wavelets. J Approx Theory 71: 263–304

    Article  MATH  MathSciNet  Google Scholar 

  • Ciarlet, P.: The finite element method for elliptic problems. Classics Appl Math SIAM (2002)

  • Cohen, A.: Numerical analysis of wavelet methods. In: Studies in Mathematics and its Applications Vol. 32, North Holland (2003)

  • Cohen, A., Echeverry, L.: Finite element wavelets. Tech. Rep., Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie (2000)

  • Dahlke S., Dahmen W., Hochmuth R. and Schneider R. (1997). Stable multiscale bases and local error estimation for elliptic problems. Appl Numer Math 23: 21–48

    Article  MATH  MathSciNet  Google Scholar 

  • Dahmen, W.: Wavelet and multiscale methods for operator equations. Acta Numer 55–228 (1997)

  • Dahmen W. and Stevenson R. (1999). Element-by-element construction of wavelets satisfying stability and moment conditions. SIAM J Numer Anal 37: 319–352

    Article  MATH  MathSciNet  Google Scholar 

  • Daubechies I. (1988). Orthogonal bases of compactly supported wavelets. Comm Pure Appl Math 41: 909–996

    Article  MATH  MathSciNet  Google Scholar 

  • Dornseifer, T.: Diskretisierung allgemeiner elliptischer Differentialgleichungen in krummlinigen Koordinatensystemen auf dünnen Gittern. Dissertation, Technische Universität München (1997)

  • Dornseifer T. and Pflaum C. (1996). Discretization of elliptic differential equations on curvilinear bounded domains with sparse grids. Computing 56: 197–213

    Article  MATH  MathSciNet  Google Scholar 

  • Elf, J., Lötstedt, P., Sjöberg, P.: Problems of high dimension in molecular biology. In: (Hackbusch, W., ed.) 17th GAMM Seminar Leipzig 2001, pp. 1–10 (2001)

  • Eriksson K., Estep D., Hansbo P. and Johnson C. (1996). Computational differential equations. Cambridge University Press, London

    MATH  Google Scholar 

  • Eriksson K. and Johnson C. (1991). Adaptive finite element methods for parabolic problems I: A linear model problem. SIAM J Numer Anal 28: 43–77

    Article  MATH  MathSciNet  Google Scholar 

  • Eriksson K. and Johnson C. (1995). Adaptive finite element methods for parabolic problems II: Optimal error estimates in L L 2 and L L . SIAM J Numer Anal 32: 706–740

    Article  MATH  MathSciNet  Google Scholar 

  • Eriksson K. and Johnson C. (1995). Adaptive finite element methods for parabolic problems IV: Nonlinear problems. SIAM J Numer Anal 32: 1729–1749

    Article  MATH  MathSciNet  Google Scholar 

  • Eriksson K. and Johnson C. (1995). Adaptive finite element methods for parabolic problems V: Long-time integration. SIAM J Numer Anal 32: 1750–1763

    Article  MATH  MathSciNet  Google Scholar 

  • Eriksson K., Johnson C. and Larsson S. (1998). Adaptive finite element methods for parabolic problems VI: Analytic semigroups. SIAM J Numer Anal 35: 1315–1325

    Article  MATH  MathSciNet  Google Scholar 

  • Estep D. and French D. (1994). Global error control for the continuous Galerkin finite element method for ordinary differential equations. Math Anal Numer 28: 815–852

    MATH  MathSciNet  Google Scholar 

  • French D. (1998). Discontinuous Galerkin finite element methods for a forward-backward heat equation. Appl Numer Math 27: 1–8

    Article  MathSciNet  Google Scholar 

  • Garcke J. and Griebel M. (2000). On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J Comput Phys 165: 694–716

    Article  MATH  MathSciNet  Google Scholar 

  • Gerstner, T.: Adaptive hierarchical methods for landscape representation and analysis. In: Process modelling and landform evolution. Lecture Notes in Earth Sciences, Vol. 78. Springer, Heidelberg (1999)

  • Gerstner T. and Griebel M. (1998). Numerical integration using sparse grids. Numer Algorithms 18: 209–232

    Article  MATH  MathSciNet  Google Scholar 

  • Griebel M., Oeltz D. and Vassilevski P. (2005). Space-time approximation with sparse grids. SIAM J Sci Comput 28: 701–727

    MathSciNet  Google Scholar 

  • Griebel M., Oswald P. and Schiekofer T. (1999). Sparse grids for boundary integral equations. Numer Math 83: 279–312

    Article  MATH  MathSciNet  Google Scholar 

  • Grossmann, C., Roos, H.-G.: Numerik partieller Differentialgleichungen. Teubner (1992)

  • Hackbusch W. (2001). The efficient computation of certain determinants arising in the treatment of Schrödinger’s equation. Computing 67: 35–56

    Article  MATH  MathSciNet  Google Scholar 

  • Knapek, S.: Approximation und Kompression mit Tensorprodukt-Multiskalen-Approximationsräumen. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn (2000)

  • Koster, F.: Multiskalen-basierte Finite-Differenzen-Verfahren auf adaptiven dünnen Gittern. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn (2001)

  • Lang J. (2001). Adaptive multilevel solution of nonlinear parabolic PDE systems. Springer, Heidelberg

    MATH  Google Scholar 

  • Mitzlaff, U.: Diffusionsapproximation von Warteschlangensystemen. Dissertation, Institut für Mathematik, Technische Universität Clausthal (1997)

  • Oeltz, D.: Ein Raum-Zeit Dünngitterverfahren zur Diskretisierung parabolischer Differentialgleichungen. Dissertation, Universität Bonn (2006)

  • Paskov S. (1993). Average case complexity of multivariate integration for smooth functions. J Complex 9: 291–312

    Article  MATH  MathSciNet  Google Scholar 

  • Petersdorff T. and Schwab C. (2004). Numerical solution of parabolic equations in high dimensions. Math Model Numer Anal 38: 93–128

    Article  MATH  Google Scholar 

  • Pflaum, C.: Anwendung von Mehrgitterverfahren auf dünnen Gittern. Diplomarbeit, Technische Universität München (1992)

  • Prakash, J.: Rouse chains with excluded volume interactions: Linear viscoelasticity. Tech. Rep. Nr. 221, Berichte der Arbeitsgruppe Technomathematik, Universität Kaiserslautern (2000)

  • Prakash J. and Öttinger H. (1999). Viscometric functions for a dilute solution of polymers in a good solvent. Macromolecules 32: 2028–2043

    Article  Google Scholar 

  • Reisinger, C.: Numerische Methoden für hochdimensionale parabolische Gleichungen am Beispiel von Optionspreisaufgaben. Dissertation, Universität Heidelberg (2003)

  • Rouse P. (1953). A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J Chem Phys 21: 1272–1280

    Article  Google Scholar 

  • Schneider, S.: Extrapolationsmethoden zur Lösung parabolischer Gleichungen. Diplomarbeit, Technische Universität München (1994)

  • Schneider, S., Zenger, C.: Multigrid methods for hierarchical adaptive finite elements. Tech. Rep., Technische Universität München (1999)

  • Schwab, C., Todor, R.: Sparse finite elements for stochastic elliptic problems. Tech. Rep. 2002–2005, Semimar für Angewandte Mathematik, ETH Zürich (2002)

  • Schwab C. and Todor R. (2003). Sparse finite elements for stochastic elliptic problems-higher order moments. Computing 71: 43–63

    Article  MATH  MathSciNet  Google Scholar 

  • Shen X., Chen H., Dai J. and Dai W. (2002). The finite element method for computing the stationary distribution on a SRBM in a hypercube with applications to finite buffer queueing networks. Queuing Sys 42: 33–62

    Article  MATH  MathSciNet  Google Scholar 

  • Sjöberg, P.: Numerical solution of the master equation in molecular biology. Master Thesis, Department for Scientific Computing, Uppsala University (2002)

  • Stevenson R. (2003). Locally supported, piecewise polynomial biorthogonal wavelets on nonuniform meshes. Constr Approx 19: 477–508

    Article  MATH  MathSciNet  Google Scholar 

  • Sweldens W. (1997). The lifting scheme: a construction of second generation wavelets. SIAM J Math Anal 29: 511–546

    Article  MathSciNet  Google Scholar 

  • Thomée V. (1997). Galerkin finite element methods for parabolic problems. Springer, Heidelberg

    MATH  Google Scholar 

  • Wloka, J.: Partielle Differentialgleichungen. Teubner (1982)

  • Yserentant H. (1986). On the multi-level splitting of finite element spaces. Numer Math 58: 379–412

    Article  MathSciNet  Google Scholar 

  • Yserentant, H.: Hierarchical bases in the numerical solution of parabolic problems. In: (Deuflhard, P., Engquist, B., eds.) Large scale scientific computing. Proc. Meet., Oberwolfach/Germany 1987. Prog. Sci. Comput., Vol. 7, pp. 22–36. Birkhäuser (1987)

  • Yserentant H. (2004). On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer Math 98: 731–759

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Griebel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griebel, M., Oeltz, D. A sparse grid space-time discretization scheme for parabolic problems. Computing 81, 1–34 (2007). https://doi.org/10.1007/s00607-007-0241-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-007-0241-3

AMS Subject Classifications

Keywords

Navigation