Skip to main content
Log in

Construction of a discrete divergence-free basis through orthogonal factorization in \({\mathcal{H}}\) -arithmetic

  • Published:
Computing Aims and scope Submit manuscript

Summary

In computational fluid dynamics, linear constraints on the fluid velocity lead to challenging indefinite linear systems of equations. In this paper, we propose to compute an approximation to the constrained linear space of divergence-free functions using hierarchical matrix techniques. This approach will yield a data-sparse, well-conditioned basis of the desired subspace in almost optimal computational complexity which is confirmed by numerical tests. The novelty of this paper lies in the application of hierarchical matrix techniques to orthogonal factorization as well as the construction of an explicit approximation to the subspace basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adlers, M.: Computing sparse orthogonal factors in MATLAB, Technical Report LiTH-MAT-R-1998-19, Linköpings Universitet (1998)

  • Alotto P. and Perugia I. (1999). Mixed finite element methods and tree-cotree implicit condensation. CALCOLO 36: 233–248

    Article  MATH  MathSciNet  Google Scholar 

  • Amestoy P.R., Duff I.S. and Puglisi C. (1996). Multifrontal QR factorization in a multiprocessor environment. Numer Linear Algebra Appl 3: 275–300

    Article  MATH  MathSciNet  Google Scholar 

  • Arioli M. and Baldini L. (2001). A backward error analysis of a null space algorithm in sparse quadratic programming. SIAM J Matrix Anal Appl 23: 425–442

    Article  MATH  MathSciNet  Google Scholar 

  • Arioli M. and Manzini G. (2003). Null space algorithm and spanning trees in solving Darcy’s equation. BIT 43: 839–848

    Article  MATH  MathSciNet  Google Scholar 

  • Arioli M., Maryska J., Rozloznik M. and Tuma M. (2005). Dual variable methods for mixed-hybrid finite element approximation of the potential fluid flow problem in porous media. ETNA 22: 17–40

    MathSciNet  Google Scholar 

  • Bebendorf M. (2007). Why finite element discretizations can be factored by triangular hierarchical matrices. SIAM Numer Anal 45: 1472–1494

    Article  MathSciNet  Google Scholar 

  • Benzi M., Golub G.H. and Liesen J. (2005). Numerical solution of saddle point problems. Acta Numer 14: 1–137

    Article  MATH  MathSciNet  Google Scholar 

  • Börm S. (2006). \({\mathcal H}^2\) -matrix arithmetics in linear complexity. Computing 77: 1–28

    Article  MATH  MathSciNet  Google Scholar 

  • Börm, S., Grasedyck, L.: HLib version 1.3 (available at http://www.hlib.org)

  • Börm, S., Grasedyck, L., Hackbusch, W.: Hierarchical matrices, 2003. Lecture Notes No. 21, Max-Planck-Institute for Mathematics in the Sciences, Leipzig (2006) (available at http://www. mis.mpg.de/preprints/ln/)

  • Brezzi F. and Fortin M. (1991). Mixed and hybrid finite element methods. Springer Series in Computational Mathematics, vol. 15. Springer, New York

    Google Scholar 

  • Coleman T.F. and Pothen A. (1986). The null-space problem I: complexity. SIAM Algebra Discrete Math 7: 527–537

    MATH  MathSciNet  Google Scholar 

  • Coleman T.F. and Pothen A. (1987). The null-space problem II: algorithms. SIAM Algebra Discrete Math 8: 544–563

    MathSciNet  Google Scholar 

  • Fletcher R. and Johnson T. (1997). On the stability of null-space methods for KKT systems. SIAM J Matrix Anal Appl 18: 938–958

    Article  MATH  MathSciNet  Google Scholar 

  • Gill P.H., Murray W. and Wright M.H. (1981). Practical optimization. Academic, London

    MATH  Google Scholar 

  • Grasedyck L. and Hackbusch W. (2003). Construction and arithmetics of \({\mathcal{H}}\) -matrices. Computing 70: 295–334

    Article  MATH  MathSciNet  Google Scholar 

  • Grasedyck, L., Kriemann, R., Le Borne, S.: Parallel black box domain decomposition based \({\mathcal{H}}\) -LU preconditioning, Technical Report 115, Max-Planck-Institute for Mathematics in the Sciences (2005)

  • Grasedyck L. and Le Borne S. (2006). \({\mathcal{H}}\) -matrix preconditioners in convection-dominated problems. SIAM J Matrix Anal 27: 1172–1183

    Article  MATH  MathSciNet  Google Scholar 

  • Griffiths D.F. (1981). An approximately divergence-free 9-node velocity element for incompressible flows. Int J Numer Meth Fluids 1: 323–346

    Article  MATH  Google Scholar 

  • Gustafson K. and Hartman R. (1983). Divergence-free basis for finite element schemes in hydrodynamics. SIAM J Numer Anal 20: 697–721

    Article  MATH  MathSciNet  Google Scholar 

  • Hackbusch W. (1999). A sparse matrix arithmetic based on \({\mathcal{H}}\) -matrices. Part I: introduction to \({\mathcal{H}}\) -matrices. Computing 62: 89–108

    Article  MATH  MathSciNet  Google Scholar 

  • Hackbusch W., Grasedyck L. and Börm S. (2002). An introduction to hierarchical matrices. Math Bohem 127: 229–241

    MATH  MathSciNet  Google Scholar 

  • Hall C. and Ye X. (1992). Construction of null bases for the divergence operator associated with incompressible Navier–Stokes equations. J Linear Algebra Appl 171: 9–52

    Article  MATH  MathSciNet  Google Scholar 

  • Ibragimov I., Rjasanow S. and Straube K. (2007). Hierarchical Cholesky decomposition of sparse matrices arising from curl–curl-equations. J Numer Math 15: 31–58

    Article  MathSciNet  Google Scholar 

  • Lewis, J. G., Pierce, D. J., Wah, D. K.: Multifrontal Householder QR factorization, Technical Report ECA-TR-127, Boing Computer Services, Seattle (1989)

  • Lintner M. (2004). The eigenvalue problem for the 2D Laplacian in \({\mathcal{H}}\) -matrix arithmetic and application to the heat and wave equation. Computing 72: 293–323

    Article  MATH  MathSciNet  Google Scholar 

  • Lintner, M.: Lösung der 2D Wellengleichung mittels hierarchischer Matrizen. PhD thesis, Technische Universität München (2002)

  • Lu S.-M. and Barlow J.L. (1996). Multifrontal computation with the orthogonal factors of sparse matrices. SIAM J Matrix Anal Appl 17: 658–679

    Article  MATH  MathSciNet  Google Scholar 

  • Matstoms P. (1994). Sparse QR factorization in MATLAB. ACM Trans Math Software 20: 136–159

    Article  MATH  Google Scholar 

  • Matstoms P. (1995). Parallel sparse QR factorization on shared memory architectures. Parallel Comput 21: 473–486

    Article  MATH  Google Scholar 

  • Oliveira S. and Yang F. (2007). An algebraic approach for \({\mathcal{H}}\) -matrix preconditioners. Computing 80: 169–188

    Article  MATH  MathSciNet  Google Scholar 

  • Perugia I., Simoncini V. and Arioli M. (1999). Linear algebra methods in a mixed approximation of magnetostatic problems. SIAM J Sci Comput 21: 1085–1101

    Article  MATH  MathSciNet  Google Scholar 

  • Sameh A.H. and Sarin V. (2002). Parallel algorithms for indefinite linear systems. Parallel Comput 28: 285–299

    Article  MATH  MathSciNet  Google Scholar 

  • Sarin V. and Sameh A.H. (1998). An efficient iterative method for the generalized Stokes problem. SIAM J Sci Comput 19: 206–226

    Article  MATH  MathSciNet  Google Scholar 

  • Sarin V. and Sameh A.H. (2003). Hierarchical divergence-free bases and their application to particulate flows. J Appl Mech 70: 44–49

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Le Borne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Borne, S., Cook, D. Construction of a discrete divergence-free basis through orthogonal factorization in \({\mathcal{H}}\) -arithmetic. Computing 81, 215–238 (2007). https://doi.org/10.1007/s00607-007-0251-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-007-0251-1

AMS Subject Classifications

Keywords

Navigation