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Jan Mandel∗‡ Bedřich Soused́ık∗†‡§

October 29, 2018

Abstract

The FETI-DP, BDDC and P-FETI-DP preconditioners are derived in a particulary simple
abstract form. It is shown that their properties can be obtained from only on a very small set of
algebraic assumptions. The presentation is purely algebraic and it does not use any particular
definition of method components, such as substructures and coarse degrees of freedom. It is
then shown that P-FETI-DP and BDDC are in fact the same. The FETI-DP and the BDDC
preconditioned operators are of the same algebraic form, and the standard condition number
bound carries over to arbitrary abstract operators of this form. The equality of eigenvalues of
BDDC and FETI-DP also holds in the minimalist abstract setting. The abstract framework is
explained on a standard substructuring example.

1 Introduction

The BDDC and FETI-DP methods are iterative substructuring methods that use coarse degrees
of freedom associated with corners, edges or faces between subdomains, and they are currently the
most advanced versions of the BDD and FETI families of methods. The BDDC method introduced
by Dohrmann [3] is a Neumann-Neumann method of Schwarz type [4]. The BDDC method iterates
on the system of primal variables reduced to the interfaces between the subdomains, and it can be
understood as further development of the BDD method by Mandel [17]. The FETI-DP method
by Farhat et al. [5, 6] is a dual method that iterates on a system for Lagrange multipliers that
enforce continuity on the interfaces, and it is a further development of the FETI method by Farhat
and Roux [7]. Algebraic relations between FETI and BDD methods were pointed out by Rixen
et al. [23], Klawonn and Widlund [12], and Fragakis and Papadrakakis [9]. A common bound on
the condition number of both the FETI and the BDD method in terms of a single inequality in
was given in [12]. In the case of corner constraints only, a method same as BDDC was suggested
by Cros [2]. Fragakis and Papadrakakis [9] derived primal versions of FETI and FETI-DP, called
respectively P-FETI and P-FETI-DP, and they have also observed that the eigenvalues of BDD
and a certain version of FETI are identical. Mandel, Dohrmann, and Tezaur [19] have proved that
the eigenvalues of BDDC and FETI-DP are identical and they have obtained a simplifed and fully
algebraic version (i.e., with no undetermined constants) of a common condition number estimate
for BDDC and FETI-DP, similar to the estimate by Klawonn and Widlund [12] for BDD and
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FETI. Simpler proofs of the equality of eigenvalues of BDDC and FETI-DP were obtained by Li
and Widlund [15], and by Brenner and Sung [1], who also gave an example when BDDC has an
eigenvalue equal to one but FETI-DP does not. The proof of the equality of eigenvalues of BDD
and a certain version of FETI and of FETI-DP and P-FETI-DP was recently given by Fragakis [8]
in a more general framework.

In this contribution, we derive the FETI-DP, BDDC and P-FETI-DP preconditioners in a
particulary simple abstract form, with only a very small set of algebraic assumptions (Sec. 3).
The presentation is purely algebraical and it does not use any particular definition of method
components, such as substructures and coarse degrees of freedom. We show that P-FETI-DP and
BDDC are in fact the same. We then present the condition number bound and the proof of the
equality of eigenvalues of BDDC and FETI-DP, in the minimalist abstract setting (Sec. 4). Finally,
we illustrate the abstract framework on a substructuring example (Sec. 5).

2 Notation and Preliminaries

All spaces in this paper are finite dimensional linear spaces. The dual space of a space V is denoted
by V ′ and 〈·, ·〉 is the duality pairing. For a linear operator L : W → V we define its transpose
LT : V ′ → W ′ by 〈v, Lw〉 =

〈
LT v,w

〉
for all v ∈ V ′, w ∈ W , and ‖v‖K =

√
〈Kv, v〉 denotes

the norm associated with a symmetric and positive definite operator K : V → V ′, i.e., such that
〈Kv, v〉 > 0 for all v ∈ V , v 6= 0. The norm of a linear operator E : V → V subordinate to this
vector norm is defined by ‖E‖K = maxv∈V,v 6=0 ‖Ev‖K / ‖v‖K . The notation IV denotes the identity
operator on the space V .

Mappings from a space to its dual arise naturally in the variational setting of systems of linear
algebraic equations. An an example, consider an n × n matrix A and the system of equations
Ax = b. The variational form of this system is

x ∈ V : (Ax, y) = (b, y) ∀y ∈ V,

where V = R
n and (·, ·) is the usual Euclidean inner product on R

n. For a fixed x, instead of
the value Ax, we find it convenient to consider the linear mapping y 7→ (Ax, y). This mapping is
an element of the dual space V ′. Denote this mapping by Kx and its value at y by 〈Kx, y〉; then
K : V → V ′ is a linear operator from V to its dual that corresponds to A. This setting involving dual
spaces is convenient and compact when dealing with multiple nested spaces, or with dual methods
(such as FETI). Restricting a linear functional to a subspace is immediate, while the equivalent
notation without duality requires introducing new operators, namely projections or transposes of
injections. Also, this setting allows us to make a clear distinction between an approximate solution
and its residual, which is in the dual space. It is beneficial to have approximate solutions and
residuals in different spaces, because they need to be treated differently.

We wish to solve a system of linear algebraic equations

Ku = f,

where K : V → V ′, by a preconditioned conjugate gradient method. Here, a preconditioner is a
mapping M : V ′ → V . In iteration k the method computes the residual

r(k) = Ku(k) − f ∈ V ′,

and the preconditioner computes the increment to the approximate solution u(k) as a linear
combination of the preconditioned residual Mr(k) ∈ V with preconditioned residuals in earlier
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iterations. Convergence properties of the method can be established from the eigenvalues λ of the
preconditioned operator MK; the condition number

κ =
λmax(MK)

λmin(MK)
,

gives a well-known bound on the error reduction, cf. e.g. [10],

∥∥e(k)
∥∥
K

≤ 2

(√
κ− 1√
κ+ 1

)k ∥∥e(0)
∥∥
K
,

where e(k) = u(k) − u is the error of the solution in iteration k.

3 Abstract Formulation of the Preconditioners

3.1 Setting and Assumptions

We now list a minimalist set of spaces, linear operators, and assumptions needed to formulate the
BDDC and the FETI-DP methods and to prove their properties. Let W be a finite dimensional
space and let a (·, ·) be a symmetric positive semi-definite bilinear form on W . Let Ŵ ⊂ W be a

subspace such that a is positive definite on Ŵ , and f ∈ Ŵ ′. We wish to solve a variational problem

u ∈ Ŵ : a (u, v) = 〈f, v〉 ∀v ∈ Ŵ . (1)

The preconditioners we are interested in are characterized by a selection of an intermediate
space W̃ ,

Ŵ ⊂ W̃ ⊂ W, (2)

such that
a (·, ·) is positive definite on W̃ , (3)

and a selection of linear operators E, B, and BD. The operator E is a projection onto Ŵ ,

E : W̃ → Ŵ , E2 = E, rangeE = Ŵ . (4)

The role of the operator B is to enforce the condition u ∈ Ŵ by Bu = 0,

B : W̃ → Λ, nullB = Ŵ , rangeB = Λ. (5)

The operator BT
D is a generalised inverse of B,

BT
D : Λ → W̃ , BBT

D = IΛ. (6)

The properties (2) – (6) are enough for the BDDC and the FETI-DP theories separately, and they
will be assumed from now on. To relate the two methods, we shall also assume that

BT
DB +E = I (7)

when needed. No further assumptions are made in the rest of the paper.
To formulate the preconditioners and their properties, we need to define several more linear

operators from the concepts already introduced. Denote by

R : Ŵ → W̃ , R : w ∈ Ŵ 7−→ w ∈ W̃ , (8)

the natural injection from Ŵ to W̃ . Clearly,

ER = IcW
. (9)
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Remark 3.1. The conditions (3) – (7) are satisfied in the applications of FETI-DP and BDDC
methods, see [19] and Sec. 5. Note that the assumption (6) allows the case when B is a matrix
that does not have full row rank. All that is needed is to define Λ as rangeB. In the literature,
[19] and references therein, the projection E is often written in the form E = RDPR

T where R

is a mapping of another space (isomorphic to Ŵ ) into W . In the abstract setting here, we choose

to formulate the methods in the space Ŵ directly, it turns out that the space W is not needed
for the theory at all, and R becomes the identity embedding of Ŵ into W̃ . The equation (6) is
found already in [23, Lemma 1] in a special case. It was extended to form used presently and to
cover more general algorithms, and used to obtain important connections between dual and primal
substructuring methods in [9, 12].

We also define the linear operators Ŝ and S̃ associated with the bilinear form a on the spaces
Ŵ and W̃ , respectively, by

Ŝ : Ŵ → Ŵ ′,
〈
Ŝv, w

〉
= a (v,w) ∀v,w ∈ Ŵ . (10)

S̃ : W̃ → W̃ ′,
〈
S̃v, w

〉
= a (v,w) ∀v,w ∈ W̃ , (11)

From (10), the variational problem (1) becomes

Ŝu = f. (12)

Further, it follows from (10), (11), and (8), that

Ŝ = RT S̃R. (13)

3.2 BDDC

The following presentation of BDDC follows [20]. It is essentially same as the approach of [1],
and related to the concept of subassembly in [15]. The BDDC [3] is the method of preconditioned
conjugate gradients applied to the system (12), with the abstract BDDC preconditioner MBDDC :

Ŵ ′ → Ŵ defined as

MBDDC : r 7−→ u = Ew, w ∈ W̃ : a (w, z) = 〈r,Ez〉 , ∀z ∈ W̃ . (14)

For the equivalence of (14) with other formulations of BDDC, see [19, Lemma 7].
From the definitions of S̃ in (11) and R in (8), it follows that the operator form of the BDDC

preconditioner is
MBDDC = ES̃−1ET . (15)

3.3 FETI-DP

This presentation of FETI-DP follows [19]. The variational problem (1) is equivalent to the
minimization

1

2
a (u, u)− 〈f, u〉 → min subject to u ∈ Ŵ . (16)

Using
〈f, u〉 = 〈f,Eu〉 =

〈
ET f, u

〉
, u ∈ Ŵ ,

we can write (16) as a constrained minimization problem posed on W̃ ,

1

2
a (u, u)−

〈
ET f, u

〉
→ min subject to u ∈ W̃ and Bu = 0.

4



Introducing the Lagrangean

L(w, λ) =1

2
a (u, u) −

〈
ET f, u

〉
+
〈
BTλ, u

〉
,

where λ ∈ Λ′ are the Lagrange multipliers, we obtain that problem (16) is equivalent to solving the
saddle-point problem [22]

min
w∈fW

max
λ∈Λ′

L(w, λ). (17)

Since
min
w∈fW

max
λ∈Λ′

L(w, λ) = max
λ∈Λ′

min
w∈fW

L(w, λ),

it follows that (16) is equivalent to the dual problem

∂F(λ)

∂λ
= 0, (18)

where
F(λ) = min

w∈fW

L(w, λ). (19)

Problem (18) is equivalent to stationary conditions for the Lagrangean L,
∂

∂w
L(w, λ) ⊥ W̃ , (20)

∂

∂λ
L(w, λ) = 0,

which is the same as solving for w ∈ W̃ and λ ∈ Λ′ from the system

S̃w + BTλ = ET f,
Bw = 0.

(21)

Solving from the first equation in (21) and substituting into the second equation, we get the dual
problem in an operator form,

BS̃−1BTλ = BS̃−1ET f. (22)

The FETI-DP method [5, 6] is the method of preconditioned conjugate gradients applied to the
problem (22), with the preconditioner given by

MFETI−DP = BDS̃B
T
D. (23)

The FETI-DP method solves for the Lagrange multiplier λ. The corresponding primal solution
is found as the minimizer of w in (19), or equivalently, from (20), which is the same as the first
equation in (21); hence,

w = S̃−1
(
ET f −BTλ

)
.

If λ is the exact solution of the dual problem (18), then w ∈ Ŵ and so u = w is the desired solution

of the primal minimization problem (16). However, for approximate solution λ, in general w /∈ Ŵ ,

and so the primal solution needs to be projected onto Ŵ . We use the operator E for this purpose.
So, for an arbitrary Lagrange multiplier λ, the corresponding approximate solution of the original
problem is

u = ES̃−1
(
ET f −BTλ

)
. (24)

Note that the operator E does not play any role in FETI-DP iterations themselves. It only serves
to form the right-hand side of the constrained problem (21), and to recover the primal solution.
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3.4 P-FETI-DP

The P-FETI-DP preconditioner [9] is based on the approximate solution from the first step of
FETI-DP, starting from λ = 0, and with the residual r as the right-hand side. The primal solution
corresponding to the result of this step is the output of the preconditioner. Thus, from (24) with
λ = 0 and f = r, we have

MP−FETI−DP r = ES̃−1ET r. (25)

Comparing (25) with the BDDC preconditioner in (15), we have immediately:

Theorem 3.1. The P-FETI-DP and the BDDC preconditioners are the same.

4 Condition Number Bounds and Eigenvalues

From (13) and (15), the preconditioned operator of the BDDC method is

PBDDC =
(
ES̃−1ET

)(
RT S̃R

)
. (26)

From (22) and (23), the preconditioned operator of FETI-DP is

PFETI−DP =
(
BDS̃B

T
D

)(
BS̃−1BT

)
. (27)

Clearly, both the BDDC and the FETI-DP preconditioned operators have the same general
form (

LA−1LT
) (

T TAT
)
, (28)

where A = S̃ is symmetric, positive definite, and L and T are some linear operators such that

LT = I, (29)

because of (6) and (9). This important observation was made in [15] in the equivalent form
PS̃−1PS̃ : rangeP → range P , where P is a projection, and in the present form in [1].

4.1 Results for the Abstract Form of the Preconditioned Operators

It is interesting that the fundamental eigenvalue estimate can be proved for arbitrary operators of
the form (28) – (29). The following lemma was proved in terms of the BDDC preconditioner in [19,
Theorem 25], and the proof carries over. Because the translation between the two settings is time
consuming, the proof (with some simplifications but no substantial differences) is included here for
completeness. The resulting proof of the condition number bound for FETI-DP in Theorem 4.1
below appears to be new.

Lemma 4.1. Let V and U be finite dimensional vector spaces and A : V → V ′ be an SPD operator.
If L : V → U and T : U → V are linear operators such that LT = I on U , then all eigenvalues λ
of the operator

(
LA−1LT

) (
T TAT

)
satisfy

1 ≤ λ ≤ ‖TL‖2A . (30)
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Proof. The operator
(
LA−1LT

) (
T TAT

)
is selfadjoint with respect to the inner product〈

T TATu, v
〉
. So, it is sufficient to bound

〈(
LA−1LT

) (
T TAT

)
u, u

〉
in terms of

〈(
T TAT

)
u, u

〉
.

Let u ∈ U . Then (
LA−1LT

) (
T TAT

)
u = Lw, (31)

where w = A−1LTT TATu satisfies

w ∈ V, 〈Aw, v〉 =
〈
T TATu,Lv

〉
∀v ∈ V. (32)

In particular, from (32) with v = w and (31)

〈Aw,w〉 =
〈
T TATu,Lw

〉
=

〈
T TATu,

(
LA−1LT

) (
T TAT

)
u
〉
. (33)

and using LT = I, (32) with v = Tu, Cauchy inequality, the definition of transpose, and (33),

〈
T TATu, u

〉2
=

〈
T TATu,LTu

〉2

= 〈Aw,Tu〉2

≤ 〈Aw,w〉 〈ATu, Tu〉
= 〈Aw,w〉

〈
T TATu, u

〉

=
〈
T TATu,

(
LA−1LT

) (
T TAT

)
u
〉 〈

T TATu, u
〉
.

Dividing by
〈
T TATu, u

〉
, we get

〈
T TATu, u

〉
≤

〈
T TATu,

(
LA−1LT

) (
T TAT

)
u
〉

∀u ∈ U,

which gives the left inequality in (30).
To prove the right inequality in (30), let again u ∈ U . Then, from (31), Cauchy inequality in

the T TAT inner product, definition of the A norm, properties of the norm, and (33),

〈
T TATu,

(
LA−1LT

) (
T TAT

)
u
〉2

=
〈
T TATu,Lw

〉2

≤
〈
T TATu, u

〉 〈
T TATLw,Lw

〉

=
〈
T TATu, u

〉
〈ATLw, TLw〉

=
〈
T TATu, u

〉
‖TLw‖2A

≤
〈
T TATu, u

〉
‖TL‖2A ‖w‖2A

≤
〈
T TATu, u

〉
‖TL‖2A

〈
T TATu,

(
LA−1LT

) (
T TAT

)
u
〉
.

Dividing by
〈
T TATu,

(
LA−1LT

) (
T TAT

)
u
〉
, we get

〈
T TATu,

(
LA−1LT

) (
T TAT

)
u
〉
≤ ‖TL‖2A

〈
T TATu, u

〉
∀u ∈ U.

The lower bound in Lemma 4.1 was also proved in a different way in [1, Lemma 3.4]. The
next abstract lemma is the main tool in the comparison of the eigenvalues of the preconditioned
operators of BDDC and FETI-DP.
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Lemma 4.2 ([1, Lemmas 3.4 – 3.6]). Let V and Ui, i = 1, 2, be finite dimensional vector spaces
and A : V → V ′ be an SPD operator. If Li : V → Ui and Ti : Ui → V are linear operators such
that

LiTi = I on Ui, i = 1, 2, (34)

T1L1 + T2L2 = I on V, (35)

then all eigenvalues (except equal to one) of the operators
(
L1A

−1LT
1

) (
T T
1 AT1

)
and(

T T
2 AT2

) (
L2A

−1LT
2

)
are the same, and their multiplicities are identical.

4.2 Results for FETI-DP and BDDC

Condition number bounds now follow immediately from Lemma 4.1.

Theorem 4.1. The eigenvalues of the preconditioned operators of FETI-DP and BDDC satisfy
1 ≤ λ ≤ ωFETI−DP and 1 ≤ λ ≤ ωBDDC , respectively, where

ωBDDC = ‖E‖2eS , ωFETI−DP = ‖BT
DBw‖2eS . (36)

In addition, if W̃ 6= Ŵ and (7) holds, then also

ωBDDC = ωFETI−DP . (37)

Proof. The eigenvalue bounds with (36) follows from the form of the preconditioned operators
(26) and (27) and Lemma 4.1. The equality (37) follows from the fact that E and BDB are
complementary projections by (7), and the norm of a nontrivial projection depends only on the
angle between its range and its nullspace [11].

The result in Theorem 4.1 was proved in a different way in [18] for BDDC and in [21] for FETI-
DP. For a simple proof of the bound for BDDC directly from the variational formulation (14), see
[20, Theorem 2].

Equality of the eigenvalues of the two methods follows immediately from Lemma 4.2:

Theorem 4.2. Let (3) – (7) hold. Then, (a) the spectra of the preconditioned operators of BDDC
and FETI-DP are the same except possibly for eigenvalue equal to one, and all eigenvalues are
larger or equal to one, and (b) the multiplicity of any common eigenvalue different from one is the
same, and the multiplicity of the eigenvalue equal to one for FETI-DP is less than or equal to the
multiplicity for BDDC.

Statement (a) of Theorem 4.2 was proved in [19] in a different way, and an elegant simplified
proof was given in [15]. Statement (b) was proved in [1]. This presentation uses the fundamental
lemma and the approach from [1].

5 Substructuring for a Model Problem

To clarify ideas, we show how the spaces and operators arise in the standard substructuring theory
for a model problem obtained by a discretization of the second order scalar elliptic problem.
Consider a bounded domain Ω ⊂ R

d decomposed into nonoverlapping subdomains Ωi, i = 1, ..., N ,
which form a conforming triangulation of the domain Ω. Each subdomain Ωi, from now called
a substructure, is a union of Lagrangean P1 or Q1 finite elements, and the nodes of the finite

8



Ŵ ⊂ W̃ ⊂ W

Figure 1: Schematic drawing of continuity conditions between substructures, in the case of corner
coarse degrees of freedom only: all degrees of freedom continuous (the space Ŵ ), only the coarse

degrees of freedom need to be continuous (the space W̃ ), and no continuity conditions (the space
W ).

elements between the substructures coincide. The nodes contained in the intersection of at least
two substructures are called boundary nodes. The union of all boundary nodes of all substructures
is called the interface, denoted by Γ, and Γi is the interface of substructure Ωi. The space of
all vectors of local degrees of freedom on Γi is denoted by Wi. Let Si : Wi → Wi be the Schur
complement operator obtained from the stiffness matrix of the substructure Ωi by eliminating all
interior degrees of freedom of Ωi, i.e., those that do not belong to interface Γi. We assume that the
matrices Si are symmetric positive semidefinite. Let W = W1 × · · · ×WN and write vectors and
matrices in the block form

w =




w1
...

wN


 , w ∈ W, S =



S1

. . .

SN


 . (38)

The bilinear form a is then given by
a (u, v) = uTSv.

The solution space Ŵ of the problem (1) is a subspace of W such that all subdomain vectors of
degrees of freedom are continuous across the interfaces, which here means that their values on all
the substructures sharing an interface nodes coincide.

The BDDC and FETI-DP are characterized by selection of coarse degrees of freedom, such as
values at the corners and averages over edges or faces of subdomains (for their general definition see,

e.g., [13]). In the present setting, this becomes the selection of the subspace W̃ ⊂ W, defined as the
subspace of all functions such that coarse degrees of freedom are continuous across the interfaces.
Cf., Fig. 1. There needs to be enough coarse degrees of freedom that the variational problem on W̃
is coercive, i.e., (3) is satisfied. Creating the stiffness matrix on the space W̃ is called subassembly
[16].

The last ingredients are the selections of the linear operators E, B, and BD. The operators E
and B are in fact defined on the whole space W ; they are considered restricted on W̃ only for the
purposes of the theory here. The operator E : W → Ŵ is an averaging of the values of degrees
of freedom between the substructure. The averaging weights are often taken proportional to the
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diagonal entry of the stiffness matrices in the substructures. The matrix B enforces the continuity
across substructure interfaces by the condition Bw = 0. Each row B has only two nonzero entries,
one equal to +1 and one equal to −1, corresponding to the two degrees of freedom whose value
should be same. So, Bw is the jump of the value of w between substructures. Redundant Lagrange
multipliers are possible; then B does not have full row rank and Λ = rangeB is not the whole
euclidean space. Finally, BD is a matrix such that a vector λ of jumps between the substructures
is made into a vector of degrees of freedom BT

Dλ that exhibits exactly those jumps. That is,
BBT

D = I. The construction of BD involves weights, related to those in the operator E, so that
BT

DB + E = I, and its details are outside of the scope of this paper. Such construction was
done first for the FETI method in [14] in order to obtain estimates independent of the jump of
coefficients between substructures, and then adopted for FETI-DP. We only note that in many
cases of practical relevance, the matrix BD is determined from the properties (4) – (7) uniquely as
the Moore-Penrose pseudoinverse in a special inner product given by the averaging weights in the
operator E [19, Theorem 14].
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