Skip to main content
Log in

A high-order integral algorithm for highly singular PDE solutions in Lipschitz domains

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We present a new algorithm, based on integral equation formulations, for the solution of constant-coefficient elliptic partial differential equations (PDE) in closed two-dimensional domains with non-smooth boundaries; we focus on cases in which the integral-equation solutions as well as physically meaningful quantities (such as, stresses, electric/magnetic fields, etc.) tend to infinity at singular boundary points (corners). While, for simplicity, we restrict our discussion to integral equations associated with the Neumann problem for the Laplace equation, the proposed methodology applies to integral equations arising from other types of PDEs, including the Helmholtz, Maxwell, and linear elasticity equations. Our numerical results demonstrate excellent convergence as discretizations are refined, even around singular points at which solutions tend to infinity. We demonstrate the efficacy of this algorithm through applications to solution of Neumann problems for the Laplace operator over a variety of domains—including domains containing extremely sharp concave and convex corners, with angles as small as π/100 and as large as 199π/100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atkinson KE (1997) The numerical solution of integral equations of the second kind. Cambridge monographs on applied and computational mathematics , vol 4. Cambridge University Press, Cambridge

    Google Scholar 

  2. Atkinson KE, Graham IG (1988) An iterative variant of the Nyström method for boundary integral equations on nonsmooth boundaries. The mathematics of finite elements and applications, VI (Uxbridge, 1987), London, pp 297–303

  3. Babuška I, Kellogg RB, Pitkäranta J (1979) Direct and inverse error estimates for finite elements with mesh refinements. Numer Math 33: 447–471

    Article  MATH  MathSciNet  Google Scholar 

  4. Babuška I, von Petersdorff T, Andersson B (1994) Numerical treatment of vertex singularities and intensity factors for mixed boundary value problems for the Laplace equation in R 3. SIAM J Numer Anal 31: 1265–1288

    Article  MATH  MathSciNet  Google Scholar 

  5. Babuška I, Miller A (1984) The post-processing approach in the finite-element method, 2: The calculation of stress intensity factors. Int J Numer Methods Eng 20: 1111–1129

    Article  MATH  Google Scholar 

  6. Björck Å (1996) Numerical methods for least squares problems. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    MATH  Google Scholar 

  7. Bleszynski E, Bleszynski M, Jaroszewicz T (1996) AIM: adaptive integral method for solving large-scale electromagnetic scattering and radiation problems. Radio Sci 31: 1225–1251

    Article  Google Scholar 

  8. Borsuk M, Kondrat′ev V (2006) Elliptic boundary value problems of second order in piecewise smooth domains, vol 69. North-Holland Mathematical Library. Elsevier, Amsterdam (2006)

  9. Bruno OP, Kunyansky LA (2001) A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications. J Comput Phys 169: 80–110

    Article  MATH  MathSciNet  Google Scholar 

  10. Costabel M, Ervin VJ, Stephan EP (1993) Quadrature and collocation methods for the double layer potential on polygons. Z Anal Anwendungen 12: 699–707

    MATH  MathSciNet  Google Scholar 

  11. Costabel M, Stephan E (1983) Curvature terms in the asymptotic expansions for solutions of boundary integral equations on curved polygons. J Integr Equ 5: 353–371

    MATH  MathSciNet  Google Scholar 

  12. Costabel M, Stephan E (1983) The normal derivative of the double layer potential on polygons and Galerkin approximation. Appl Anal 16: 205–228

    Article  MATH  MathSciNet  Google Scholar 

  13. Costabel M, Stephan E (1985) Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation. Mathematical models and methods in mechanics, Banach Center Publ. 15, Warsaw, pp 175–251

  14. Costabel M, Dauge M (2000) Singularities of electromagnetic fields in polyhedral domains. Arch Ration Mech Anal 151: 221–276

    Article  MATH  MathSciNet  Google Scholar 

  15. Cox C, Fix G (1985) On the accuracy of least squares methods in the presence of corner singularities. Comput Math Appl 10: 463–475

    Article  MathSciNet  Google Scholar 

  16. Demkowicz L, Devloo P, Oden J (1985) On an h-type mesh-refinement strategy based on minimization of interpolation errors. Comput Methods Appl Mech Eng 53: 67–89

    Article  MATH  MathSciNet  Google Scholar 

  17. Devloo P (1990) Recursive elements, an inexpensive solution process for resolving point singularities in elliptic problems. In: Proceedings of 2nd World Congress on Computational Mechanics. IACM, Stuttgart, pp 609–612

  18. Elschner J, Jeon Y, Sloan IH, Stephan EP (1997) The collocation method for mixed boundary value problems on domains with curved polygonal boundaries. Numer Math 76: 355–381

    Article  MATH  MathSciNet  Google Scholar 

  19. Elschner J, Stephan EP (1996) A discrete collocation method for Symm’s integral equation on curves with corners. J Comput Appl Math 75: 131–146

    Article  MATH  MathSciNet  Google Scholar 

  20. Fix GJ, Gulati S, Wakoff GI (1973) On the use of singular functions with finite element approximations. J Comput Phys 13: 209–228

    Article  MathSciNet  Google Scholar 

  21. Ganesh M, Graham IG (2004) A high-order algorithm for obstacle scattering in three dimensions. J Comput Phys 198: 211–242

    Article  MATH  MathSciNet  Google Scholar 

  22. Graham IG, Chandler GA (1988) High-order methods for linear functionals of solutions of second kind integral equations. SIAM J Numer Anal 25: 1118–1137

    Article  MATH  MathSciNet  Google Scholar 

  23. Grisvard P (1985) Elliptic problems in nonsmooth domains. Monographs and Studies in Mathematics, vol 24. Pitman (Advanced Publishing Program), Boston

    Google Scholar 

  24. Grisvard P (1992) Singularities in boundary value problems. Recherches en Mathématiques Appliquées (Research in Applied Mathematics), vol 22. Masson, Paris

    Google Scholar 

  25. Givoli D, Rivkin L, Keller JB (1992) A finite element method for domains with corners. Int J Numer Methods Eng 35: 1329–1345

    Article  MATH  MathSciNet  Google Scholar 

  26. Heuer N, Mellado ME, Stephan EP (2002) A p-adaptive algorithm for the BEM with the hypersingular operator on the plane screen. Int J Numer Methods Eng 53: 85–104

    Article  MATH  MathSciNet  Google Scholar 

  27. Heuer N, Stephan EP (1996) The hp-version of the boundary element method on polygons. J Int Equations Appl 8: 173–212

    Article  MATH  MathSciNet  Google Scholar 

  28. Heuer N, Stephan EP (1998) Boundary integral operators in countably normed spaces. Math Nachr 191: 123–151

    Article  MATH  MathSciNet  Google Scholar 

  29. Hughes T, Akin J (1980) Techniques for developing ‘special’ finite element shape function with particular reference to singularities. Int J Numer Methods Eng 15: 733–751

    Article  MATH  MathSciNet  Google Scholar 

  30. Hunter DB, Smith HV (2005) A quadrature formula of Clenshaw–Curtis type for the Gegenbauer weight-function. J Comput Appl Math 177: 389–400

    Article  MATH  MathSciNet  Google Scholar 

  31. Jerison DS, Kenig CE (1981) The Neumann problem on Lipschitz domains. Bull Am Math Soc (N.S.) 4: 203–207

    Article  MATH  MathSciNet  Google Scholar 

  32. John F (1991) Partial differential equations, vol 1. Springer, New York

    Google Scholar 

  33. Kondrat′ VA (1967) Boundary value problems for elliptic equations in domains with conical or angular points. Trans Moscow Math Soc 16: 227–313

    MATH  Google Scholar 

  34. Kozlov VA, Maz′ VG, Rossmann J (1997) Elliptic boundary value problems in domains with point singularities. Mathematical surveys and monographs, vol 52. American Mathematical Society, Providence

    Google Scholar 

  35. Kress R (1989) Linear integral equations, vol 82. Springer, Berlin

    Google Scholar 

  36. Kress R (1990) A Nyström method for boundary integral equations in domains with corners. Numer Math 58: 145–161

    Article  MATH  MathSciNet  Google Scholar 

  37. Lin K, Tong P (1980) Singular finite elements for the fracture analysis of V-notched plate. Int J Numer Methods Eng 15: 1343–1354

    Article  MATH  Google Scholar 

  38. Maischak M, Stephan EP (1997) The hp-version of the boundary element method in R 3: the basic approximation results. Math Methods Appl Sci 20: 461–476

    Article  MATH  MathSciNet  Google Scholar 

  39. Maue A-W (1949) Zur Formulierung eines allgemeinen Beugungsproblems durch eine Integralgleichung. Z Phys 126: 601–618

    Article  MATH  MathSciNet  Google Scholar 

  40. Monegato G, Scuderi L (2003) A polynomial collocation method for the numerical solution of weakly singular and nonsingular integral equations on non-smooth boundaries. Int J Numer Methods Eng 58: 1985–2011

    Article  MATH  MathSciNet  Google Scholar 

  41. Rokhlin V (1993) Diagonal forms of translation operators for the Helmholtz equation in three dimensions. Appl Comput Harmon Anal 1: 82–93

    Article  MATH  MathSciNet  Google Scholar 

  42. Sloan IH, Smith WE (1980) Product integration with the Clenshaw–Curtis points: implementation and error estimates. Numer Math 34: 387–401

    Article  MATH  MathSciNet  Google Scholar 

  43. Song J, Lu C, Chew W, Lee S (1998) Fast Illinois Solver Code (FISC). IEEE Antennas Propag Mag 40: 27–34

    Article  Google Scholar 

  44. Stern M (1979) Families of consistent conforming elements with singular derivative fields. Int J Numer Methods Eng 14: 409–421

    Article  MATH  Google Scholar 

  45. Strain J (1995) Locally corrected multidimensional quadrature rules for singular functions. SIAM J Sci Comput 16: 992–1017

    Article  MATH  MathSciNet  Google Scholar 

  46. Trefethen LN (2008) Is Gauss Quadrature Better than Clenshaw-Curtis?. SIAM Rev 50: 67–87

    Article  MATH  MathSciNet  Google Scholar 

  47. Weideman JAC, Trefethen LN (2007) The kink phenomenon in Fejér and Clenshaw-Curtis quadrature. Numer Math 107: 707–727

    Article  MATH  MathSciNet  Google Scholar 

  48. Verchota G (1984) Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains. J Funct Anal 59: 572–611

    Article  MATH  MathSciNet  Google Scholar 

  49. Wigley NM (1964) Asymptotic expansions at a corner of solutions of mixed boundary value problems. J Math Mech 13: 549–576

    MATH  MathSciNet  Google Scholar 

  50. Wigley NM (1969) On a method to subtract off a singularity at a corner for the Dirichlet or Neumann problem. Math Comput 23: 395–401

    Article  MATH  MathSciNet  Google Scholar 

  51. Wigley NM (1987) Stress intensity factors and improved convergence estimates at a corner. SIAM J Numer Anal 24: 350–354

    Article  MATH  MathSciNet  Google Scholar 

  52. Wu X, Xue W (2003) Discrete boundary conditions for elasticity problems with singularities. Comput Methods Appl Mech Eng 192: 3777–3795

    Article  MATH  MathSciNet  Google Scholar 

  53. Wu X, Han H (1997) A finite-element method for Laplace- and Helmholtz-type boundary value problems with singularities. SIAM J Numer Anal 34: 1037–1050

    Article  MATH  MathSciNet  Google Scholar 

  54. Zargaryan SS, Maz′ VG (1984) The asymptotic form of the solutions of integral equations of potential theory in the neighbourhood of the corner points of a contour. Prikl Mat Mekh 48: 169–174

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Ovall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruno, O.P., Ovall, J.S. & Turc, C. A high-order integral algorithm for highly singular PDE solutions in Lipschitz domains. Computing 84, 149–181 (2009). https://doi.org/10.1007/s00607-009-0031-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-009-0031-1

Keywords

Mathematics Subject Classification (2000)

Navigation