Skip to main content
Log in

Extended interval Newton method based on the precise quotient set

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The interval Newton method can be used for computing an enclosure of a single simple zero of a smooth function in an interval domain. It can practically be extended to allow computing enclosures of all zeros in a given interval. This paper deals with the extended interval Newton method. An essential operation of the method is division by an interval that contains zero (extended interval division). This operation has been studied by many researchers in recent decades, but inconsistency in the research has occurred again and again. This paper adopts the definition of extended interval division redefined in recent documents (Kulisch in Arithmetic operations for floating-point intervals, 2009; Pryce in P1788: IEEE standard for interval arithmetic version 02.2, 2010). The result of the division is called the precise quotient set. Earlier definitions differ in the overestimation of the quotient set in particular cases, causing inefficiency in Newton’s method and even leading to redundant enclosures of a zero. The paper reviews and compares some extended interval quotient sets defined during the last few decades. As a central theorem, we present the fundamental properties of the extended interval Newton method based on the precise quotient set. On this basis, we develop an algorithm and a convenient program package for the extended interval Newton method. Statements on its convergence are also given. We then demonstrate the performance of the algorithm through nine carefully selected very sensitive numerical examples and show that it can compute correct enclosures of all zeros of the functions with high efficiency, particularly in cases where earlier methods are less effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alefeld G, Herzberger J (1983) Introduction to interval computations. Academic Press, New York

    MATH  Google Scholar 

  2. Dimitrova N, Markov SM, Popova E (1992) Extended interval arithmetics: new results and applications. In: Atanassova L, Herzberger J (eds) Computer arithmetic and enclosure methods. Elsevier, Amsterdam, pp 225–232. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.73.2118&rep=rep1&type=pdf

  3. Gardeñes E, Trepat A (1980) Fundamentals of SIGLA, an interval computing system over the completed set of intervals. Computing 24: 161–179

    Article  MathSciNet  MATH  Google Scholar 

  4. Hammer R, Hocks M, Kulisch U, Ratz D (1993) Numerical toolbox for verified computing I. Springer, Berlin

    MATH  Google Scholar 

  5. Hammer R, Hocks M, Kulisch U, Ratz D (1995) C++ toolbox for verified computing. Springer, Berlin

    MATH  Google Scholar 

  6. Hansen E (1992) Global optimization using interval analysis. Marcel Dekker, New York

    MATH  Google Scholar 

  7. Hickey T, Ju Q, Van Emde MH (2001) Interval arithmetic: from principles to implementation. JACM 48(5): 1038–1068

    Article  Google Scholar 

  8. Kahan WM (1968) A more complete interval arithmetic. Lecture notes for a summer course at the University of Michigan

  9. Kaucher E (1973) Über metrische und algebraische Eigenschaften einiger beim numerischen Rechnen auftretender Räume. Dissertation, Universität Karlsruhe

  10. Kaucher E (1977) Über Eigenschaften und Anwendungsmöglichkeiten der erweiterten Intervallrechnung und des hyperbolischen Fastkörpers über R. Comput Suppl 1: 81–94

    Google Scholar 

  11. Kaucher E (1980) Interval analysis in the extended interval space IR. Comput Suppl 2: 33–49

    MathSciNet  Google Scholar 

  12. Kirchner R, Kulisch U (2006) Hardware support for interval arithmetic. Reliab Comput 12(3): 225–237

    Article  MathSciNet  MATH  Google Scholar 

  13. Klatte R, Kulisch U, Wiethoff A, Lawo C, Rauch M (1993) C-XSC, A C++ class library for extended scientific computing. Springer, Berlin

    MATH  Google Scholar 

  14. Kulisch UW (2008) Complete interval arithmetic and its implementation on the computer. Institut fuer Angewandte und Numerische Mathematik, Universitaet Karlsruhe. http://www.math.kit.edu/iwrmm/seite/preprints/media/preprint%20nr.%2008-03.pdf

  15. Kulisch UW (2008) Computer arithmetic and validity—theory, implementation, and applications. de Gruyter, Berlin

    MATH  Google Scholar 

  16. Kulisch UW (2009) Arithmetic operations for floating-point intervals, as Motion 5 accepted by the IEEE Standards Committee P1788 as definition of the interval operations. See [22]

  17. Laveuve SE (1975) Definition einer Kahan-Arithmetik und ihre Implementierung. In: Nickel K (ed) Interval mathematics. Lecture notes in computer science, vol 29. Springer, Berlin, pp 236–245

    Google Scholar 

  18. Moore RE (1966) Interval analysis. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  19. Neumaier A (1990) Interval methods for systems of equations. Cambridge University Press, New York

    MATH  Google Scholar 

  20. Neumaier A (2008) Vienna proposal for interval standardization. Fakultaet fuer Mathematik, Universitaet Wien. http://www.mat.univie.ac.at/~neum/ms/1788.pdf

  21. Popova ED (1994) Extended interval arithmetic in IEEE floating-point environment. Interv Comput 4:100–129. http://www.math.bas.bg/~epopova/papers/94IntComp_Popova.pdf

    Google Scholar 

  22. Pryce J (ed) (2010) P1788: IEEE standard for interval arithmetic version 02.2. http://grouper.ieee.org/groups/1788/email/pdfOWdtH2mOd9.pdf

  23. Pryce JD, Corliss GF (2006) Interval arithmetic with containment sets. Computing 78(3):251–276. http://dx.doi.org/10.1007/s00607-006-0180-4

    Google Scholar 

  24. Ratschek H, Rokne J (1988) New computer methods for global optimization. Ellis Horwood Limited, Chichester

    MATH  Google Scholar 

  25. Ratz D (1996) Inclusion isotone extended interval arithmetic. Interner Bericht 5/1996, Universitaet Karlsruhe. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.25.7930, http://www.uni-karlsruhe.de/~iam/html/reports/rep9605.ps.gz

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Yun Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CY. Extended interval Newton method based on the precise quotient set. Computing 92, 297–315 (2011). https://doi.org/10.1007/s00607-011-0145-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-011-0145-0

Keywords

Mathematics Subject Classification (2000)

Navigation