Skip to main content
Log in

Pivot tightening for direct methods for solving symmetric positive definite systems of linear interval equations

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The paper considers systems of linear interval equations, i.e., linear systems where the coefficients of the matrix and the right hand side vary between given bounds. We focus on symmetric matrices and consider direct methods for the enclosure of the solution set of such a system. One of these methods is the interval Cholesky method, which is obtained from the ordinary Cholesky decomposition by replacing the real numbers by the related intervals and the real operations by the respective interval operations. We present a method by which the diagonal entries of the interval Cholesky factor can be tightened for positive definite interval matrices, such that a breakdown of the algorithm can be prevented. In the case of positive definite symmetric Toeplitz matrices, a further tightening of the diagonal entries and also of other entries of the Cholesky factor is possible. Finally, we numerically compare the interval Cholesky method with interval variants of two methods which exploit the Toeplitz structure with respect to the computing time and the quality of the enclosure of the solution set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Neumaier A (1990) Interval methods for systems of equations Encyclopedia Math Appl 37. Cambridge University Press, Cambridge, UK

    Google Scholar 

  2. Alefeld G, Herzberger J (1983) Introduction to interval computations. Academic Press, New York

    MATH  Google Scholar 

  3. Garloff J (2009) Interval Gaussian elimination with pivot tightening. SIAM J Matrix Anal Appl 30: 1761–1772

    Article  MathSciNet  MATH  Google Scholar 

  4. Alefeld G, Mayer G (1993) The Cholesky method for interval data. Linear Algebra Appl 194: 161–182

    Article  MathSciNet  MATH  Google Scholar 

  5. Alefeld G, Mayer G (2009) New criteria for the feasibility of the Cholesky method with interval data. SIAM J Matrix Anal Appl 30: 1392–1405

    Article  MathSciNet  Google Scholar 

  6. Rohn J (1994) Positive definiteness and stability of interval matrices. SIAM J Matrix Anal Appl 15: 175–184

    Article  MathSciNet  MATH  Google Scholar 

  7. Białas S, Garloff J (1984) Intervals of P-matrices and related matrices. Linear Algebra Appl 58: 33–41

    Article  MathSciNet  MATH  Google Scholar 

  8. Gantmacher FR (1977) The theory of matrices, vol 1. Chelsea Publishing, New York

    Google Scholar 

  9. Johnson CR, Horn RA (1985) Matrix analysis, 1st edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  10. Rohn J (1993) Inverse interval matrix. SIAM J Numer Anal 30: 864–870

    Article  MathSciNet  MATH  Google Scholar 

  11. Hertz D (1992) The extreme eigenvalues and stability of real symmetric interval matrices. IEEE Trans Autom Control 37: 532–535

    Article  MathSciNet  Google Scholar 

  12. Rohn J (1998) Bounds on the eigenvalues of interval matrices. ZAMM Z Angew Math Mech Suppl 78(3): S1049–S1050

    Article  MathSciNet  MATH  Google Scholar 

  13. Hladík M, Daney D, Tsigaridas E (2010) Bounds on real eigenvalues and singular values of interval matrices. SIAM J Matrix Anal Appl 31: 2116–2129

    Article  MATH  Google Scholar 

  14. Garloff J (2010) Pivot tightening for the interval Cholesky method. Proc Appl Math Mech 10: 549–550

    Article  Google Scholar 

  15. Dembo A (1988) Bounds on the extreme eigenvalues of positive-definite Toeplitz matrices. IEEE Trans Inform Theory 34: 352–355

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma EM, Zarowski CJ (1995) On lower bounds for the smallest eigenvalue of a Hermitian positive-definite matrix. IEEE Trans Inform Theory 41: 539–540

    Article  MathSciNet  MATH  Google Scholar 

  17. Sun W (2000) Lower bounds of the minimal eigenvalue of a Hermitian positive definite matrix. IEEE Trans Inform Theory 46: 2760–2762

    Article  MathSciNet  MATH  Google Scholar 

  18. Rosen KH (2000) Handbook of discrete and combinatorial mathematics, 2nd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  19. Mukherjee BN, Maiti SS (1988) On some properties of positive definite Toeplitz matrices and their possible applications. Linear Algebra Appl 102: 211–240

    Article  MathSciNet  MATH  Google Scholar 

  20. Berenhaut KS, Bandyopadhyay D (2005) Monotone convex sequences and Cholesky decomposition of symmetric Toeplitz matrices. Linear Algebra Appl 403: 75–85

    Article  MathSciNet  MATH  Google Scholar 

  21. Rump SM (1999) INTLAB—INTerval LABoratory. In: Csendes T (ed) Developments in reliable computing. Kluwer Academic Publishers, Dordrecht, pp 77–104

    Google Scholar 

  22. Bareiss EH (1969) Numerical solution of linear equations with Toeplitz and vector Toeplitz matrices. Numer Math 13: 404–424

    Article  MathSciNet  MATH  Google Scholar 

  23. Zohar S (1974) The solution of a Toeplitz set of linear equations. J ACM 21: 272–276

    Article  MathSciNet  MATH  Google Scholar 

  24. Trench WF (1964) An algorithm for the inversion of finite Toeplitz matrices. SIAM J Appl Math 12: 515–522

    Article  MathSciNet  MATH  Google Scholar 

  25. Garloff J (1986) Solution of linear equations having a Toeplitz interval matrix as coefficient matrix. Opuscula Math 2: 33–45

    MathSciNet  Google Scholar 

  26. Dimitrov D (2011) Investigations of pivot tightening for the interval Cholesky method and of the solution of Toeplitz systems of linear interval equations. Master thesis, University of Applied Sciences/HTWG Konstanz, Konstanz

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Garloff.

Additional information

On the occasion of the 100th anniversary of Cholesky’s method on Dec. 2, 2010 (see http://math.univ-lille1.fr/~brezinsk/cholNUMA.pdf).

This submission is related to SCAN 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garloff, J. Pivot tightening for direct methods for solving symmetric positive definite systems of linear interval equations. Computing 94, 97–107 (2012). https://doi.org/10.1007/s00607-011-0159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-011-0159-7

Keywords

Mathematics Subject Classification (2000)

Navigation