
Solving set-valued constraint
satisfaction problems

Luc Jaulin

ENSIETA
2 rue François Verny, 29200 Brest, France

http://www.ensieta.fr/jaulin/
jaulinlu@ensieta.fr

Abstract. In this paper, we consider the resolution of constraint satisfaction
problems in the case where the variables of the problem are subsets of Rn. In
order to use a constraint propagation approach, we introduce sets intervals,
which are sets of subsets of Rn with a lower bound and an upper bound with
respect to the inclusion. Then, we propose an arithmetic for them. This makes
possible to build projection operators that are then used by the propagation.
In order to illustrate the principle and the efficiency of the approach, a testcase
is provided.

1 Introduction

Constraint satisfaction problems involving subsets of Rn (namely set-valued con-
straint satisfaction problems or SVCSP for short) can appear in several engi-
neering applications, typically, when arbitrary shapes (i.e. that cannot be para-
metrized) are involved. The reconstruction a three dimensional object from
photos, mapping an environment from sonar measurements ([12], [16]), or char-
acterizing invariant sets of dynamic systems [2] can be represented by SVCSP.
This paper introduces in Section 2 a new type of numbers, namely set intervals,
which make possible to use constraint propagation methods for solving SVCSP.
In Section 3, an arithmetic for set intervals is proposed. This arithmetic is then
used to build projection operators. An illustrative application is provided in
Section 4. Section 5 concludes the paper.

2 Set intervals

2.1 Definition

Given two sets A− and A+ of Rn, the pair [A−,A+] which encloses all sets A
such that

A
− ⊂ A ⊂ A+

is a set interval and will be denoted by [A] (see Figure 1). The set interval
[∅, ∅] is a singleton which contains a single element: the empty set ∅. The set
interval [∅,Rn] encloses all sets of Rn. If A− �⊂ A+, then [A−,A+] is empty. A
set interval is a way to handle and to compute with uncertain sets (see [7]). The

1

Administrateur
Sticky Note
@InProceedings{JaulinScan2010, author = {L. Jaulin}, title = {{Solving set-valued constraint satisfaction problems}}, booktitle = {SCAN 2010}, year = {2010}, address = {Lyon (France)}}

idea that is developed in this paper follows the foundations of interval analysis
that has been built to handle uncertain real numbers [13], [18], to solve real-
valued nonlinear problems (see e.g. [5], [14], [8]), or to provide mathematical
proofs (see, e.g., [17], [6], [15]).

Figure 1: The set A can be approximated by the set interval [A−,A+]

2.2 Arithmetic

We shall now define some operations that can be used for set intervals. Two
types of operations can be considered.

• Specific set interval operations. Since set intervals are sets of sets (i.e., their
elements are sets), the intersection, the union, the inclusion can be defined.
In order to avoid any confusion with the operations of their elements, these
operations will be denoted in a squared manner (e.g. ⊓,⊔,⊏).

• Set extension. All operations existing for elements of a set interval (which
are sets) such as ∩,∪, reciprocal image , direct image, . . . can be extended
to set intervals [10].

Let us first start with specific set interval operations.
Intersection. The set interval intersection between two set intervals is

defined by
[A] ⊓ [B] = {X,X ∈ [A] and X ∈ [B]} .

Since
{
X ∈ [A]
X ∈ [B]

⇔

{
A− ⊂ X ⊂ A+

B
− ⊂ X ⊂ B+

⇔ A− ∪ B− ⊂ X ⊂ A+ ∩ B+ ⇔ X ∈ [A− ∪ B−,A+ ∩ B+] ,

the set interval [A] ⊓ [B] is given by

[
A
−,A+

]
⊓
[
B
−,B+

]
=
[
A
− ∪ B−,A+ ∩ B+

]
. (1)

Inclusion. We define the set interval inclusion as follows

[A] ⊏ [B] ⇔ [A] ⊓ [B] = [B] .

2

Set interval envelope. Consider a collection {Ai, i ∈ I} of sets of Rn. The
set interval envelope � {Ai, i ∈ I} is the smallest set interval (with respect to
⊏) enclosing all Ai, i ∈ I. We have

� {Ai, i ∈ I} =

[
⋂

i∈I

Ai,
⋃

i∈I

Ai

]

.

For instance,
� {[1, 4] , [3, 7] , [2, 6]} = [[3, 4], [1, 7]] .

Union. The set interval union between two set intervals [A] and [B] is the
smallest set interval which encloses both [A] and [B]. We have

[A] ⊔ [B] = � {X,X ∈ [A] or X ∈ [B]} .

It can easily be proven that

[A] ⊔ [B] =
[
A
− ∩ B−,A+ ∪ B+

]
.

Set extension of operators. Following the basic idea of Moore [13], it is
possible to extend set operations to set intervals. If ⋄ ∈ {∩,∪,×, \, . . . }, where
× is the Cartesian product and \ is the restriction (or trim) operator. We have

[
A
−,A+

]
⋄
[
B
−,B+

]
= �

{
C,A ∈

[
A
−,A+

]
,B ∈

[
B
−,B+

]
,C = A ⋄ B

}
.

It is trivial to check, from the monotony of the operators, that

(i) [A−,A+] ∩ [B−,B+] = [A− ∩ B−,A+ ∩ B+]
(ii) [A−,A+] ∪ [B−,B+] = [A− ∪ B−,A+ ∪ B+]
(iii) [A−,A+]× [B−,B+] = [A− × B−,A+ × B+]
(iv) [A−,A+] \ [B−,B+] = [A−\B+,A+\B−] .

(2)

Extension of functions. A set-valued function f can be extended to set
intervals as follows

f
([
A
−,A+

])
= �

{
f (A) ,A ∈

[
A
−,A+

]}
.

When f is inclusion monotonic (as it is the case when f is already an extension
to sets of vector-valued functions), we have

f
([
A
−,A+

])
=
[
f
(
A
−
)
, f
(
A
+
)]
.

Extension of reciprocal functions. Consider a point-valued function f .
The reciprocal image function f can be extended to set intervals as follows

f−1
([
B
−,B+

])
= �

{
f−1 (B) ,B ∈

[
B
−,B+

]}
.

Since f−1 is inclusion monotonic, we have

f−1
([
B
−,B+

])
=
[
f−1

(
B
−
)
, f−1

(
B
+
)]
.

3

But another point of view could be adopted for the reciprocal extension. Let us
define the reverse set-valued function

f# (B) = {A, f (A) = B} .

Let us stress that f# is not the classical inverse function f−1 considered in a
set-theoretical context. Its extension to set intervals is

f#
([
B
−,B+

])
= �

{
A, f (A) ∈

[
B
−,B+

]}
.

Unfortunately, due to the multivoque nature of f# it is often difficult to compute
f# (B). First results, on how to compute f# (B) can be found in [11]. Let us
now give two examples to illustrate this difficulty and the differences between
f−1 ([B−,B+]) and f# ([B−,B+]) .

Example 1. Consider the discrete-valued function f , defined by Figure 2.
Note that in this paper, for simplicity, the sets that have been considered are
subsets of Rn, but the approach can be extended to other types of ordered sets,
without any difficulty. We have

f−1(B) = {a, b, c, e}
f#(B) = ∅
f−1({2, 3}) = {a, b, c}
f#({2, 3}) = {{a, b} , {b, c} , {a, b, c} , {a, b, d} , {b, c, d} , {a, b, c, d}} .

Since, we cannot find a set Z such that f (Z) = B implies that f#(B) = ∅.
We have six sets X such that f (X)) = {1, 2} and thus f#({2, 3}) contains six
elements. Note that f# is not inclusion monotonic, i.e., we have

X ⊂ Y �⇒ f# (X) ⊂ f# (Y) .

Take for instance X = {2, 3} and Y = B as a counterexample. If f is bijective,
f# and f−1 are identical. Let us now illustrate the notion of set intervals. We
have

f−1 ([{2, 3} , {2, 3, 4}]) = [{a, b, c} , {a, b, c, e}]
f# ([{2, 3} , {2, 3, 4}]) = [{c} , {a, b, c, d, e}] .�

Example 2. If f(x) = x2 and B = [4, 9] . We have

f−1 ([4, 9]) = [−3,−2] ∪ [2, 3] ,

whereas f# ([4, 9]) contains a infinite number of sets. For instance, the four
following sets

[−3,−2] ; [2, 3] ; [−3,−2] ∪ [2, 3] ; [−3,−2.5] ∪ [2, 2.5]

belong to f# ([4, 9]). The lower bound of f# ([4, 9]) with respect to the inclu-
sion is the empty set. If we consider the set interval

[
B
−,B+

]
= [[4, 9] , [1, 16]] ,

we have
[
A
−,A+

]
= f#

([
B
−,B+

])
= [∅︸︷︷︸

=A−

, [−4,−1] ∪ [1, 4]
︸ ︷︷ ︸

=A+

].�

4

Figure 2: Function to be inverted

2.3 Natural set interval extension

Consider a set-valued expression f (X1,X2, . . . ,Xn) made with operators and
functions already defined for the Xi’s (such as +,∩,∪, . . .). The natural set-
interval extension [f] of f is the set interval function whose expressions is ob-
tained by taking that of f and by replacing all sets Xi by set intervals [Xi]
and all operators and elementary functions involved in f by their set-interval
counterparts. For instance, the natural set interval extension associated with
the set expression

f (X1,X2,X3) = X1 ∪ (X2 ∩ g (X3))

is
[f] ([X1] , [X2] , [X3]) = [X1] ∪ ([X2] ∩ g ([X3])) .

Theorem 1. Consider an expression f (X1,X2, . . . ,Xn)made with operators
and functions already defined for the Xi’s. If X1 ∈ [X1] , . . . ,Xn ∈ [Xn] then

f (X1,X2, . . . ,Xn) ∈ [f] ([X1] , [X2] , . . . , [Xn]) .

Moreover, if in the expression of f , all Xi occur only once, the set interval
evaluation is minimal with respect to the inclusion.

Proof. See [9], Section 2.2.3.�
Example 3. Using Theorem 1, if A ∈ [A] ,B ∈ [B] , then

(A ∪ B) \ (A ∩ B) ∈ ([A] ∪ [B]) \ ([A] ∩ [B]) .

Take for instance
[
A
−,A+

]
= [[1, 3] , [0, 4]]

[
B
−,B+

]
= [[2, 5] , [1, 6]] .

Since

([A] ∪ [B]) \ ([A] ∩ [B]) =
[
A
− ∪ B−,A+ ∪ B+

]
\
[
A
− ∩ B−,A+ ∩ B+

]

=
[(
A
− ∪ B−

)
\
(
A
+ ∩ B+

)
,
(
A
+ ∪ B+

)
\
(
A
− ∩ B−

)]
,

5

we have

[(
A
− ∪ B−

)
\
(
A
+ ∩ B+

)
,
(
A
+ ∪ B+

)
\A− ∩ B−

]

= [([1, 3] ∪ [2, 5]) \ ([0, 4] ∩ [1, 6]) , ([0, 4] ∪ [1, 6]) \ ([1, 3] ∩ [2, 5])]

= [[1, 5] \ [1, 4] , [0, 6] \ [2, 3]]

= [[4, 5] , [0, 2] ∪ [3, 6]] .�

Dependency problem. As it is the case for interval arithmetic, the de-
pendency problem also exists for set intervals. For instance,

[
A
−,A+

]
\
[
A
−,A+

]
=
[
A
−\A+,A+\A−

]
=
[
∅,A+\A−

]

Of course, we have the inclusion property

{
A\A,A ∈

[
A
−,A+

]}
= [∅, ∅] ⊏

[
∅,A+\A−

]
,

but the resulting set interval is not minimal.
Example 4. Consider two equivalent expressions of the exclusive union

f (A,B) = (A\B)∪ (B\A)

g (A,B) = (A ∪ B) \ (A ∩ B) .

The two natural set interval extension are given by

[f] ([A] , [B]) = ([A] \ [B])∪ ([B] \ [A])

[g] ([A] , [B]) = ([A]∪ [B]) \ ([A] ∩ [B]) .

Let us evaluate these two expressions for the two set intervals [A] , [B] repre-
sented on subfigures (a) and (b) of Figure 31 . Subfigures (c),(d),(e) represent
[A] \ [B], [B] \ [A] , ([A] \ [B])∪([B] \ [A]), respectively. Subfigures (d),(g),(h) rep-
resent ([A]∪ [B]) , ([A] ∩ [B]) , ([A]∪ [B]) \ ([A] ∩ [B]), respectively. For this ex-
ample, the two natural set interval extensions provide similar results, but it is
not the case in general.�

3 Projection operators

Contractors are powerful tools to solve efficiently CSP [19], [4], [1]. They are
based on the notion of constraint projection [3] that will now be considered in
the context of set-valued constraints. Consider a SVCSP

{
R (X1, . . . ,Xp)

X1 ∈ [X1] , . . .Xp ∈ [Xp] .

1Color code. For the graphical representation of a set interval [X] =
[
X
−,X+

]
, the black

boxes are inside X−, the grey boxes are outside X+ and the white boxes are inside X+ and
outside X−.

6

Figure 3: Illustration of the set interval arithmetic

7

Projecting the relation (or the constraint) R with respect to X1 (resp. X2, . . .)
amounts to computing the smallest set interval which encloses all feasible X1
(resp. X2, . . .). In a formal way, the first projection can be defined as

π1 (R, [X1] , . . . , [Xp]) = �{X1 ∈ [X1] ,∃X2 ∈ [X2] , . . . ,∃Xp ∈ [Xp] ,R (X1, . . . ,Xp)}.

The following theorems shows how such a projection can be performed for some
particular primitive set-valued constraints.

Theorem 2. Consider the SVCSP
{

A ⊂ B
A ∈ [A] ,B ∈ [B] ,

where [A] , [B] are set intervals. The projection with respect to A,B is given by
the following operations.

{
(i) [A] := [A] ⊓ ([A] ∩ [B])
(ii) [B] := [B] ⊓ ([A] ∪ [B])

or equivalently {
(i) [A] := [A−,A+ ∩ B+]
(ii) [B] := [B− ∪A−,B+] .

Proof. Let us first prove (i). We have

A ⊂ B
A ∈ [A]
B ∈ [B]

⇔

A = A ∩ B
A ∈ [A]
B ∈ [B]

⇔

{
A ∈ [A] ⊓ ([A] ∩ [B])

B ∈ [B]

Now

[A] ⊓ ([A] ∩ [B])
(2,i)
= [A−,A+] ⊓ [A− ∩ B−,A+ ∩ B+]
(1)
= [A− ∪ (A− ∩ B−) ,B+ ∩A+ ∩ B+]
= [A−,A+ ∩ B+] .

Let us now prove (ii). We have

A ⊂ B
A ∈ [A]
B ∈ [B]

⇔

B = A ∪ B
A ∈ [A]
B ∈ [B]

⇔

{
B ∈ [B] ⊓ ([A] ∪ [B])

A ∈ [A].

Now

[B] ⊓ ([B] ∪ [A])
(2,ii)
= [B−,B+] ⊓ [A− ∪ B−,A+ ∪ B+]

(1)
= [B− ∪A− ∪ B−,B+ ∩ (A+ ∪ B+)]
= [A− ∪ B−,B+] .�

Theorem 3. Consider the SVCSP
{

A ∩ B = ∅
A ∈ [A] ,B ∈ [B] ,

8

where [A] , [B] are set intervals. The projection with respect to A,B is given by
the following operations

{
(i) [A] := [A] ⊓ ([∅,Rn] \ [B])
(ii) [B] := [B] ⊓ ([∅,Rn] \ [A])

or equivalently {
(i) [A] := [A−,A+\B−]
(ii) [B] := [B−,B+\A−]

Proof. We shall thus limit ourselves to proving (i), proving (ii) is similar.
Given B we have the following equivalence

A ∩ B = ∅ ⇔ ∃Z ∈ [∅,Rn] such that A = Z\B.

Since A ∈ [A] ,B ∈ [B] ,Z ∈ [∅,R], using the set interval arithmetic, we get that

Z\B ∈ ([∅,R] \ [B])

and thus
A ∈ [A] ⊓ ([∅,R] \ [B]) .

Using the set interval arithmetic, we get

[A] ⊓ ([∅,R] \ [B])
= [A−,A+] ⊓ ([∅,Rn] \ [B−,B+])
(2,iv)
= [A−,A+] ⊓ ([∅\B+,Rn\B−])

(1)
= [A−,A+ ∩Rn\B−]
= [A−,A+\B−] .�

Theorem 4. Consider the SVCSP
{

A ∩ B = C
A ∈ [A] ,B ∈ [B] ,C ∈ [C] ,

(3)

where [A] , [B] , [C] are set intervals. The projection with respect to A,B,C is
given by the following operations

(i) [C] := [C] ⊓ ([A] ∩ [B])
(ii) [A] := [A] ⊓ ([C]∪ ([∅,Rn] \ ([B] \ [C])))
(iii) [B] := [B] ⊓ ([C]∪ ([∅,Rn] \ ([A] \ [C])))

or equivalently

(i) [C] := [C− ∪ (A− ∩ B−) ,C+ ∩A+ ∩ B+]
(ii) [A] := [A− ∪C−,A+\ (B−\C+)]
(iii) [B] := [B− ∪C−,B+\ (A−\C+)] .

An illustration is represented on Figure 4. Subfigure (a) represents the
initial set intervals [A] , [B] , [C], before projection. These set intervals can be

9

Figure 4: Contraction operator on set intervals associated with the relation
A ∩ B = C

contracted without removing any feasible set, as illustrated by the Figure 4
(b),(c),(d).

Lemma. Before giving the proof, let us recall the two following set equali-
ties.

(a) B ∪Rn\ (A\B) = Rn\ (A\B)
(b) A ∩Rn\ (B\C) = A\ (B\C) .

(4)

Proof. The proof for (i) is trivial. The proof for (iii) is similar than that
of (ii). We shall thus limit ourselves to proving (ii). Given B,C we have the
following equivalence

A ∩ B = C⇔ ∃Z ∈ [∅,Rn] such that A = C ∪ Z\ (B\C) .

Since A ∈ [A] ,B ∈ [B] ,C ∈ [C] ,Z ∈ [∅,R], using the set interval arithmetic, we
get that

C ∪ Z\ (B\C) ∈ ([C]∪ ([∅,R] \ ([B] \ [C])))

and thus
A ∈ [A] ⊓ ([C]∪ ([∅,R] \ ([B] \ [C]))) .

10

Using the set interval arithmetic, we get

[A] ⊓ ([C]∪ ([∅,R] \ ([B] \ [C])))
= [A−,A+] ⊓ ([C−,C+]∪([∅,Rn] \

([
B
−,B+

]
\
[
C
−,C+

])
︸ ︷︷ ︸

=[B−\C+,B+\C−]

))

= [A−,A+] ⊓ ([C−,C+]∪[∅\B+\C−
︸ ︷︷ ︸

=∅

,Rn\ (B−\C+)])

= [A−,A+] ⊓ ([C−,C+ ∪Rn\ (B−\C+)])
(4,a)
= [A−,A+] ⊓ ([C−,Rn\ (B−\C+)])
= [A− ∪C−,A+ ∩Rn\ (B−\C+)]
(4,b)
= [A− ∪C−,A+\ (B−\C+)] .�

Theorem 5. Consider the SVCSP
{

f(A) = B
A ∈ [A] ,B ∈ [B]

where [A] , [B] are set intervals. Projections with respect to A,B are obtained
by the following operations.

{
(i) [B] := [B] ⊓ f ([A])
(ii) [A] := [A] ⊓ f# ([B]) .

For (i), we could write

(i) B− := B− ∪ f (A−) ; B+ = B+ ∩ f (A+) .

For (ii), due to the non monotonicity of f#, no such relation can be obtained,
except for particular cases, such as when f is bijective.

Proof. Let us first prove (i). We have

f(A) = B
A ∈ [A]
B ∈ [B]

⇔

{
A ∈ [A] ⊓ f#([B])
B ∈ [B] ⊓ f([A]).

Now
[B] ⊓ f([A]) = [B−,B+] ⊓ [f (A−) , f (A+)]

(1)
= [B− ∪ f (A−) ,B+ ∩ f (A+)] .�

4 Test-case

Consider the following SVCSP

(i) X ⊂ A
(ii) B ⊂ X
(iii) X ∩C = ∅
(iv) f (X) = X,

11

where X is an unknown subset of R2, f is a rotation of R2 around 0 with an
angle −π

6 , and

A =
{
(x1, x2) , x

2
1 + x

2
2 ≤ 3

}

B =
{
(x1, x2) , (x1 − 0.5)

2 + x22 ≤ 0.3
}

C =
{
(x1, x2) , (x1 − 1)

2 + (x2 − 1)
2 ≤ 0.15

}

In our context, a constraint propagation approach consists in projecting all set-
valued constraints several times until no more significant contraction can be
observed. Figure 5 illustrates the propagation process (the color signification
for subpavings is similar to that of Figure 3). Subfigures (a), (b), (c) represent
A,B,C. Subfigure (d) represents the set interval [X] after the projection of
constraint (i). If we now project the constraint (ii), we get Subfigure (e) for [X].
Constraint (iii) yields Subfigure (f). Another projection of all four constraints
produces Subfigure (f). Finally, Subfigure (g) represents the fixed point that is
obtained for [X].

.

5 Conclusion

This paper proposes to extend the class of problems that can be solved using
constraint propagation to set-valued constraint satisfaction problems (SVCSP).
The variables of such CSP are subsets of Rn that can be bracketed by pairs
of sets. These pairs, named set intervals, form the domains on which the set
variables should belong. An arithmetic is provided for set-intervals which make
possible to build projection operators and consequently to allow a resolution
based on constraint propagation. An illustrative example has been provided to
illustrate the principle of the approach.

References

[1] I. Araya, B. Neveu, and G. Trombettoni. Exploiting common subex-
pressions in numerical csps. In Proc. CP, Constraint Programming, page
342Ű357, LNCS 5202, 2008.

[2] J. Aubin and H. Frankowska. Set-Valued Analysis. Birkhäuser, Boston,
1990.

[3] F. Benhamou, F. Goualard, L. Granvilliers, and J. F. Puget. Revising hull
and box consistency. In Proceedings of the International Conference on
Logic Programming, pages 230—244, Las Cruces, NM, 1999.

[4] G. Chabert and L. Jaulin. QUIMPER, A Language for Quick Interval
Modelling and Programming in a Bounded-Error Context. Artificial Intel-
ligence, 173:1079—1100, 2009.

12

Figure 5: Illustration of the propagation process for set-valued CSP; the frame
boxes correspond to [−3, 3]2

13

[5] D. Daney, N. Andreff, G. Chabert, and Y. Papegay. Interval Method for
Calibration of Parallel Robots : Vision-based Experiments. Mechanism
and Machine Theory, Elsevier, 41:926—944, 2006.

[6] N. Delanoue, L. Jaulin, and B. Cottenceau. Using interval arithmetic to
prove that a set is path-connected. Theoretical Computer Science, Special
issue: Real Numbers and Computers, 351(1):119—128, 2006.

[7] C. Gervet. Interval propagation to reason about sets: Definition and im-
plementation of a practical language. Constraints, 1:191—246, 1997.

[8] A. Goldsztejn and L. Jaulin. Inner and outer approximations of existentially
quantified equality constraints. In Proceedings of the Twelfth International
Conference on Principles and Practice of Constraint Programming, (CP
2006), Nantes (France), 2006.

[9] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. Applied Interval Analysis,
with Examples in Parameter and State Estimation, Robust Control and
Robotics. Springer-Verlag, London, 2001.

[10] M. Kieffer, L. Jaulin, I. Braems, and E. Walter. Scientific Computing,
Validated Numerics, Interval Methods, Proceedings of SCAN 2000, chapter
Guaranteed Set Computation with Subpavings, pages 167—178. Kluwer
Academic Publishers, 2001.

[11] S. Lagrange, N. Delanoue, and L. Jaulin. On sufficient conditions of in-
jectivity, development of a numerical test via interval analysis. Reliable
computing, 13(5):409—421, 2007.

[12] J. J. Leonard and H. F. Durrant-Whyte. Directed Sonar Sensing for Mobile
Robot Navigation. Kluwer, Boston, 1992.

[13] R. E. Moore. Methods and Applications of Interval Analysis. SIAM,
Philadelphia, PA, 1979.

[14] N. Ramdani and P.Poignet. Robust dynamic experimental identification
of robots with set membership uncertainty. IEEE/ASME Transactions on
Mechatronics, 10(2):253Ű—256, 2005.

[15] N. Revol, K. Makino, and M. Berz. Taylor models and floating-point arith-
metic: proof that arithmetic operations are validated in COSY. Journal of
Logic and Algebraic Programming, 64:135—154, 2005.

[16] S. Thrun, W. Bugard, and D. Fox. Probabilistic Robotics. MIT Press,
Cambridge, M.A., 2005.

[17] W. Tucker. The Lorenz attractor exists. Compte Rendu le l’académique
des Sciences, 328:1197—1202, 1999.

14

[18] J. R. V. Kreinovich, A.V. Lakeyev and P. Kahl. Computational Complexity
and Feasibility of Data Processing and Interval Computations. (Applied
Optimization). Springer, 1997.

[19] M. van Emden. Algorithmic power from declarative use of redundant con-
straints. Constraints, 4(4):363—381, 1999.

15

