
DEPAS: A Decentralized Probabilistic Algorithm for
Auto-Scaling

Nicolò M. Calcavecchia, Bogdan Alexandru Caprarescu, Elisabetta Di Nitto,
Daniel J. Dubois, Dana Petcu

Technical Report n. 2012.5

February 10, 2012

Dipartimento di Elettronica e Informazione

Politecnico di Milano

Piazza Leonardo da Vinci 32, Milan 20133, Italy

ar
X

iv
:1

20
2.

25
09

v1
 [

cs
.D

C
]

 1
2

Fe
b

20
12

Computing manuscript No.
(will be inserted by the editor)

DEPAS: A Decentralized Probabilistic Algorithm for
Auto-Scaling

Nicolò M. Calcavecchia · Bogdan
Alexandru Caprarescu · Elisabetta Di
Nitto · Daniel J. Dubois · Dana Petcu

Abstract The dynamic provisioning of virtualized resources offered by cloud
computing infrastructures allows applications deployed in a cloud environment
to automatically increase and decrease the amount of used resources. This ca-
pability is called auto-scaling and its main purpose is to automatically adjust
the scale of the system that is running the application to satisfy the varying
workload with minimum resource utilization. The need for auto-scaling is par-
ticularly important during workload peaks, in which applications may need to
scale up to extremely large-scale systems.

Both the research community and the main cloud providers have already
developed auto-scaling solutions. However, most research solutions are cen-
tralized and not suitable for managing large-scale systems, moreover cloud
providers’ solutions are bound to the limitations of a specific provider in terms
of resource prices, availability, reliability, and connectivity.

In this paper we propose DEPAS, a decentralized probabilistic auto-scaling
algorithm integrated into a P2P architecture that is cloud provider indepen-
dent, thus allowing the auto-scaling of services over multiple cloud infrastruc-
tures at the same time. Our simulations, which are based on real service traces,
show that our approach is capable of: (i) keeping the overall utilization of all
the instantiated cloud resources in a target range, (ii) maintaining service re-

Nicolò M. Calcavecchia · Elisabetta Di Nitto · Daniel J. Dubois
Politecnico di Milano
Dipartimento di Elettronica e Informazione
Piazza Leonardo Da Vinci 32, Milan, Italy
Tel/Fax 00 39 2399 3663
E-mail: {calcavecchia, dinitto, dubois}@elet.polimi.it

Bogdan Alexandru Caprarescu · Dana Petcu
West University of Timisoara
IeAT, Faculty of Mathematics and Computer Science
Bd. Vasile Parvan 4, RO-300223, Timisoara, Romania
Tel/Fax 00 40 256 244834
E-mail: {bcaprarescu, petcu}@info.uvt.ro

sponse times close to the ones obtained using optimal centralized auto-scaling
approaches.

Keywords auto-scaling · cloud computing · self-organization

1 Introduction

Cloud computing infrastructures are becoming a valid alternative to buying
and maintaining custom on-site IT infrastructures. Some of the reasons are the
possibility to pay for the infrastructural resources only when they are needed.
This flexibility in the amount of resources provided is often called “elasticity”
and is the basis of the utility computing model [9,37]. To take full advantage of
this flexibility cloud providers give to the customers several tools, called auto-
scaling services, needed to modify at runtime the amount of used resources.
These tools are used to avoid underutilization and overutilization of the cloud
resources while still maintaining a good level of quality for the hosted services.
This has two advantages: from the point of view of the customer this can
be seen as a reduction in the total resources costs, while from the point of
view of the cloud provider it allows to serve more customers with the same
infrastructure.

In existing cloud infrastructures, the flexibility described above is offered
within the individual cloud computing infrastructure, thus leading to the fol-
lowing limitations. First of all the total amount of resources that can be al-
located to a single customer is usually limited by the contract and by the
total capacity of the cloud provider. Moreover auto-scaling services may have
an additional cost. Another problem is that, depending on the current state
of the cloud infrastructure (i.e., connectivity) and on the market conditions
(i.e., costs) a single cloud provider may not be the most convenient at a cer-
tain moment. These limitations are moving current research efforts in cloud
computing to the study of efficient ways to exploit more than a single cloud
system for the deployment of a service. The capability to federate different
cloud providers becomes particularly useful when smaller companies want to
offer part of their resources for a competitive price in a cloud market. In a
scenario like this we would have several cloud computing systems with less
capabilities, guarantees, and stability than a single specialized cloud provider.

The context we are considering in this paper is that of a generic cloud
system which offers resources able to host batch services. The characteristics
of these batch services is that all the data needed to be processed is given as
input, and they return the result when the processing is completed. Compared
to a generic service there, in the case of batch service, there is no interaction
with the user within the service invocation and the resource that runs the
service does not keep the state of the service between invocations. If a state
needs to be maintained, then such state is written in a storage utility that is
external to the resource (for example a NFS-like distributed storage). Exam-
ples of this kind of services are multimedia file conversions (audio and video
file transcoding), scientific processing (such as the ones performed on volunteer

computing infrastructures, like SETI@Home), strong encryption/decryption,
distributed compilation, translation, finding good solutions for NP-hard prob-
lems from a model, and any other kind of use in which some input data needs
to be transformed in output data in a fast way. There are already companies
on the Internet that offer this kind of services to the general public such as [2,
7] for the video file transcoding. These companies have strategic interests in
reducing the costs for instantiating their services and in maintaining a good
level of satisfaction of the customers that are willing to pay for using them. In
the current paper we measure this satisfaction in terms of quality parameters
such as response time and drop rate of the requests (see Section 4).

The problem we want to solve in this paper is to take advantage of a cloud
federation to avoid the dependence on a single cloud provider, its limitations
and costs, while still minimizing the amount of used resources to maintain a
good level of quality for the customers.

The solution we propose, denoted with the acronym DEPAS (DEcentral-
ized Probabilistic Algorithm for Auto-Scaling), is fully decentralized and self-
organizing, meaning that none of the cloud providers in the federation have a
central role in how the services of the customers are scattered among differ-
ent providers. Another characteristic of this solution is that it is self-adapting,
thus reducing the human effort at deployment time in reconfiguring the whole
system in case of a serious failure in one cloud provider or in its connectivity.
In our approach the self-organizing logic is distributed over all the instantiated
cloud resources as a part of the deployed application, and it is autonomously
able to make decisions whether to allocate (deallocate) other (existing) re-
sources based on their capacity and on the number of received requests.

We have run our solution in a simulation scenario based on real traces and
we have been able to keep the percentage of utilization of the instantiated
cloud resources within a given interval (i.e., no resource underutilization, nor
resource overutilization) while still obtaining response times and drop rates
comparable to the optimal ones of centralized approaches with full knowledge
on the system.

This paper is organized as follows. A state of the art analysis is presented in
Section 2. Section 3 presents our solution, which consists in a system architec-
ture and in a self-organizing algorithm. In Section 4 we show some simulations
based on real service demand traces, and finally Section 5 concludes the paper.

2 State of the art

In a cloud environment, where resources can be dynamically allocated and
deallocated, the scalability of offered services is no longer constrained by the
amount of hardware resources that were initially provisioned. Therefore, auto-
nomic resource provisioning in a virtualized environment has emerged as a rich
research field situated at the crossroads of autonomic and cloud computing.
In this section, we survey several relevant contributions to the field.

A first distinction can be made between provider-centric solutions, whose
main objective is to maximize the profit of the provider, and customer-centric
solutions which enable the customer to select the best resource configuration
that maximizes their needs. In Table 1, the commonalities and differences
among several contributions, both customer-centric and provider-centric, are
surveyed according to three aspects: the autonomic architectural approach (ei-
ther endogenous or exogenous), the autonomic mechanism used to make adap-
tation decisions, and the provisioning mechanism. Beyond the criteria used in
Table 1, we also discuss two emerging directions: SLA-aware provisioning and
multi-cloud provisioning.

The architectural approaches to autonomic computing can be largely di-
vided into two groups: exogenous self-management and endogenous self-mana-
gement [39]. In exogenous self-management the management part is separated
from the functional part from the first level of system decomposition (i.e., there
is a first level component in charge of the management part) while in endoge-
nous self-management the adaptation at system-level is the result of the collab-
oration between the system components (i.e., each component fulfills both the
functional and the management requirements). We identified three approaches
to exogenous self-management: centralized management (e.g., Rainbow [25]),
hierarchical management (e.g., A3 [15]) and multi-agent management (e.g.,
self-organizing feedback loops [18]). Centralized management solutions are not
suitable for large systems because a central manager introduces a single point
of failure and may become a scalability bottleneck. For example, the limita-
tions of centralized solutions were experienced by Meng et al. [33] and were
addressed by replicating the central management component. Beyond that,
having a single manager in one cloud that supervises components deployed on
multiple clouds is like going halfway from single cloud systems to multi-cloud
systems. Hierarchical management solutions are appealing in a multi-cloud
context, but they raise the additional issues of scaling the managers and find-
ing the right tradeoff between increasing the number of managers to increase
the reliability of the system and minimizing the resource consumption of the
management part. The same problem characterizes multi-agent solutions as
seen in [22], where the authors are concerned with the minimization of the
number of agents.

As envisioned by Kephart and Chess [30], an endogenous autonomic ar-
chitecture decomposes the system into many interacting autonomic elements
where each autonomic element performs both functional and management
tasks and the global management is expected to largely arise from the co-
operation among autonomic elements. Such a decentralized approach has the
advantage that the management part is automatically scaled together with
the functional part and benefits from the same level of reliability as the func-
tional part. The disadvantages come from the fact that it is very difficult to
adapt complex optimization algorithms which work on a global model (such
as queueing or control theory algorithms) to a decentralized environment.

Most of the contributions shown in Table 1 adopt an exogenous approach
to self-management in which the applications are managed by an external

Table 1 A survey of several contributions to autonomic resource provisioning

Contribution Autonomic
architecture

Autonomic mecha-
nism

Provisioning
mechanisms

Customer-centric contributions
Bonvin et al. [17] Endogenous Goal (economic model) Replication,

migration
EC2 Auto-Scaling [8] Exogenous Action Replication
Iqbal et al. [27] Exogenous Action, regression model Replication
Meng et al. [33] Exogenous Heuristic Replication
Rightscale [5] Endogenous Action (voting) Replication
Sharma et al. [37] Exogenous Utility (integer linear

programming)
Replication,
resizing, migra-
tion

Scalarium [6] Exogenous Action Replication
Xiong et al. [41] Exogenous Utility (queueing, PI

control)
Resizing

Provider-centric contributions
Almeida et al. [13] Exogenous Utility (analytic model) Resizing
Ghanbari et al. [26] Exogenous Utility (control theory) Resizing
Fox et al. [21] Exogenous Action Replication
Wuhib et al. [40] Endogenous Utility (heuristic) Replication

service. While the exogenous research solutions are centralized [13,21,26,27,
37,41], the exact type of exogenous management (e.g., centralized, hierarchical,
multi-agent) offered by commercial solutions [6,9] is not publicly available.

Interesting decentralized approaches are the solutions of Bonvin et al. [17]
and Wuhib et al. [40], as well as the commercial platform Rightscale [5]. Bonvin
et al. describe an economic approach for the deployment and dynamic scaling
of component-based applications. Each server can host many component in-
stances and is managed by a server agent which decides to migrate, replicate or
remove component instances based on their economic balance. The economic
balance is computed as a difference between the utility generated by the com-
ponent from processing requests and the cost of using the hardware resources
of the server. Each server agent stores the complete mapping table between
the components and the servers that run instances of those components and
use a gossip protocol to update this mapping. As each agent has a complete
view of the system, although the proposal is decentralized, it is not scalable
with respect to the number of components and servers [17].

Another decentralized approach was proposed by Wuhib et al. [40]. Their
approach is provider-centric and aims to develop a Google Apps Engine-like
PaaS for hosting sites in the cloud. An instance of a site is called module and
many modules are deployed on one VM. Each VM is managed by a VM man-
ager and the VM managers are connected into a deployment dependent overlay
network in which, for each module that is deployed on a VM, the VM man-
ager is directly connected to all VM managers that host instances of the same
module. The utility of a module is defined as the ratio between the allocated
CPU capacity and the CPU demand, while the utility of the system is de-

fined as the minimum utility of all modules. Authors make a hard assumption
with respect to the fact that the CPU resources can be partitioned among the
modules running on the same VM. Also, they propose a decentralized heuristic
algorithm that maximizes the utility of the system while minimizing the cost
of adaptation. The resulting system is scalable with respect to the number of
virtual machines and the number of sites, but it is not scalable with respect
to the number of modules of a site.

Unlike other commercial solutions, Rightscale uses an endogenous auto-
scaling approach in which each VM votes for a scaling action, a decision being
taken with the majority of votes [5].

The second classification criterion used in Table 1 is the autonomic mech-
anism. By autonomic mechanism we refer to the policies and methods used
to specify the autonomic behavior and to derive the adaptation actions, re-
spectively. Kephart and Walsh differentiate among three types of autonomic
policies: action policies define the specific actions to be taken when the system
reaches certain states, goal policies divide the states of the system into desir-
able and undesirable, while utility function policies assign a numeric value
to each state so that the optimum state to transition can be derived [31].
Although policy-based self-management can be implemented by a rule en-
gine, such as Drools [10], which evaluates and executes the policies, goal and
utility-based management require more complex optimization methods, such
as queuing models [41], control theory models [26], integer linear programming
[37], economic approaches [17], regression models [27], probabilistic models
[13], or heuristics [33,40]. Therefore, most research contributions from Table
1 use utility or goal-based methods while action polices are largely employed
in commercial solutions. An example of action policy is “if CPU-utilization >
threshold then add n servers of type T”. The problem with action policies is
that both the number and type of servers to be provisioned are hardcoded.
An improved action-based mechanism is the provisioning method of Meng et
al. [33], which dynamically computes the number of servers to be provisioned
based on the throughput increases produced by previous provisioning actions.

The third classification criterion concerns the provisioning mechanisms,
which are in number of three: replication (i.e., scale in/out), resizing (i.e.,
scale up/down) and migration. As shown in Table 1, most solutions are based
on replication while there are also a few using resizing. Actually, the focus on
replication is justified by the fact that replication is the unique provisioning
mechanism offered by some cloud providers like Amazon EC2. The only con-
tribution from Table 1 where all the three provisioning mechanisms are used
is the work of Sharma et al. [37], which uses integer linear programming to
derive the number and type of VMs to be allocated for each tier of a multi-
tier application with the dual goal of satisfying the workload of the tier and
minimizing either the cost of resources or the adaptation time. Moreover, they
consider two variants of migration: live migration (i.e., moving a component
from one machine to another without stopping it) and shutdown-migrate (i.e.,
the component is stopped, its state is saved and used to start a new instance
of that component on another machine).

Beyond the three aspects discussed above there are two emerging direc-
tions in the field of autonomic provisioning for cloud computing that deserve
our attention: SLA-aware provisioning and multi-cloud provisioning. Receiving
SLA guarantees is an important aspect for the service consumers and this is
reflected by the fact that most contributions surveyed in this section use SLA
violations (either happened or predicted) to trigger adaptations. More con-
cretely, in all surveyed SLA-aware solutions, the SLA is limited to providing
some guarantees with respect to the service response time [17,27,37,41,13,26].
Thus, if in many papers it is specified that the SLA is met when the response
time is kept under a given threshold (e.g., [13]), in others a utility function is
defined to quantitatively asses the SLA fulfillment (e.g., [26]). There are also
differences in the way of interpreting the response time: some SLA approaches
are based on the average response time (e.g., [41]), while others guarantee
a maximum response time for every request with a certain probability (e.g.,
[13]). However, due to the provisioning latency, it is impossible for a reactive
provisioning solution to guarantee a maximum response time for any workload
variation. Therefore, some contributions assume the existence of a prediction
module capable to provide accurate workload predictions [13,37].

Sometimes, the offering of high performance and availability service guar-
antees is constrained by the availability and cost of cloud resources. Therefore,
a natural solution for highly available services consists in the ability to pro-
vision resources from multiple providers [14]. One impediment towards multi-
cloud deployments comes from the fact that inter-cloud communication has a
higher latency than intra-cloud communication and is usually charged by the
providers. This seems to be a tough challenge since no contribution from Table
1 addresses a multi-cloud scenario, the current multi-cloud research work being
limited to a few architectural promises [23,19]. Another multi-cloud impedi-
ment consists in the lack of portability and interoperability among different
cloud providers and is addressed by the works of Petcu et al. [36] and Ven-
ticinque et al. [38]. Thus, on one hand, the vendor-independent API described
in [36] would enable the development of portable applications that can be
easily migrated from one cloud to another. On the other hand, the work of
Venticinque et al. [38] presents the design of a tool for provisioning the best
configuration of resources from multiple cloud infrastructures according to a
given criterion, such as cost and availability.

On the industrial side, some cloud computing toolkits such as [4,32,35]
already offer an abstraction to implement the capability of having different
underlying clouds, and auto-scaling/load-balancing over time [29]. However
the solutions offered are centralized or hierarchical, meaning that the decisions
to perform auto-scaling and load-balancing actions are made by a centralized
controller that is typically offered by the cloud provider. These solutions are
well known and used, but may become inadequate in contexts in which the
cloud has unreliable nodes, for examples in scenarios in which the cloud re-
sources are offered by small companies or even home users that want to share
some unused computational power. In this kind of scenarios an application
may experience a continuous unpredictable loss of resources, or, because of

Internet connectivity problems, it may also have a consistent instantaneous
loss of resources.

In this section, we have surveyed several relevant contributions to the
emerging field of auto-scaling in a cloud environment. We have found that the
development of robust and scalable provisioning mechanisms for large scale
systems remains one of the top challenges in the field together with the chal-
lenge of auto-scaling over multiple clouds.

3 DEPAS Approach

This section presents DEPAS, a DEcentralized Probabilistic Algorithm for build-
ing Auto-Scaling service systems that are capable to cope with high and highly
fluctuating request rates.

The goal of our approach is to define an algorithm to support the deploy-
ment and the provisioning of batch services in a system composed of federated
clouds and an architecture that allows its implementation. In particular we
want to provide a solution that is able to work in an efficient way also in
perturbed systems in which the resources are heterogenous in terms of compu-
tational capacity, defined as the number of operations that a resource is able to
execute in a time unit. Beside this we want also a solution that works in situa-
tions in which there may be thousands of cheap and unreliable resources that
cannot share the full knowledge of all the other resources of the system. It is
widely known from the P2P area that using a classical centralized/hierarchical
approach in a high-scale system in which elements are unreliable and with local
knowledge only may produce high management and coordination costs [34].
These costs are due to the rebuilding of the structure of the system in case of
failure of the central points.

This section is organized into two subsections. Subsection 3.1 shows the
architecture of the solution, while the probabilistic auto-scaling algorithm is
presented in Subsection 3.2.

3.1 Architecture to support the auto-scaling service

The proposed architecture is composed of many autonomic services. An auto-
nomic service is responsible for processing requests (also called jobs) coming
from the clients and, at the same time, for running a process that makes
decisions whether to self-destroy or replicate the autonomic service by per-
forming local monitoring activities. Self-destroy and replication actions are
performed by exploiting the APIs provided to each autonomic service by the
underlying cloud provider(s). In particular, the part of the autonomic service
that is responsible for the replication contains the list of the underlying cloud
provider(s) and the logic that is needed to choose among them. In our work we
are using a random policy for choosing the destination provider for autonomic
services replica, leaving the study of more advanced placement heuristics as
future work.

KEY

Client Virtual
Machine

Autonomic
Service

Registry
(DNS)

Autonomic
Service

Connector

Registry
Connector

Fig. 1 Solution Architecture

Figure 1 shows the architecture that supports the implementation of DEPAS.
An autonomic service is deployed on one virtual machine (VM), where a VM
represents the resource unit that is offered by the cloud provider.

Each autonomic service should be able to communicate with other auto-
nomic services (even if they belong to different cloud providers) because the
algorithm we will present in the next section requires to diffuse partial infor-
mation about its state. Therefore autonomic services are organized into an
overlay network in which each autonomic service knows a fixed number of
other autonomic services, called neighbors. The neighborhood of an autonomic
service is composed of the autonomic service itself and its neighbors.

The internal architecture of the autonomic service is shown in Figure 2.
The Communicator allows the autonomic service to communicate with other
autonomic services using overlay links.

The Service Container instantiates the actual business service that is able
to process the requests coming from the clients, and a Requests Queue is em-
ployed to dispatch the incoming requests to the Service Container. The Load
Balancer implements a decentralized load balancing algorithm that optimizes
the size of the queue (see Subsection 3.2.1). A gossip-based algorithm is run by
the Overlay Manager to maintain the links to the neighbors of the autonomic
service (see Subsection 3.2.2). The Registrar probabilistically decides to regis-

Service Container
Requests

Queue

C
om

m
un

ic
at

or

Overlay Manager

Load Balancer

Autonomic ManagerRegistrar

Service
Instances

MAPE-K
Feedback

Loop

Fig. 2 Autonomic Service Architecture

ter to or unregister from a distributed external registry such as a DNS server.
This is needed as a mechanism to advertise the existence of the autonomic
services that is used by clients for accessing them.

Finally, the Autonomic Manager employs a MAPE-K (Monitor-Analyze-
Plan-Execute over a Knowledge base) feedback loop [30] to monitor the load
of the current autonomic service and its neighbors, make the provisioning
decisions, and execute those decisions.

3.2 Probabilistic auto-scaling

In this subsection we describe the auto-scaling logic of the DEPAS approach
that is designed to work with the architecture shown in Subsection 3.1. The
main idea of our method is that each autonomic service decides to create new
autonomic services or remove itself in a probabilistic manner and indepen-
dently of other autonomic services. The purpose of these decisions is to have a
total number of autonomic services such that the utilization of each autonomic
service stays close to a given threshold.

The auto-scaling algorithm we propose is shown in algorithm 1. In charge
of executing it is the Autonomic Manager subcomponent of the autonomic
service (see the architecture of the autonomic service in Figure 2). The Au-
tonomic Manager periodically (with period equal to T s) retrieves the neigh-
borhood load (averaged over the last Tm timeframe). If the load is less than
the minimum load threshold (Lmin) then the possibility to remove the current
autonomic service is considered (see algorithm 2). Otherwise, if the average

neighborhood load is higher than the maximum load threshold (Lmax) then
the autonomic service tries to add new autonomic services (see algorithm 3).

Algorithm 1 DEPAS
while true do
wait(T s)
L← monitor.computeAverageNeighborhoodLoad(Tm)
if L < Lmin then
analyzeRemoval(L)

else
if L > Lmax then
analyzeAddition(L)

end if
end if

end while

Both analyzeRemoval and analyzeAddition functions rely on the comput-
eRatio() function to compute the formula from equation 5. This formula is
highly parameterized and will be explained in the remainder of this subsec-
tion. As this ratio is negative for removals the analyzeRemoval function com-
putes its absolute value which is used as a probability for removing the current
autonomic service. In the analyzeAddition function, this ratio can be supra-
unitary where the integer part represents the number of autonomic services
to be added for sure while the fractional part is used as the probability for
adding an extra autonomic service.

Algorithm 2 analyzeRemoval(L)

r ← computeRatio(L)
if abs(r) > random() then
removeSelf()

end if

Algorithm 3 analyzeAddition(L)

r ← computeRatio(L)
n← brc
if {r} < random() then
n← n+ 1

end if
addAdditionalAutonomicServices(n)

To derive equation 5 we have defined a set of parameters that are sum-
marized in Table 2. Two important parameters of an autonomic service are
the capacity and the load. The capacity (denoted with Ci) is the maximum
number of requests (jobs) per second that can be processed by the autonomic

Table 2 Auto-scaling notations

N(t) Actual number of autonomic services allocated at a given time

N̂(t) Target number of autonomic services to be allocated at a given time
M(t) Number of autonomic services to be added/removed at a given time
Ci Capacity of autonomic service i
Cav Average capacity among all system autonomic services
Li(t) Load of autonomic service i computed at time t over timeframe (t −

Tm, t) (percent with respect to autonomic service capacity)
Lav (t) Average load per autonomic service of the system, computed at time

t over timeframe (t− Tm, t) for all autonomic services in the system
(percent)

L̃av
i (t) Average load per autonomic service of the neighborhood of autonomic

service i, computed at time t over timeframe (t− Tm, t) (percent)
Lmin Minimum load threshold (percent)
Lmax Maximum load threshold (percent)
Ldes Desired load threshold, which is equal to (Lmax −Lmin)/2 (percent)
T s Period between two successive runnings of the auto-scaling algorithm

on a autonomic service
Tm Length of monitoring timeframe for the actual load
neighborhoodi Neighborhood of autonomic service i: contains autonomic service i

and its neighbors
queuei Number of enqueued requests in autonomic service i
Rmax Maximum response time for completed requests (from SLA)

service i and is derived through benchmarking. The load of an autonomic ser-
vice i (denoted with Li(t)) computed at time t is the ratio between the average
number of requests per second that were issued in the time interval [t−Tm, t]
and the capacity of the autonomic service. All the load parameters, such as the
average load per autonomic service of the system and the load thresholds are
also expressed as percentages with respect to the capacity of the autonomic
service.

Given at time t the actual number of nodes of the system N(t), the average
load Lav (t), a desired target load Ldes , and an average capacity Cav that is
always constant independently from the number of the nodes, then the target
number of nodes at time t is calculated as follows:

N̂(t) =
Lav (t)

Ldes
·N(t) (1)

The explanation for equation 1 is that we want to redistribute the total
load of the system (defined as Lav (t)·N(t)) in a system in which the autonomic
services have different weights in terms of load (from Lav (t) to Ldes).

Therefore the total number of autonomic services to be added (positive
value) or removed (negative value) from the system is the following:

M(t) = N̂(t)−N(t) =
Lav (t)− Ldes

Ldes
·N(t) (2)

Computing M(t) in presence of global information such as N(t) and Lav(t)
is very simple, but we aim to provide a decentralized solution in which each

autonomic service decides to add new autonomic services or remove itself in
a probabilistic way. We argue that the ratio Ri(t) = M(t)/N(t) can be used
for deriving this probability. By making these simplifications equation 3 is
obtained:

Ri(t) =
M(t)

N(t)
=
Lav (t)− Ldes

Ldes
(3)

Considering that we opted for a P2P architecture in which each autonomic
service is aware of a small subset of all autonomic services, computing the av-
erage load of the system at each autonomic service is not feasible, but there are
a few solutions for approximating this value. In our simulator, each autonomic
service uses the weighted average load of its neighborhood as an approxima-
tion of the average load of the system using capacities as weights (see equation
4).

L̃av
i (t) =

∑
j∈neighborhoodi

(Cj · Lj(t))∑
j∈neighborhoodi

Cj
(4)

Then, this value can be used to calculate a local estimator for the ratio
Ri(t1), that we have denoted in equation 5 as R̃i(t1) and used in algorithms 2
and 3 as the ComputeRatio() function.

R̃i(t) =
L̃av
i (t)− Ldes

Ldes
(5)

When R̃i(t) < 0, autonomic service i uses |R̃i(t)| as a probability to remove
itself. When R̃i(t) > 0, the fractional part of R̃i(t) is used as a probability to
add a new autonomic service, while the integer part (which is greater than
zero when the number of autonomic services to be added is higher than the
number of existing autonomic services) is the number of autonomic services
that will be added in a deterministic way. The capacity of the new autonomic
service is assumed to be, in the average case, approximated to the average
capacity in the neighborhood of the local autonomic service.

In addition to the decision rules for adding and removing resources to the
system, our probabilistic auto-scaling approach requires the adoption of proper
fault-tolerant mechanisms to keep the load among the autonomic services bal-
anced and the topology connected. For this purpose we have adopted and
customized some existing approaches that will be described in the following
two paragraphs.

3.2.1 Supporting Auto-scaling with Load-balancing

The autoscaling algorithm described above needs to be supported by a load
balancing algorithm because otherwise the new autonomic services added by
the provisioning algorithm would never receive the existing load of the system.
We opted for a two-level load balancing: a DNS-based round-robin entry point
combined with a decentralized approach at autonomic service level. At DNS

level a configurable percentage of all autonomic services are registered in the
external DNS which offers one autonomic service from its list to the clients in
a round-robin fashion. At autonomic service level we tested a combination of
two load balancing algorithms: admission control and dimension exchange.

Admission control is the name we give to the load balancing algorithm
used in [12]. The idea is that, when an autonomic service receives a request,
an admission function is used to decide whether the request will be processed
by the current autonomic service, forwarded to a remote autonomic service,
or rejected.

We have chosen an admission policy that uses three limits: a forwarding
limit, a soft queue limit, and a hard queue limit. If the length of the queue is less
than the soft limit, or the request has already been forwarded the maximum
number of times and at the same time the queue is less than the hard limit,
then the request is admitted and enqueued in the local autonomic service. If
the length of the queue is equal or higher than the soft limit, and the request
has not reached yet the maximum number of forwardings, then the request is
forwarded to a random autonomic service that has not already been visited
by the same request. In other cases the request is rejected.

The second load balancing algorithm used in the simulator is an adapted
version of the dimension exchange algorithm we also used in our past work [20].
The idea of the original algorithm is that two autonomic services A and B
cooperate to average their requests. We have modified the formula of our
previous approach by inserting also terms for autonomic service capacities that
are used as weights to compute the weighted average. Therefore the number
of requests moved from A to B (B to A) is calculated by T (A,B) (T (B,A))
using equation 6.

T (A,B) = −T (B,A) =

⌊
|queueA| · CB − |queueB | · CA

CA + CB

⌋
(6)

In both algorithms when the permanence of the requests in the queue
becomes higher than Rmax (the maximum response time of a request before
being rejected that can be found in the SLA), then the request is removed
from the queue and rejected.

3.2.2 Supporting Auto-scaling with Overlay Management

At the beginning of this section we have justified the need of an overlay net-
work that interconnects the autonomic services to support the information
exchanges needed by the auto-scaling algorithm. Since our solution needs to
operate also in presence of dynamism it is important that the system overlay
is maintained connected and with a target degree (where the overlay degree
is defined as the average number of neighbors per autonomic service) even
in situations in which the appearance/disappearance of autonomic services is
frequent and unpredictable. For this reason we decided to support the overlay
with an overlay management protocol. The topology management protocol we

have adopted is an adapted version of the gossip protocol developed by Jela-
sity et al. [28]. The motivation for adopting this protocol is that it has been
already proven that it is highly scalable, highly reliable with respect to auto-
nomic service failures, and the operations of neighbor addition and removal
required by our auto-scaling algorithm can be done with minimum effort.

The overlay management protocol we used maintains a uni-directional over-
lay network where each autonomic service keeps a list with a fixed number of
autonomic service entries (called neighbors view). At the end of each time
frame Toverlay a protocol iteration is executed in each autonomic service (au-
tonomic services are not synchronized). After each iteration the neighborhood
of an autonomic service is merged with the neighborhood of a neighbor au-
tonomic service. The fixed number of neighbors of any autonomic service is
called the degree of the network and noted with c, while parameters H and
S of the protocol are used to determine the fault-tolerance and persistence
of the neighbors in the local view. Additional details on these parameters is
explained in [28].

An issue with the original Jelasity protocol is that the actual overlay degree
remains equal to c even in the situation when the total number of autonomic
services is less than c, moreover it is possible that some old autonomic services
that have been removed from the network are never removed from the neigh-
borhoods of existing autonomic services. To solve it we have used a customized
variant that introduces a maximum age parameter, o: at the beginning of the
merge operation the entries with an age higher than o are removed from both
the neighbors views. A proper value for o depends on the values of the others
parameters of the overlay and can be found through simulations.

4 Results

In this section we provide a description of the results obtained by our tech-
nique and the methodology we adopted to obtain them. We stressed our sys-
tem with realistic input, i.e. with a high variability workload with peaks of
usage inspired by a real scenario (see Subsection 4.2). The general approach
we adopt is to feed some input (i.e., service requests) to the system and mon-
itor its reaction with respect to different factors (i.e., response time, number
of autonomic services instantiated, rejected requests, etc.). The experimental
evaluation must consider various aspects which are important either for the
client (i.e., response time, rejected/lost requests) or the cloud provider which is
interested in reducing costs (i.e., number of autonomic services instantiated).

In Subsection 4.1 we give a description of the various settings employed in
the experiments, then the actual results are presented in Subsection 4.2 and
some findings are presented in Subsection 4.3.

We planned the experimental phase in order to verify some hypothesis
about the behavior of our technique. Specifically we are interested in assessing
the (i) scalability of the approach with respect to high variations in the input
workload and, as a consequence, the presence of a large number of instanti-

ated autonomic services, (ii) stability and responsiveness of the response time
experienced by the final user, (iii) optimality of the approach with respect to a
centralized system taking advantage of a global common knowledge and always
taking the best action, and finally (iv) the behavior of the approach in presence
of dynamism in the infrastructure such as autonomic services leaving/joining
the system or severe damages disrupting a large part of the infrastructure.

4.1 Experimental setting

Considering the large scale nature of our technique, involving potentially thou-
sands of autonomic services, we decided to validate it through a simulation
environment implemented on top of the Protopeer platform [24]. The reason
for this choice is that Protopeer allows to run simulations of P2P algorithms
over a time domain, even if it is event-based. This is possible thanks to the
possibility to schedule events using our time unit of choice (second). Another
interesting feature of Protopeer is that the same simulation code can run all
simulated peers in a single machine using a special scheduler with a simulated
clock, or one peer per machine using using the real (synchronized) clock of the
involved machines. When carrying out our experiments we have chosen to run
the simulator in single machine mode because we needed to scale up to 10.000
peers (each one containing one autonomic service).

In order to reduce possible effects due to algorithm dependent random
factors we performed a series of 32 independent runs for each experimental
configuration; plots include average, min and max values for each one of the
measured values. Experiments have been performed on top of 14 virtual ma-
chines equipped with 68.4 GB of memory and 8 virtual cores using the Amazon
EC2 cloud service [1].

We conducted experiments in various scenarios varying different aspects
such as computing infrastructure parameters (i.e., distribution of capacities
to reproduce a situation of multiple cloud providers), submitted requests (i.e.,
workload) and presence of external system factors (i.e., failures) 1.

In Table 3 we report the values of parameters that are fixed over all the
experiments; the values have been obtained by empirical observations of ded-
icated experiments and show a good tradeoff between the quality of reached
solution (i.e., response time optimality, reactivity, etc.) and the cost involved
in computing it (i.e., number of messages sent).

For simplicity we consider a single client issuing service requests. Service
execution time is exponentially distributed with mean µ = 1.

In order to stress our system with a realistic workload we defined a ser-
vice request track having the same pattern found in an on-line collaborative
service during the first Town Hall meeting given by the US president Obama
in December 2008 [3]. The service was monitored for a 48-hours period with a

1 Our experiments can be downloaded at http://home.dei.polimi.it/calcavecchia/

depas/depas.zip

http://home.dei.polimi.it/calcavecchia/depas/depas.zip
http://home.dei.polimi.it/calcavecchia/depas/depas.zip

Table 3 Fixed experiment parameters

Symbol Description Value
c Overlay degree 60

T overlay Period between two protocol iterations 0.3 sec
o Maximum entry age in neighborhood

view
30

µ Average service execution time 1 sec

Lmin Minimum load 0.6 %
Lmax Maximum load 0.8 %

Ldes Desired load 0.7 %
QLmax Maximum queue length 20
PTmax Maximum request pending time 4 sec

DNSentries Number of entries in the DNS 30

maximum load of 700 hits-per-second and about 92 thousands users. In our ex-
periments we maintained the same request pattern while scaling up the amount
of requests per second by a factor of 10 with the objective of producing higher
load on the system and consequently a higher number of autonomic services
instantiated (the system scales up to 10.000 services in the maximum peak).
In order to challenge our system with a highly variating workload, we scaled
down the time axis to 45 minutes. In this way, decisions must be taken even
more quickly than the case of 48 hours. Finally, requests are distributed ac-
cording to an exponential distribution with average defined by the previously
described request track.

4.2 Experimental results

We start the presentation of experimental results by first introducing a “ref-
erence experiment” from which all other experiments are then derived. This
first experiment is also used to introduce the main metrics adopted and how
we have computed them. In the reference experiment, we assign capacities ac-
cording to the following probabilistic distribution: 50 % of autonomic services
with capacity 0.5 req/sec, 30 % with capacity 1.83 req/sec and 20 % with
capacity 1 req/sec.

Figure 3 shows a plot of requests over all system (we call it “cumulative”).
The issued requests line represents the total number of requests that are sub-
mitted to our system while the processed requests line shows the throughput
of the system. In all the plots the line is the result of an average performed
over 32 experiments while the shade around the line represents the range area
delimited by minimum and maximum value over the experiments. The plot
shows how the system is able to quickly adapt itself providing a throughput
very close to the required one still maintaining a limited number of rejected
and lost requests (requests are rejected when they cannot be processed within
the maximum response time and requests are lost when an autonomic service
in charge of executing them faces a failure).

0 400 800 1,200 1,600 2,000 2,400
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

Simulation Time

R
eq

/
se

c

Issued requests

Fig. 3 Cumulative requests in reference experiment

In Figure 4 we report the number of autonomic services instantiated in the
system at each time instant together with the number that would have been
instantiated by an optimal controller in case of desired, minimum and maxi-
mum load. The optimal number of autonomic services is computed according
to Formula 7 where Cavg is the average capacity of services in the system and
L is the load to impose on services (i.e., Lmin, Ldes and Lmax).

Nopt(t) =
λ(t)

Cavg ∗ L
(7)

Notice that in a centralized system we can assume to know the real value
of Cavg thanks to a global knowledge. As the plot shows, the number of au-
tonomic services instantiated in the system closely follows the trend of the
desired optimal one either in high and low periods. Phenomena of temporary
over provisioning or under provisioning are limited to some very rare cases.

Another perspective on the same data is given by the plot in Figure 5 where
received requests and processed requests at peer level are shown (averaged over
all peers). In a perfectly balanced ideal system each autonomic service would
receive and process the same amount of load (in percent); from the plot we see
that the general trend of received load is constant around the Ldes value with
some spikes. In particular upward spikes happen in correspondence of a sudden
increase in load (i.e., the system is not immediately able to instantiate new
autonomic services). Conversely, downward spikes are associated with sudden
decrease of load which is not instantaneously reflected in decrease of services.

The final measure that the client perceives in the system is the response
time of a request (i.e., the difference between the moment the request is re-
ceived back from the client and the moment in which the request is issued).
Figure 6 shows the average response time over all requests for each time instant

0 400 800 1,200 1,600 2,000 2,400
0

2,000

4,000

6,000

8,000

10,000

12,000

Simulation Time

A
u

to
n

o
m

ic
se

rv
ic

es

Active services

Opt. number at Ldes

Opt. number at Lmax

Opt. number at Lmin

Fig. 4 Number of autonomic services instantiated in reference experiment

0 400 800 1,200 1,600 2,000 2,400
0

0.5

1

1.5

2

2.5

Simulation Time

R
eq

/
se

c

Requests

Fig. 5 Average requests in reference experiment at autonomic service level

together with the optimal response time and the pending time. The optimal
response time is the one that an ideal centralized system would achieve. More
precisely, we assume that in the optimal system there is a central component
with a global knowledge about the state of autonomic services (i.e., requests
in the queue, capacity, etc.). The centralized system always makes the best de-
cision by forwarding the request to the best available autonomic service (i.e.,
the one that guarantees minimum response time). We modeled the centralized

0 400 800 1,200 1,600 2,000 2,400
0

0.5

1

1.5

2

2.5

3

3.5

4

Simulation Time

S
ec

o
n

d
s

Response time Opt. response time

Pending time Avg response time

Avg opt. response time

Fig. 6 Average response time in reference experiment

system using a M/M/m queue where m is the number of currently instanti-
ated autonomic services and we computed the response time obtained in this
system using well known formulas of the literature [16]. Since the centralized
system is still distributed, with a client issuing requests to a server over a net-
work infrastructure, we must also consider the network latency in the optimal
system too (introduced artificially in the simulator); to this end, we added
twice (round-trip) the value of the average network latency to the previously
computed value.

As can be seen from Figure 6 the obtained response time remains close
to the optimal one with an average value of 1.23 seconds. The response time
reflects the sudden changes in the input workload (i.e., sec 100, 600, 1600,
2000). However, it can be observed that the system quickly readapts itself (i.e.,
instantiating an appropriate number of autonomic services), thus bringing the
response time close to the average. The plot also shows the pending time,
which represents the time that a request spends in the queue before being
processed.

Starting from the reference experiment, we focused on quantifying the im-
pact of different autonomic service capacities on the system behavior. In par-
ticular, we performed two experiments in which capacities were distributed
according to two different configurations. Specifically, in the first experiment
we set homogeneous capacities (i.e., Ci = 1 req/sec for every autonomic ser-
vice), while in the second experiment capacities are set according to an ex-
tremely unbalanced configuration (i.e., 50% with capacity Ci = 0.1 req/sec
and 50% with capacity Ci = 1.9 req/sec). As shown in Figure 7, average re-
sponse time in the homogeneous setting is close to the one obtained in the
reference scenario (see line 1 and 2 of Table 4) despite the fact that capacities

Table 4 Metrics for each scenario computed as average of time

Scenario Average response Rejected Lost
time (sec) requests requests

Reference 1.23 0.36% -
Homogeneous 1.24 0.34% -
Extremely unbal-
anced

1.41 0.47% -

Churn soft 1.48 0.72% 0.54%
Churn heavy 1.43 1.14% 1.10%
Distruptive soft 1.42 0.25% 0.08%
Distruptive heavy 1.46 0.5% 0.17%

0 400 800 1,200 1,600 2,000 2,400
0

0.5

1

1.5

2

2.5

3

3.5

Simulation Time

S
ec

o
n

d
s

Response time Opt. response time

Pending time Avg response time

Avg opt. response time

Fig. 7 Average response time in the homogeneous capacities scenario

are different. The extremely unbalanced configuration, shown in Figure 8, re-
ports an average response time of 1.41 sec, that is higher with respect to the
previous case. This behavior is expected as requests have a higher probability
to reach a service with a limited capacity and therefore experience longer wait-
ing times before the actual processing. The 13% increment of response time
with respect to both reference and homogeneous scenario is however limited
and shows that our approach is able to efficiently handle systems with highly
different capacities.

Another category of experiments we performed involves the introduction
of external factors in the system such as the presence of failures. Indeed, real
systems can be affected by unpredictable events compromising the function-
ality offered by the autonomic service (i.e., a software bug, malfunctioning
hardware, etc.). We envision two possible scenarios: churn and catastrophic.

0 400 800 1,200 1,600 2,000 2,400
0

0.5

1

1.5

2

2.5

3

3.5

Simulation Time

S
ec

o
n

d
s

Response time Opt. response time

Pending time Avg response time

Avg opt. response time

Fig. 8 Average response time in the extremely unbalanced capacities scenario

In the churn scenario some autonomic services can fail at each time instant,
thus creating the need for a continuous auto-scaling. When an autonomic
service fails it loses all neighbor connections as well as existing requests in the
queue and it is not able to process requests. We simulated churn according
to two parameters: pfail is the probability of an autonomic service to fail
and Tfail, the time period in which the probability is evaluated (for example
pfail = 1% and Tfail = 2 means that each autonomic service can fail every
two seconds with a probability of 1%). We compare the behavior of the system
in two possible configurations: soft churn (with pfail = 5% and Tfail = 10)
and heavy churn (with pfail = 10% and Tfail = 10).

As depicted in Figures 9 (a) and (b) the average response time is higher
with respect to the reference scenario due to the presence of churn. In par-
ticular, as shown in line 4 and 5 of Table 4, churn induces a higher amount
of requests to be rejected or lost. However, in the heavy churn scenario the
response time is slightly lower than the one in the soft scenario. The apparent
improvement is due to the fact that more requests are not processed (rejected
or lost). As shown in Figure 9 (c) and (d), the number of deployed services
reflects this behavior. Specifically, the presence of churn impacts the precision
of the system during high load peaks (i.e., sec 1700). Despite the stress im-
posed by heavy churn, our approach is still able to limit the number of rejected
requests to 1.14% of the total submitted requests.

Differently from the continuous churn, in the catastrophic scenario we
tested our solution against a sudden critical event which may disrupt a sub-
stantial part of the data center infrastructure such as the one that happened
in the Amazon infrastructure in April 2011 [11].

0 400 800 1,200 1,600 2,000 2,400
0

0.5

1

1.5

2

2.5

3

3.5

Simulation Time

S
ec

o
n
d
s

Response time Opt. response time

Pending time Avg response time

Avg opt. response time

1

(a) Response time with soft churn

0 400 800 1,200 1,600 2,000 2,400
0

0.5

1

1.5

2

2.5

3

3.5

Simulation Time

S
ec

o
n
d
s

Response time Opt. response time

Pending time Avg response time

Avg opt. response time

1

(b) Response time with heavy churn

0 400 800 1,200 1,600 2,000 2,400
0

2,000

4,000

6,000

8,000

10,000

12,000

Simulation Time

A
u
to

n
o
m

ic
se

rv
ic

es

Active services

Opt. number at Ldes

Opt. number at Lmax

Opt. number at Lmin

1

(c) Autonomic services with soft churn

0 400 800 1,200 1,600 2,000 2,400
0

2,000

4,000

6,000

8,000

10,000

12,000

Simulation Time

A
u
to

n
o
m

ic
se

rv
ic

es

Active services

Opt. number at Ldes

Opt. number at Lmax

Opt. number at Lmin

1

(d) Autonomic services with heavy churn

Fig. 9 Response time and number of autonomic services instantiated in soft (pfail = 5%,
Tfail = 10) and heavy (pfail = 10%, Tfail = 10) churn scenarios

As for the case of churn, we structure the experiments in two configurations
in which we vary the percentage of autonomic services killed: in soft configura-
tion 30% of existing autonomic services are killed, while in heavy configuration
60% of the autonomic services are killed. Autonomic services to be killed are
randomly chosen from the set of currently deployed autonomic services. We
fixed the disruptive event to happen after the system has stabilized (sec 200)
such that we can observe the effects of the disruption in the successive time
instants. Simulations are conducted till sec 450, when all disruption effects
are recovered by our algorithm and the system is stable. As our interest is to
understand how the system is able to recover after the disruptive event, we
adopted a constant workload of 7200 req/sec. Adopting a dynamic workload
as the one presented previously would make the quantification of the disrup-
tion less clear since the number of deployed services would change due to two
external factors (workload and disruptive event).

The effects of the disruption in the deployed services are visible in Figures
10 (a) and (b). In this case the system is able to recover from the damaged
status in less than 50 seconds, by instantiating missing services till the previous
amount of services is reached. The effects of failures at second 200 are visible in
response time plots (see Figures 10 (c) and (d)), where a small increment can
be observed also for the pending time (services cannot efficiently accommodate
all the incoming traffic). Finally, Figures 10 (e) and (f) show the amount of
requests that is rejected and lost due to the disruptive event. In particular,

up to 10% of requests experience a rejection and 5% experience a loss (these
would be however lost using any other approach). Also for rejected requests
the recovery is fast and in less than 50 seconds previous level of performance
is restored.

0 50 100 150 200 250 300 350 400

7,000

8,000

9,000

10,000

11,000

12,000

Simulation Time

A
u
to

n
o
m

ic
se

rv
ic

es

Active services

Opt. number at Ldes

Opt. number at Lmax

Opt. number at Lmin

1

(a) Number of autonomic services in the soft
disruptive case

0 50 100 150 200 250 300 350 400

4,000

6,000

8,000

10,000

12,000

Simulation Time
A

u
to

n
o
m

ic
se

rv
ic

es

Active services

Opt. number at Ldes

Opt. number at Lmax

Opt. number at Lmin

1

(b) Number of autonomic services in the
heavy disruptive case

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

Simulation Time

S
ec

o
n
d
s

Response time Opt. response time

Pending time Avg response time

Avg opt. response time

1

(c) Response time in the soft disruptive case

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

Simulation Time

S
ec

o
n
d
s

Response time Opt. response time

Pending time Avg response time

Avg opt. response time

1

(d) Response time in the heavy disruptive
case

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Simulation Time

%

Rejected requests

Lost requests

1

(e) Dropped and rejected requests in the soft
disruptive case

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6

7

8

Simulation Time

%

Rejected requests

Lost requests

1

(f) Dropped and rejected requests in the
heavy disruptive case

Fig. 10 Response time, number of autonomic services instantiated and dropped/rejected
requests in soft and heavy disruptive scenarios

4.3 Comparisons and discussion

Here we discuss the achieved results and we carry out a comparison with the
results obtained by other works in the same research area. One relevant factor

in evaluating the quality of a scaling algorithm is the scalability of the tech-
nique itself. By scalability we mean the ability of the technique to maintain
its characteristics (i.e., response time, optimality of number of autonomic ser-
vices, etc.) with increasing sizes of the problem (in terms of received requests
per time unit and number of autonomic services needed). In this regard, the
adoption of a highly variating workload trace ensures the validation of the
technique at different sizes.

As previous charts show, the average response time experienced by clients
is close to the optimal one in all experiments despite adverse experimental
conditions such as churn and unbalanced capacities. Moreover, the quality of
response time is not sacrificing the economic side; indeed, the number of active
autonomic services is not far from the optimal one and, for the majority of
the time instants, their load is within the defined thresholds.

Another interesting property of our approach is the good level of reactivity
(i.e., the ability to quickly re-adapt the number of autonomic services with
sudden changes in the workload). However the adaptation is not instantaneous,
as also shown by some peaks in the response time, and in case of massive
change some requests can be lost (see Figure 3 around second 2000). A high
level of reactivity could however lead to instability phenomena (i.e., given a
constant input the system continuously oscillates) or over/under provisioning;
in our case we see that these phenomena are quite limited even in the case of
external dynamism.

Table 5 compares our technique with the most relevant works already pre-
sented in Section 2 concerning the problem of scalability in the cloud intended
as addition and removal of computing units. Our system is the only one that
has been validated over a large scale system while others remain under the
threshold of 50 VMs. Similar to other works we report results with respect
to the response time metric (relevant for clients) and the number of auto-
nomic services allocated (relevant to service provider). However, differently
from other works we also consider the optimality of our metrics in order to
precisely assess how the system is behaving with respect to an optimal cen-
tralized system under ideal conditions always taking the optimal choice. Given
the decentralized nature of our system, this last aspect is critical for different
reasons that are not present in centralized systems: (i) the lack of a global
knowledge puts each element in a condition of limited knowledge, (ii) each
component of the system takes actions independently of others, (iii) commu-
nication delays among autonomic services can be source of imprecisions.

Moreover, all reported techniques do not consider potential adversarial
environment conditions due to dynamism in the network (i.e., faults). We
believe that an efficient technique must consider this aspect, as faults are
inevitable and already have put in crisis some existing cloud providers, as
stated in [11]. To the best of our knowledge, our auto-scaling approach is the
first decentralized one considering also network dynamism due to faults. On
the side of our weaknesses we have the fact that, while other approaches have
been validated on the actual system, even though on a very small scale, we
have adopted simulations as the strategy of evaluation. We did so in order to

Table 5 Experimental settings adopted in similar works in the literature

Contribution Evaluation metrics Validation Tests size
Bonvin et al.
[17]

Used resources, response
time, throughput, SLA vi-
olations, Scale operations

Experiment 5 services, 8 servers,
scaling up to 19 cores
and 4 servers

Iqbal et al. [27] Throughput, response
time, CPU utilization,
SLA violations

Experiment 2 services, 7 servers,
scaling up to 8 VMs

Meng et al. [33] Throughput, number of in-
stances, Convergence time,

Experiment 1 service, scaling up to
50 VMs

Sharma et al.
[37]

Infrastructure cost, re-
sponse time, latency to
actuate new configuration

Experiment 2 services, 6 VMs

Xiong et al. [41] Response time, CPU uti-
lization

Experiment 3 servers, 3 VMs

Our solution Response time (including
optimality), number of in-
stances (including optimal-
ity), dropped/rejected re-
quests

Simulation 10000 VMs

analyze in a controlled environment large scale systems, but in a future work
we plan to have a full validation on top of a real deployed system.

The shades around the experimental plot lines show that the developed
solution is stable with respect to random factors maintaining a limited level
of variability over many runs of the same experiment. This observation is not
trivial as the technique itself involves decisions made according to probabili-
ties computed at runtime (i.e., creation of a new autonomic service). We also
observe that the system is able to deal with a relevant number of autonomic
services (i.e., the peak in our experiments reaches 10.000 VMs) while main-
taining unaltered the quality of achieved results (response time optimality
and optimality of autonomic services allocated), thus showing a good level of
scalability for the technique itself.

5 Conclusion

In this paper we have presented DEPAS, a decentralized probabilistic algorithm
for scaling services in a cloud computing context. In particular, we propose a
novel probabilistic auto-scaling algorithm, which, in combination with a robust
overlay network among services and a decentralized load balancing technique,
provides an effective decentralized solution for deploying massively scalable
services in the cloud. The solution we have proposed will be suitable in all
the situations in which a centralized solution is not feasible, like, for example,
when dealing with multiple cloud providers in a federated cloud scenario.

We implemented our technique using Protopeer toolkit and validated it
with an extensive set of simulations. Experiments show that DEPAS scales to a
large number of nodes (10.000) while maintaining a nearly-optimal response

time and allocated resources; we stressed the system with a highly-variable
workload trace inspired by a real scenario. Moreover, experiments have been
conducted also taking into account potential dynamism in the system like
continuous churn and disruptive events.

We are currently considering the extension of our system in two orthog-
onal directions: (i) support to service composition and (ii) multi-cloud op-
timizations. In the former direction the objective is to provide a scalability
feature to applications composed of different services/components (for exam-
ple a three-tier web system composed of a web-server, an application-server
and a database-server); in this case the replication of the whole system might
generate a waste of resources and the best decision would be to only consider
a single service/component replication (for example only the web server). The
second possible extension focuses on a multi-cloud context in which the auto-
scaling needs to take into account other characteristics that are not currently
captured by our solution, since they depend on the commercial strategy of each
cloud. Examples of additional characteristics may include inter-cloud commu-
nication costs, and efficient heuristics to choose the best hosting cloud and the
best type of instance (in terms of capacity) when replicating an autonomic
service.

Acknowledgements This research has been partially funded by the European Commis-
sion, under projects SMSCom (IDEAS-ERC 227977) and mOSAIC (FP7-ICT-2009-5-256910)
and by the Romanian National Authority for Scientific Research, CNCS UEFISCDI, under
project PN-II-ID-PCE-2011-3-0260 (AMICAS). The experimental part has been supported
by Amazon AWS in Education research grant. Bogdan Caprarescu is partially supported by
IBM through a PhD Fellowship Award.

References

1. Amazon elastic compute cloud (amazon ec2). http://aws.amazon.com/ec2/ (accessed
Sep 5 2011).

2. Ankoder. http://www.ankoder.com/ (accessed Sep 5 2011).
3. Google developer products help whitehouse.gov connect with america.

http://googlecode.blogspot.com/2009/04/google-developer-products-help.html (ac-
cessed Sep 5 2011).

4. Nimbus project. http://www.nimbusproject.org/ (accessed Sep 5 2011).
5. Rightscale. http://www.rightscale.com/ (accessed Sep 5 2011).
6. Scalarium. http://www.scalarium.com/ (accessed Sep 5 2011).
7. Zencoder. http://zencoder.com/ (accessed Sep 5 2011).
8. Amazon auto scaling, 2011. http://aws.amazon.com/autoscaling/ (accessed Sep 5 2011).
9. Amazon ec2, 2011. http://aws.amazon.com/ec2/ (accessed Sep 5 2011).

10. Drools, 2011. http://www.jboss.org/drools/ (accessed Sep 5 2011).
11. Major amazon outage ripples across web, 2011.

http://www.datacenterknowledge.com/archives/2011/04/21/major-amazon-outage-
ripples-across-web/ (accessed Aug 7 2011).

12. C. Adam and R. Stadler. A middleware design for large-scale clusters offering multiple
services. IEEE Transactions on Network and Service Management, 3(1):1–12, 2006.

13. J. Almeida, V. Almeida, D. Ardagna, I. Cunha, C. Francalanci, and M. Trubian. Joint
admission control and resource allocation in virtualized servers. J. Parallel Distrib.
Comput., 70:344–362, April 2010.

14. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Pat-
terson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing. Commun.
ACM, 53:50–58, April 2010.

15. L. Baresi and S. Guinea. A3: self-adaptation capabilities through groups and coordina-
tion. In Proceedings of the 4th India Software Engineering Conference, ISEC ’11, pages
11–20, New York, NY, USA, 2011. ACM.

16. G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing networks and Markov
chains: modeling and performance evaluation with computer science applications.
Wiley-Interscience, New York, NY, USA, 1998.

17. N. Bonvin, T. G. Papaioannou, and K. Aberer. Autonomic sla-driven provisioning for
cloud applications. In Proceedings of the 2011 11th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing, pages 434–443, 2011.

18. B. A. Caprarescu and D. Petcu. A self-organizing feedback loop for autonomic com-
puting. In Proceedings of the 2009 Computation World: Future Computing, Service
Computation, Cognitive, Adaptive, Content, Patterns, COMPUTATIONWORLD ’09,
pages 126–131, Washington, DC, USA, 2009. IEEE Computer Society.

19. A. Celesti, F. Tusa, M. Villari, and A. Puliafito. How to enhance cloud architectures to
enable cross-federation. In Proceedings of the 2010 IEEE 3rd International Conference
on Cloud Computing, CLOUD ’10, pages 337–345, Washington, DC, USA, 2010. IEEE
Computer Society.

20. E. Di Nitto, D. J. Dubois, R. Mirandola, F. Saffre, and R. Tateson. Applying self-
aggregation to load balancing: experimental results. In Proceedings of the 3rd Inter-
national Conference on Bio-Inspired Models of Network, Information and Comput-
ing Sytems, BIONETICS ’08, pages 14:1–14:8. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), 2008.

21. A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier. Cluster-based
scalable network services. In Proceedings of the sixteenth ACM symposium on Operating
systems principles, SOSP ’97, pages 78–91, New York, NY, US, 1997. ACM.

22. M. Fr̂ıncu, N. M. Villegas, D. Petcu, H. A. Müller, and R. Rouvoy. Self-healing dis-
tributed scheduling platform. In CCGRID, pages 225–234, 2011.

23. M. E. Frincu, N. M. Villegas, D. Petcu, H. A. Muller, and R. Rouvoy. Self-healing
distributed scheduling platform. In Proceedings of the 2011 11th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, CCGRID ’11, pages 225–234,
Washington, DC, USA, 2011. IEEE Computer Society.

24. W. Galuba, K. Aberer, Z. Despotovic, and W. Kellerer. Protopeer: a p2p toolkit bridging
the gap between simulation and live deployement. In Proceedings of the 2nd Interna-
tional Conference on Simulation Tools and Techniques, Simutools ’09, pages 60:1–60:9,
ICST, Brussels, Belgium, Belgium, 2009.

25. D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste. Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer, 37:46–54,
October 2004.

26. H. Ghanbari, B. Simmons, M. Litoiu, and G. Iszlai. Feedback-based optimization of a
private cloud. Future Generation Comp. Syst., 28(1):104–111, 2012.

27. W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek. Adaptive resource provisioning
for read intensive multi-tier applications in the cloud. Future Generation Computer
Systems, 27(6):871 – 879, 2011.

28. M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van Steen. Gossip-
based peer sampling. ACM Trans. Comput. Syst., 25, August 2007.

29. K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes. Sky computing. Internet Com-
puting, IEEE, 13(5):43–51, 2009.

30. J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,
36:41–50, January 2003.

31. J. O. Kephart and W. E. Walsh. An artificial intelligence perspective on autonomic
computing policies. In POLICY, pages 3–12, 2004.

32. O. Leads. Opennebula: The open source toolkit for cloud computing.
http://opennebula.org/ (accessed Sep 5 2011).

33. S. Meng, L. Liu, and V. Soundararajan. Tide: achieving self-scaling in virtualized dat-
acenter management middleware. In Proceedings of the 11th International Middleware

Conference Industrial track, Middleware Industrial Track ’10, pages 17–22, New York,
NY, USA, 2010. ACM.

34. D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne, B. Richard, S. Rollins,
and Z. Xu. Peer-to-peer computing. 2002.

35. D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. The eucalyptus open-source cloud-computing system. In Proceedings
of the 2009 9th IEEE/ACM International Symposium on Cluster Computing and the
Grid, pages 124–131. IEEE Computer Society, 2009.

36. D. Petcu, C. Crǎciun, M. Neagul, M. Rak, and I. Lazcanotegui. Building an interop-
erability API for Sky Computing. In Proceedings of 2011 International Conference on
High Performance Computing and Simulation (HPCS), pages 405–411. IEEE Computer
Press, 2011.

37. U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A cost-aware elasticity provisioning
system for the cloud. In Proceedings of the 2011 31st International Conference on
Distributed Computing Systems, ICDCS ’11, pages 559–570, Washington, DC, USA,
2011. IEEE Computer Society.

38. S. Venticinque, R. Aversa, B. Di Martino, M. Rak, and D. Petcu. A cloud agency for
sla negotiation and management. In Proceedings of the 2010 conference on Parallel
processing, Euro-Par 2010, pages 587–594, Berlin, Heidelberg, 2011. Springer-Verlag.

39. D. Weyns, R. Haesevoets, B. Van Eylen, A. Helleboogh, T. Holvoet, and W. Joosen. En-
dogenous versus exogenous self-management. In Proceedings of the 2008 international
workshop on Software engineering for adaptive and self-managing systems, SEAMS ’08,
pages 41–48, New York, NY, USA, 2008. ACM.

40. F. Wuhib, R. Stadler, and M. Spreitzer. Gossip-based resource management for cloud
environments. In Proceedings of the 2010 International Conference on Network and
Service Management (CNSM), pages 1–8, 2010.

41. P. Xiong, Z. Wang, S. Malkowski, Q. Wang, D. Jayasinghe, and C. Pu. Economical and
robust provisioning of n-tier cloud workloads: A multi-level control approach. In Pro-
ceedings of the 2011 31st International Conference on Distributed Computing Systems,
ICDCS ’11, pages 571–580, Washington, DC, USA, 2011. IEEE Computer Society.

	1 Introduction
	2 State of the art
	3 DEPAS Approach
	4 Results
	5 Conclusion

