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An a posteriori error estimator for hp-adaptive

continuous Galerkin methods for photonic crystal

applications

Stefano Giani

Abstract In this paper we propose and analyse an error estimator suitable
for hp-adaptive continuous finite element methods for computing the band
structure and the isolated modes of 2D photonic crystal (PC) applications.

The error estimator that we propose is based on the residual of the discrete
problem and we show that it leads to very fast convergence in all considered
examples when used with hp-adaptive refinement techniques.

In order to show the flexibility and robustness of the error estimator we
present an extensive collection of numerical experiments inspired by real ap-
plications. In particular we are going to consider PCs with point defects, PCs
with line defects, bended waveguides and semi-infinite PCs.
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1 Introduction

The purpose of this work is to demonstrate that the presented error estimator
can improve the study of wave propagation in photonic crystal applications
by reducing the computational cost when used with hp-adaptivity. All the
photonic crystal examples analysed in this work are constructed starting with
a periodic medium, then defects are introduced to enhance the properties of
the crystal. All of the resulting geometries of photonic crystals that were used
are inspired by real applications.

Photonic crystals have many applications, for example, in optical commu-
nications, filters, lasers, switches and optical transistors; see [21,33,23,3] for

S. Giani
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham,
NG7 2RD, UK. E-mail: stefano.giani@nottingham.ac.uk



2 Stefano Giani

an introduction to photonic crystals and see [20,27] for an introduction to
applications.

All problems considered in this work are defined on a rectangular domain
Ω and they can be written in the following form for different choices of the
functional space H and the bounded set K in R2: seek eigenpairs of the form
(λ, u) ∈ R×H, with u appropriately normalised, such that

∫

Ω

((∇+ iκ)v)∗A(∇ + iκ)u = λ

∫

Ω

Buv̄ for all v ∈ H, (1)

where the parameter κ varies in the bounded set K and where ∗ denotes Her-
mitian transpose. Here, the (generally) matrix-valued function A is real, sym-
metric and uniformly bounded and positive definite, i.e. there exist constants
a and a such that

0 < a ≤ ξ∗A(x)ξ ≤ a for all ξ ∈ R2 with |ξ| = 1 and all x ∈ Ω. (2)

The scalar function B is real and uniformly bounded above and below by
positive constants b and b, i.e.,

0 < b ≤ B(x) ≤ b for all x ∈ Ω. (3)

We allow for A and B to be in general discontinuous but only under the condi-
tion that the jumps of the coefficients are aligned with the meshes. Moreover,
in this work we only consider PCs with a finite number of materials, so the
possible values of A and B are finite as well.

As explained in the next section, equation (1) describes several different
problems related to PCs. In this paper we are going to consider PCs with point
defects, PCs with line defects, bended waveguides and semi-infinite PCs.

Equation (1) is derived from Maxwell’s equations which govern the propa-
gation of light in PCs. In 2D PCs, the 3D Maxwell’s equations reduce to a 2D
one-component wave equation, which determines either the electric field or the
magnetic field. Depending on the considered kind of PC, different approaches
can be used to further reduce the 2D wave equation on an infinite domain
to a family of eigenvalue problems on bounded domains. All such approaches
involve the Floquet transform [23,22] to exploit the periodicity of the crystal.

A very popular practical numerical method for PCs is the Fourier spectral
method (also called the “plane-wave expansion method”) [32,21,10,30,31].
This method exploits the periodicity in the PC and uses modern highly tuned
FFT algorithms to obtain fast implementations. However, the overall rate of
convergence of approximate spectra to true spectra is slow because the jumps
in the dielectric destroy the exponential accuracy which is achieved by Fourier
spectral methods for smooth problems.

Instead our approach is based on adaptive finite element methods because
they provide flexible solvers for PDE eigenvalue problems and they are able
to deal optimally with heterogeneous media. There are already a number of
papers about low order finite element methods for PCs [5,9,11,12] and most
recently there has been considerable interest in h, p and hp methods [19,14,
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25,35,34]. Accurate computations based on a priori hp refinement strategies
are shown in [35,34]. However, as far as we are aware, until now no one has
used hp-adaptivity based on a posteriori error estimates on these problems
with continuous Galerkin methods.

The outline of the paper is as follows. The next section - §2 - briefly de-
scribes how problem (1) is derived from Maxwell’s equations. Then in §3 we
characterize the finite element spaces and introduce the discrete version of
problem (1). In the following section §4 the error estimator is presented to-
gether with the proof of reliability. Finally in §5 we present all the numerical
results.

2 Photonic crystal eigenvalue problems

In general, PCs are of practical interest because of the properties of their spec-
tra which can be exploited in many applications. The most useful properties
are the presence of band-gaps - i.e., monochromatic electromagnetic waves of
certain frequencies may not propagate inside the crystal - and possibly the
presence of trapped modes within the gaps.

The mathematical development (see e.g. [23]) begins with time harmonic
Maxwell’s equations with eigenvalue ω

∇×Eω = − iω
c µHω, ∇ · µHω = 0 ,

∇×Hω = iω
c εEω , ∇ · εEω = 0 ,

(4)

where ω is the frequency, Eω is the electric field, Hω is the magnetic field, ε
and µ are, respectively, the dielectric permittivity and magnetic permeability
tensors, and c is the speed of light in vacuum. We assume that the medium is
periodic in the (x, y) plane and that it is constant in the third (z) direction.
Furthermore we assume that the material is non-magnetic (so µ = 1). If we
only consider Eω = Eω(x, y) and Hω = Hω(x, y) then problem (4) splits
naturally into two independent problems, called transverse magnetic (TM)
and transverse electric (TE) modes, as explained in [23]:

∆uω +
ω2

c2
εuω = 0 (TM case) , (5)

∇ ·
1

ε
(∇uω) +

ω2

c2
uω = 0, (TE case) . (6)

Both problems (5) and (6) may be written in the abstract form as that of
seeking (λ, u) with u 6= 0 such that

∇ · (A∇u) + λBu = 0 . (7)

Since A or B may be discontinuous, (7) has to be understood in an appropriate
weak form. So far (7) is posed over all of R2, with periodic data. Problem (7) is
difficult to solve numerically because it is posed on an unbounded domain and
because such problem has spectrum formed by bands of essential spectrum. In
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order to make the problem easier to solve, we use the Floquet transform [23]
to derive a family of problems with discrete spectra.

A 2D periodic medium can be described using a lattice L := {R = n1r1+
n2r2 , n1, n2 ∈ Z} , where {r1, r2} is a basis for R2. The (Wigner-Seitz)
primitive cell for L is the set ΩC of all points in R2 which are closer to 0
than to any other point in L [4]. When ΩC is translated through all R ∈ L,
we obtain a covering of R2 with overlap of measure 0. The reciprocal lattice
for L is the lattice L̂ generated by a basis {k1,k2}, chosen so that ri · kj =
2πδi,j , i, j = 1, 2 , where δi,j is the Kronecker delta and the primitive cell for
the reciprocal lattice is called the first Brillouin zone, which we denote here
by K2D,ΩC

[4]. For example, if L is the square lattice generated by {e1, e2}

(where ei are the standard basis vectors in R2), then ΩC = (−0.5, 0.5)2, L̂ is
generated by {2πe1, 2πe2} and the first Brillouin zone is K2D,ΩC

= (−π,+π)2.
The Floquet transform [23] may then be used to show the equivalence of

problem (7) to a family of problems on the primitive cell ΩC with periodic
boundary conditions parametrized by quasimomentum κ ∈ K2D,ΩC

. This is
the family

(∇+ iκ) · A(∇ + iκ)ũ+ λBũ = 0 on ΩC , κ ∈ K2D,ΩC
, (8)

where ũ satisfies periodic boundary conditions and it is the Floquet transform
of u and λ is the corresponding eigenvalue which now depends on κ - a rigorous
derivation can be found for example in [8]. This equation should again be
understood in the weak form. In order to recover the spectrum of problem
(7), it is sufficient to compute the closure of the union of all the spectra of
the problems in the family (8) for all κ ∈ K2D,ΩC

, and these problems have
discrete and real spectra [23]. Writing (8) in weak form gives precisely (1).

Equation (8) models an infinite PC with periodic data. In order to analyse
the case of PCs with defects such as point defects, line defects and bends, we
modify the model problem as described in the super-cell framework [36]. In this
framework the domain of the problem is not anymore a single cell, but a bigger
portion of the periodic medium containing also defects, see Figures 1(a), 1(b)
and 1(c) for examples of such domains for different kind of PC applications.
Denoting by ΩS the super-cell we then have the family of problems with
periodic boundary conditions

(∇+ iκ) · A(∇+ iκ)ũ+ λBũ = 0 on ΩS , κ ∈ K2D,ΩS
, (9)

where K2D,ΩS
is the first Brillouin zone corresponding to ΩS .

In order to derive the model problem for a semi-infinite PC we have to
proceed in a different way. Assuming that the PC fills only the half of the
space R2 with x > 0, see Figure 1(d). Then we need to apply the Floquet
transform to (7) only in the y-direction. In this way the resulting problem is:

(∇+ iκ) · A(∇+ iκ)ũ + λBũ = 0 on Ω̂, κ ∈ K1D,Ω̂ ,

where ũ satisfies periodic boundary conditions on the horizontal boundaries
of Ω̂ := R × [−0.5,+0.5] and where the corresponding first Brillouin zone is
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(a) (b)

(c) (d)

Fig. 1 Examples of super-cells for different PC configurations: (a) PC with point defect.
(b) PC with line defect. (c) V-bend wave guide. (d) Portion of a semi-infinite PC.

K1D,Ω̂ := {0}×[−π,+π]. Since the domain Ω̂ is still unbounded, it is necessary

to truncate the domain Ω̂ in the x-direction far enough away from the surface
of the crystal. The resulting domain ΩT is of rectangular shape with periodic
boundary conditions in the y-direction and homogeneous Dirichlet boundary
conditions in the x-direction and the resulting problem is:

(∇+ iκ) · A(∇ + iκ)ũ+ λBũ = 0 on ΩT , κ ∈ K1D,ΩT
, (10)

where K1D,ΩT
≡ K1D,Ω̂. The effects of the truncation of the domain on self-

adjoint problems with potential has been fully analysed in [26]. The results
presented in such work show that enlarging the domain, the eigenvalues of the
truncated problem converge to the eigenvalues of the unbounded problem. In
view of that it seems plausible that for −(∇+iκ)·A(∇+iκ)ũ in problem (10),
which can be seen as a self-adjoint operator with zero potential, the surface
modes, which are confined in a narrow strip region containing the surface of
the crystal, still exist in the spectrum of the truncated problem and that,
enlarging the domain, such modes of the truncated problem may converge to
the surface modes of the unbounded problem.
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3 Discrete eigenvalue problems

ThroughoutL2(Ω) denotes the usual space of square integrable complex valued
functions equipped with the weighted norm

‖g‖0,B = b(g, g)1/2 , b(g, w) :=

∫

Ω

Bgw̄ , (11)

where Ω = ΩC , ΩS , ΩT . H
1(Ω) denotes the usual space of functions in L2(Ω)

with square integrable gradient, the H1-norm is denoted ‖g‖1 and H1
π(Ω)

denotes the subspace of functions in g ∈ H1(Ω) which satisfy periodic bound-
ary conditions on ∂Ω. Furthermore we denote with H1

0,π(Ω) the subspace of
functions in g ∈ H1(Ω) which satisfy periodic boundary conditions on the
horizontal boundaries of Ω, where Ω is supposed to be of rectangular shape,
and homogeneous Dirichlet on the vertical boundaries of Ω. When we want to
restrict these norms to a measurable subset S ⊆ Ω, we write ‖g‖0,B,S, ‖g‖1,S,
etc.

Problem (1) can be rewritten as: for κ ∈ K seek eigenpairs of the form
(λj , uj) ∈ R×H such that

aκ(uj , v) = λj b(uj , v) , for all v ∈ H
‖uj‖0,B = 1

}

(12)

where

aκ(u, v) :=

∫

Ω

((∇+ iκ)v(x))∗A(x)((∇ + iκ)u(x)) . (13)

Depending on the problem under consideration different definitions for Ω, H
and K should be applied. In particular for problems with point defects, line
defects and bended waveguides, we have from (9) that H := H1

π(ΩS) and
K := K2D,ΩS

. On the other hand for semi-infinite crystals we have from (10)
that H := H1

0,π(ΩT ) and K := K1D,ΩT
.

Now, to discretize (12), let Tn , n = 1, 2, . . . denote a family of conform-
ing, shape-regular triangulations [1]. In all problems considered in this work
we impose in some parts or along the all boundary of the domain periodic
boundary conditions. The effect of imposing periodic boundary conditions is
that opposite edges of the domain are identified, this means that the num-
ber of nodes and the positions of them should coincide on identified edges in
order to keep the finite element method conforming. These meshes may be
computed adaptively. With hτ denoting the diameter of element τ , we define
hmax
n := maxτ∈Tn

{hτ}. We store the elemental diameters in the mesh size
vector h = { hτ : τ ∈ Tn }.

The set F(Tn) contains all the internal mesh edges and all the boundary
edges where periodic boundary conditions are imposed. Because of the pres-
ence of periodic boundary conditions, not all the edges along the boundary of
Ω have to be considered as boundary edges, therefore some of the edges of the
mesh along ∂Ω are actually treated as interior edges. In this case the second
element sharing the edge is on the opposite side of the domain. The diameter
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of an edge f is denoted by hf , similarly we denote with F(τ) the set of all
edges of the element τ .

In order to define the finite element space on Tn, we begin by introducing
polynomial spaces on elements. To that end, let τ ∈ Tn be an element, we set
Pp(τ) to be the set of polynomials on the element τ of total degree less than
or equal to p. Then, we assign a polynomial degree pτ ≥ 1 with each element
τ of the mesh Tn. We then introduce the degree vector p = { pτ : τ ∈ Tn }.
We assume that p is of bounded local variation, i.e. there is a constant ̺ ≥ 1,

independent of the mesh Tn under consideration, such that ̺−1 ≤ pτ/pτ ′ ≤ ̺
for any pair of neighboring elements τ, τ ′ ∈ Tn. We finally denote by pf the
maximum of the order of polynomials of the two elements sharing the face
f ∈ F(Tn).

For a partition Tn of Ω and a polynomial degree vector p on Tn, we define
the finite element spaces of continuous functions by

Sp(Tn, ΩS) = { v ∈ H1
π(ΩS) : v|τ ∈ Ppτ

(τ), τ ∈ Tn }, (14)

for the problems on super-cells and by

Sp(Tn, ΩT ) = { v ∈ H1
0,π(ΩT ) : v|τ ∈ Ppτ

(τ), τ ∈ Tn }, (15)

for the semi-infinite crystal problem. Where it is not necessary to distinguish
between these two cases, we denote the finite element space with Sp(Tn, Ω).

The discrete approximation of problem (12) is: seek eigenpairs of the form
(λj,n, uj,n) ∈ R× Sp(Tn, Ω) such that

aκ(uj,n, vn) = λj,n b(uj,n, vn) , for all vn ∈ Sp(Tn, Ω)

‖uj,n‖0,B = 1

}

(16)

It is easy to see that aκ is a Hermitian form which is bounded independently
of κ ∈ K on H1(Ω), where Ω is either ΩC , ΩS or ΩT . Moreover by the positive
definiteness of A assumed in (2), we have

aκ(u, u) ≥ a

∫

Ω

|(∇+ iκ)u|2 ≥ 0 , for all u ∈ H , (17)

where H is either H1
π(ΩC), H

1
π(ΩS) or H

1
π,0(ΩT ). Thus the spectrum of (12)

is real and non-negative
However aκ(u, u) on H1

π(ΩC) and on H1
π(ΩS) is not always strictly positive

(for u 6= 0), since if κ = (0, 0) then aκ(1, 1) = 0. Thus we introduce the shifted
Hermitian form:

(u, v)κ,A,B := aκ(u, v) + σ b(u, v) , for all u, v ∈ H1
π(Ω) , (18)

with a fixed shift σ := maxκ∈K |κ|2a/b + 1. The following result shows that
the shifted form is coercive on H1

π(Ω) (i.e., (u, u)κ,A,B/‖u‖
2
1 is bounded below

by a positive constant for all u 6= 0). The norm induced by this shifted form
is used in the theory below, but it is never used in computations.
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Lemma 1 The sesquilinear form (·, ·)κ,A,B is an inner product on H1
π(Ω).

(We denote the induced norm by ‖ · ‖κ,A,B.)

The proof of such result can be found in [19, Lemma 2.1].

Remark 1 In order to keep the exposition as simple as possible, we treated
also the problem on semi-infinite crystals in the same way using the shifted
Hermitian form.

Problem (12) can be rewritten using the Hermitian form (·, ·)κ,A,B as: for
κ ∈ K seek eigenpairs of the form (ζj , uj) ∈ R×H such that

(uj , v)κ,A,B = ζj b(uj , v) , for all v ∈ H
‖uj‖0,B = 1 .

}

(19)

It is self-evident that the eigenpairs of (12) and (19) are in one-one corre-
spondence. In fact, (λj , uj) is an eigenpair of (12) if and only if (ζj , uj), with
ζj = λj+σ, is an eigenpair of (19). Now, because the Hermitian form (·, ·)κ,A,B
is continuous and coercive, we have that the solution operator is compact and
then using the spectral theorem for compact operators it yields that the spec-
trum of (19) consists of eigenvalues of finite multiplicity, see [7]. The same
result holds also for (12) due to the correspondence between the spectra of the
two problems.

The distance of an approximate eigenfunction from the true eigenspace is a
crucial quantity in the convergence analysis for eigenvalue problems especially
in the case of non-simple eigenvalues.

Definition 1 Given a function v ∈ L2(Ω) and a finite dimensional subspace
P ⊂ L2(Ω), we define:

dist(v,P)0,B := min
w∈P

‖v − w‖0,B .

Similarly, given a function v ∈ H1(Ω) and a finite dimensional subspace P ⊂
H1(Ω), we define:

dist(v,P)κ,A,B := min
w∈P

‖v − w‖κ,A,B ,

where ‖ · ‖κ,A,B is defined in Lemma 1.

Now let λj be any eigenvalue of (12), let E(λj) denote the finite dimensional
space spanned by the eigenfunctions of λj and set E1(λj) = {u ∈ E(λj) :
‖u‖0,B = 1}. Let Tλj

denote the orthogonal projection of H1 onto E(λj) with
respect to the inner product (·, ·)κ,A,B defined in (18). The following lemma is
proved in [19, Lemma 3.3].

Lemma 2 Let (λj,n, uj,n) be an eigenpair of (16). Then

‖uj,n − uj‖0,B = dist(uj,n, E1(λj))0,B , (20)

if and only if

‖uj,n − uj‖κ,A,B = dist(uj,n, E1(λj))κ,A,B . (21)
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4 Residual based error estimator

Our a posteriori error estimator presented in (22) below is based on the results
in [28] (for α = 0, in the notation of that paper) that we extended to the PC
case. The most important characteristic of the error estimator is reliability,
which in broad terms means that the ratio of the actual error to the error
estimator is bounded above by a positive constant independent of the mesh.
As in [28], it is possible to define error estimators for PCs for α 6= 0, but
in order to keep the exposition simple, we decided to consider only the case
α = 0. As already explained in [28], a p-independent proof for the efficiency
of the error estimator is still not available in the case when α = 0 due to the
p-dependence of polynomial inverse estimates. In a similar way as in [28] it is
possible also with our error estimator to prove the efficiency independent of
h, but still p-dependent. Nevertheless, as in [28], our numerical experiments
in Section 5 suggest that our error estimator is also efficient in p. Moreover,
this error estimator can be considered as the extension to the hp-case of the
error estimator presented in [19], which was only designed for h-adaptive finite
element methods.

Notation 1 From now on, we write A . B when A/B is bounded above by a
constant independent of n, the size of the elements and the order of polynomials
used within the elements. The notation A ∼= B means A . B and A & B.

The residual estimator ηj,n is defined as a sum of element residuals and
edge residuals, which are all computable quantities. For f ∈ F(Tn), we denote
by τ1(f) and τ2(f), the two elements sharing f ∈ F(Tn).

We let nf denote the unit normal on the edge f , which is assumed to
point from τ1(f) into τ2(f). To simplify the notation, we define the map [·]f
as follows

Definition 2 We can define for any function g : Ω → C which is continuous
on each element of the mesh Tn and for any f ∈ F(Tn)

[g]f(x) :=

(

lim
x̃∈τ1(f)
x̃→x

g(x̃) − lim
x̃∈τ2(f)
x̃→x

g(x̃)

)

, with x ∈ f .

Definition 3 (Residual Estimator) The definition of the residual estima-
tor ηj,n involves two maps: RI(·, ·), which expresses the contributions from the
elements in the mesh:

RI(u, λ)(x) :=
(

(∇+ iκ) ·A(∇+ iκ)u + λBu
)

(x), with x ∈ int(τ), τ ∈ Tn,

where int(τ) is the interior of the element τ and RF (·), which expresses the
contributions from the edges of the elements:

RF (u)(x) :=
[

nf · A(∇+ iκ)u
]

f
(x), with x ∈ int(f), f ∈ F(Tn) .

(Recall that the jumps of the coefficients are assumed to be aligned with the
meshes.)
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Then the residual estimator ηj,n for the computed eigenpair (λj,n, uj,n) is
defined as:

ηj,n :=

{

∑

τ∈Tn

h2
τ

p2τ
β−1
τ ‖RI(uj,n, λj,n)‖

2
0,τ +

∑

f∈F(Tn)

hf

pf
β−1
f ‖RF (uj,n)‖

2
0,f

}1/2

,

(22)
where βτ := Amax|τ , βf := max{Amax|τ1(f),Amax|τ2(f)} , and Amax denotes
the maximum eigenvalue of A.

In order to prove the reliability we use the interpolation results presented
in [29] where two interpolation operators are introduced. Firstly, we have the
Clément type interpolation operator [29, Theorem 3.1] that we are going to
use for the full-periodic case. Secondly, we have the Scott-Zhang type interpo-
lation operator [29, Theorem 3.3] that, since it is able to handle homogeneous
boundary conditions, we are going to use in the semi-periodic case to approx-
imate surface modes. In order to simplify the notation, we are going to denote
both interpolation operators with In : H → Sp(Tn, Ω), where the actual defi-
nition of the operator depends on the case under consideration. Coming from
[29] we have that both interpolation operators satisfy:

‖v − Inv‖0,τ .
hτ

pτ
‖v‖1,ω(τ), and ‖v − Inv‖0,f .

(hf

pf

)
1

2

‖v‖1,ω(f) ,

(23)
where ω(τ) (respectively ω(f)) denotes the union of all elements sharing at
least a vertex with τ (resp. f) .

Theorem 2 (Reliability for eigenfunctions) Let (λj,n, uj,n) be a computed
eigenpair with λj,n converging to an eigenvalue λj of (12). Then

dist(uj,n, E1(λj))κ,A,B . ηj,n + Gj,n, (24)

where

Gj,n =
1

2
(λj + λj,n + 2σ)

dist(uj,n, E1(λj))
2
0,B

dist(uj,n, E1(λj))κ,A,B
. (25)

The proof of Theorem 2 is the same as the proof of reliability for eigenfunc-
tions in [19], with the only difference that in this case the two interpolation
operators introduced in [29] are used.

The next theorem, already presented in [19], shows the reliability for eigen-
values.

Theorem 3 (Reliability for eigenvalues) Under the same assumptions as
in Theorem 2, we have:

|λj,n − λj | . η2j,n + G′
j,n ,



Title Suppressed Due to Excessive Length 11

where

G′
j,n =

1

2
ηj,n(λj + λj,n + 2σ)

dist(uj,n, E1(λj))
2
0,B

dist(uj,n, E1(λj))κ,A,B

+
1

2
(λj,n − λj + 2σ)dist(uj,n, E1(λj))

2
0,B .

5 Adaptive FEM and numerical experiments

In this section we have collected numerical results using our a posteriori error
estimator with the clear aim to show the robustness of the error estimator
and the fast decay of the error on a sequence of hp-adapted meshes. In all
examples we solved the TE case because it is harder to solve, since localized
singularities in the gradient of the eigenfunctions are probable to appear due
to the discontinuous coefficient in the second order term.

Following [6], we assume an error model of the form

λj,h = λj + Ce−2γ
3
√
DOFs,

for problems with discontinuous coefficients, whose eigenfunctions are expected
to have isolated singularities. The constants C and γ are determined by least-
squares fitting, and γ is reported for each problem.

Plots are given of the error for eigenvalues, the correspondent value of
the a posteriori error estimator and the associated effectivity index, which
is defined as |λj,n − λ|/η2j,n. For comparison we plots the convergence curves
from both the h-adaptive method and the hp-adaptive method and we denote
the errors with “error-h” and “error-hp” respectively. Similarly we denote the
values of the error estimator for the h-case and hp-case with a “post-h” and
a“ post-hp” respectively. In order to visually appreciate the converge rate of
the hp-adaptive method, we plot a red line computed with the least-squares
fitting method to highlight the slope of the curve.

As reference solutions for problems in this section we use highly accurate
computations on very rich finite element spaces to produce “exact eigenvalues”
for our comparisons.

First of all we would like to illustrate with an example of how to compute
the spectrum of a PC. The spectra of photonic crystals typically contain band
gaps, but, for many applications, the identification of band gaps is not enough.
Commonly it is necessary to perturb artificially the spectrum by modifying the
geometry of the crystal. Probably the most common alteration is the creation
of eigenvalues inside the gaps in the spectra of the media. The importance
of these eigenvalues is due to the fact that electromagnetic waves, which have
frequencies corresponding to those eigenvalues, may remain trapped inside the
crystal [15,17]. The common way to create such eigenvalues is by introducing
a localized defect in the periodic structures — see [17] and [16, Theorem 2].
Such localized defects do not change the bands of the essential spectrum [16,
Theorem 1]. For sake of brevity we are going to consider only the TE case
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in this example. In this case A is piecewise constant, B = 1 and there are
typically localized singularities in the gradient of the eigenfunctions at corner
points of the interface in A (from discontinuities in the dielectric ε), leading
to a strong need for adaptivity.

The first step in order to analyze a PC is to compute the band structure of
the periodic structure of the crystal. In this example we consider a square unit
cell with a square inclusion of side 0.5 centered inside it. We choose A to take
the value 1 outside the inclusion and the value 0.05 inside it, see Figure 2(a).
This is a realistic example, since expected jumps in dielectric permittivity of
about this order have been already considered, see [20]. Moreover an higher
jump in dielectric permittivity can make the problem numerically harder to
solve due the fact that stronger singularities could appear.

Due to symmetries in the problem, in order to produce accurately the band
structure of the crystal it is just necessary to compute the eigenvalues of (1)
for the values of κ in the reduced Brillouin zone, see Figure 2(b), instead of
using the entire first Brillouin zone.

Each eigenvalue of (1) can be seen as a function of the quasimomentum
λj(κ), in this way we can obtain the plot in Figure 3(a), where we have plotted
just the first four bands and for sake of clarity we just considered the values of
κ on the border of the reduced Brillouin zone (we used Γ to parametrize the
contour of the reduced Brillouin zone). As can be seen the minimum and the
maximum of each function λj(κ) delimit a band of the spectrum and between
bands sometimes gaps can be found. The frequencies of light corresponding
to points in the gap are not allowed to travel across the periodic structure of
the PC. In this example it seems that there is a gap between the first and the
second band. To be sure of that it is necessary to compute the entire bands.
In Figure 3(b) the first three bands are plotted over the Brillouin zone. The
figure confirms that between the first and the second band there is a gap.
The surfaces in Figure 3(b) are computed with Algorithm 3 in [18], which is
particularly efficient in computing entire bands.

(a)

−0.5 0 0.5
−0.5

0

0.5

K
1

K
2

(b)

Fig. 2 (a) Structure of the primitive cell. (b) The dark triangle is the reduced Brillouin
zone for the primitive cell in (a).
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(a) (b)

Fig. 3 (a) Band structure of the spectrum for the periodic crystal. The gap between the
first two bands has been highlighted in yellow. (b) Band structure of the spectrum for the
periodic crystal.

As predicted by the theory [23], the presence of a compact defect in the
periodic structure can consequently create localized eigenvalues in the gaps
that correspond to trapped modes. These modes can travel in the z-direction of
the PC with almost no losses. A frequently used way to search for these trapped
mode is to consider the super-cell framework [36], in which the considered
primitive cell (called super-cell) is a portion of the periodic structure including
the defect. Due to the periodic boundary conditions, the defect is not any more
compact because it is repeated in each super-cell, see Figure 4(a) for a plot of
the super-cell with a defect. The introduction of the defect in the super-cell
does not lead to the creation of eigenvalues in the gaps, but it could create
narrow new bands in the gaps which shrink exponentially fast to eigenvalues
when the number of layers of periodic structure around the defect in the super-
cell is increased [36]. Computing the band structure of the super-cell we obtain
Figure 4(b) where a new narrow band of index j = 25 is now present in the
first gap.

The preferable way to numerically discover these trapped mode is first to
compute the position of the gaps in the spectrum of the periodic structure
with no defects and then check in the super-cell for the presence of any band
in the span of the already identified gaps for the periodic structure.

This way to proceed, that could seem rather complicated, is numerically
efficient because the localization of the gaps is done on the single cell problem,
that is a small problem to solve. Then on the super-cell with the defect, only
the eigenvalues in the gaps are computed. That could be easily done using the
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shift and invert spectral transformation in ARPACK [24] and setting the shift
value to the middle point of a gap.

(a) (b)

Fig. 4 (a) Structure of the super-cell with a defect in the center. (b) Band structure of the
spectrum for the supecell in (a). The first gap has been highlighted in yellow and the newly
created trapped band in red.

Algorithm 1 hp-adaptive algorithm
(λj,n, uj,n) := Adapt(T , Sp(T , Ω), j, θ, tol)
n := 1
T1 := T

repeat

Compute the j-th eigenpair (λj,n, uj,n) on Tn

Compute ηj,τ for all τ ∈ Tn

if
(

∑

τ∈Tn
η2j,τ

)1/2
< tol then

exit
else

(Tn+1, Sp(Tn+1, Ω)) := Refine(Tn, Sp(Tn, Ω), θ, ηj)
n := n+ 1

end if

until

All the experiments have been carried out using AptoFEM
(www.aptofem.com) on a single processor desktop machine. In particular, we
used ARPACK [24] to compute the eigenvalues and MUMPS [2] to solve the
linear systems. The algorithm used to compute all numerical results in this
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section is presented in Algorithm 1, which takes as input: an initial mesh T ,
an initial finite element space Sp(T , Ω), the index j of the eigenpair to approx-
imate, a real value 0 ≤ θ ≤ 1 to tune the fixed-fraction marking strategy and
finally a real and positive value tol which prescribes the required tolerance. The
algorithm has a very simple structure that consists of a repeat-until loop. Dur-
ing each iteration of the loop a new approximation of the eigenpair of interest
is computed, then the error estimator is calculated and, if the estimated er-

ror
(
∑

K∈T η2j,K
)1/2

is smaller than the prescribed tolerance tol the algorithm
stops; otherwise the mesh T and the space Sp(T , Ω) are refined and another
iteration follows. The function Refine applies a simple fixed-fraction strategy
to mark a minimal subset of elements containing a portion of the error pro-
portional to θ. Then the choice for each marked element between splitting the
element into smaller elements using red-refinement (h-refinement) or increas-
ing the polynomial order (p-refinement) is made by testing the local analyticity
of the solution in the interior of the element as described in [13]. In the case
that we are only interested in using h-refinement the local analyticity test can
be avoided. In order to avoid the presence of hanging nodes in the refined
meshes, the Refine procedure also closes the meshes using green-refinement,
i.e. the hanging nodes are removed applying extra refinements.

5.1 TE mode problem on crystal with point defect

Now we pursue the approximation of a trapped mode in Figure 4(b). In order
to do this we are now considering the super-cell in Figure 4(a) as the domain of
our problem. Since the domain is (−2.5, 2.5)2, it comes that the first Brillouin
zone is: (−π/5, π/5)2. We compared h- with hp-adaptivity for different values
of the quasimomentum for the 28th smallest eigenvalue which seems to be the
trapped mode.

Figures 5(a), 5(b) and 5(c) contain the convergence plots for the eigenvalue
of the trapped band for different values of quasimomentum. It is possible to
see that in all cases with the hp-adaptivity the convergence is much faster
than with only h-adaptivity and always seems exponential with values of γ:
0.08455, 0.09540 and 0.96318.

In Figure 6(a) we depict the mesh coming from the seventh iteration of
Algorithm 1, as can be seen there is a lot of refinement around the defect,
especially around the corners of the inclusions closest to the defect. Away
enough from the defect the corners of the inclusions are not refined much.
Since the trapped mode has a fast decay away from the defect, this prevents
any strong singularity to appear in the corners of the inclusions far enough
from the defect. This is the reason why the refinement is so concentrated near
the defect and why the corners of the inclusions away from the defect seem
not to show important singularities. In Figure 6(b) we depict the eigenfunction
corresponding to the trapped eigenvalue with quasimomentum κ = (0, 0).
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Fig. 5 (a) Convergence plots for the super-cell problem for quasimomentum (0, 0). (b)
Convergence plots for the super-cell problem for quasimomentum (π/5, 0). (c) Convergence
plots for the super-cell problem for quasimomentum (π/5, π/5).

(a) (b)

Fig. 6 (a) An adapted mesh for a trapped eigenvalue of the TE case problem on a super-
cell with quasimomentum κ = (0, 0). The color scale indicates the polynomial order in the
elements. (b) A picture of the eigenfunction trapped in the defect of the TE case problem
on a super-cell with quasimomentum κ = (0, 0).

5.2 TE mode problem on crystal with line defect

In this section we approximate a trapped mode in a PC waveguide, which is
constructed by removing a column of rods. Waveguides with similar geometry
have been already considered in [27]. Numerically we approximate the 6th
smallest eigenvalue of the problem by considering the super-cell in Figure 7(a).
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Fig. 7 (a) Super-cell domain for the problem on crystal with line defect. (b) Convergence
plots for the line defect problem for quasimomentum (0, 0).

(a)

(b)

Fig. 8 (a) An adapted mesh for a trapped eigenvalue of the TE case for the line defect
problem with quasimomentum κ = (0, 0). The color scale indicates the polynomial order in
the elements. (b) A picture of the eigenfunction trapped in the line defect of the TE case
problem with quasimomentum κ = (0, 0).
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Figure 7(b) contains the convergence plot for a trapped mode with κ =
(0, 0) and using hp-adaptivity, which as before seems exponential with γ =
0.14167.

In Figure 8(a) we depict the mesh coming from the ninth iteration of
Algorithm 1. In Figure 8(b) we depict the eigenfunction corresponding to the
eigenvalue trapped in the gap with quasimomentum κ = (0, 0).

5.3 TE mode problem on V-bend crystal

This section is dedicated to the approximation of a trapped mode in a V-
bend waveguide. The trapped modes in the bend are important in practice
because exciting these modes it is possible to make an electromagnetic wave
to go around a bend. Waveguides with similar geometry have been already
considered in [27]. Numerically we approximate the 3rd smallest eigenvalue
with a shift of 0.84 in the shift and invert spectral transformation in ARPACK
and we considered the super-cell in Figure 1(c) as the domain of the problem.

Figure 9 contains the convergence plot for a trapped mode with κ = (0, 0)
and using hp-adaptivity, which as before converges exponentially with γ =
0.053359.

In Figure 10(a) we depict the mesh coming from the sixth iteration of
Algorithm 1. In Figure 10(b) we depict the eigenfunction corresponding to the
eigenvalue in the bend with quasimomentum κ = (0, 0).
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Fig. 9 Convergence plots for the V-bend problem for quasimomentum (0, 0).
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(a)

(b)

Fig. 10 (a) An adapted mesh for a trapped eigenvalue of the TE case for the V-bend
problem with quasimomentum κ = (0, 0). The color scale indicates the polynomial order
in the elements. (b) A picture of the eigenfunction trapped in the V-bend of the TE case
problem with quasimomentum κ = (0, 0).

5.4 TE mode problem on the surface of a photonic crystal

In this section we approximate a mode localized on the surface of a semi-infinite
PC. In order to make the computation possible we truncate the domain in the
horizontal direction and apply periodic boundary conditions in the vertical
direction only. The considered domain is (−10, 10)× (−0.5.0.5). Because the
variational formulation of the problem comes from applying the Floquet trans-
form only in the y-direction, the corresponding Brillouin zone is {0}×(−π, π).
Surface modes have been already considered in [20], where it is also noticed
that in order to make such modes more likely to appear, the surface of the
crystal should be made by truncating the periodic medium cutting a column of
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rods in half, see Figure 11(a). Numerically we approximate the 60th smallest
eigenvalue of the problem.
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Fig. 11 (a) Domain for the problem on the surface of a semi-infinite PC. (b) Convergence
plots for the surface problem for quasimomentum (0, 0).

Figure 11(b) contains the convergence plot for the surface mode with κ =
(0, 0) and using hp-adaptivity, with γ = 0.064134.

In Figure 12 we depict the mesh coming from the sixth iteration of Algo-
rithm 1. In Figure 13 we depict the corresponding eigenfunction with quasi-
momentum κ = (0, 0).

Fig. 12 An adapted mesh for a trapped eigenvalue of the TE case for the surface problem
with quasimomentum κ = (0, 0). The color scale indicates the polynomial order in the
elements.
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Fig. 13 A picture of the eigenfunction trapped in the surface of the TE case problem with
quasimomentum κ = (0, 0).

References

1. M. Ainsworth and J. Oden. A Posterior Error Estimation in Finite Element Analysis.
Wiley, New York, 2000.

2. P. Amestoy, I. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed symmetric
and unsymmetric solvers. Comput. Methods in Appl. Mech. Eng., 184(2–4):501–520,
2000.

3. H. Ammari and F. Santosa. Guided waves in a photonic bandgap structure with a line
defect. SIAM J. Appl. Math., 64(6):2018–2033, 2004.

4. N. W. Ashcroft and N. D. Mermin. Solid State Physics. Saunders College, Philadelphia,
1976.

5. W. Axmann and P. Kuchment. An efficient finite element method for computing spectra
of photonic and acoustic band-gap materials. J. Comput. Physics, 150:468–481, 1999.
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