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Abstract We prove an a-posteriori error estimate for an hp-adaptive dis-
continuous Galerkin method for the numerical solution of elliptic eigenvalue
problems with discontinuous coefficients on anisotropically refined rectangular
elements. The estimate yields a global upper bound of the errors for both the
eigenvalue and the eigenfunction and lower bound of the error for the eigen-
function only. The anisotropy of the underlying meshes is incorporated in the
upper bound through an alignment measure. We present a series of numerical
experiments to test the flexibility and robustness of this approach within a
fully automated hp-adaptive refinement algorithm.

1 Introduction

Eigenvalue problems appear naturally in many physical situations, for exam-
ple, when studying acoustics and vibration analysis, the Schrödinger equation,
nuclear reactor criticality and the linear stability analysis of steady solutions
to nonlinear differential equations. In this article we consider the following
model problem:

{
−∇ · (A∇u) = λu in Ω ⊂ R

d,

u = 0 on Γ ,
(1.1)

S. Giani
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham,
NG7 2RD, UK
E-mail: stefano.giani@nottingham.ac.uk

E. Hall
School of Mathematical Sciences, University of Nottingham, University Park, Nottingham,
NG7 2RD, UK
E-mail: edward.hall@nottingham.ac.uk



2 Stefano Giani, Edward Hall

where d = 2, 3 and the (generally) matrix-valued function A is real symmetric
and uniformly positive definite, i.e.,

0 < a ≤ ξtA(x)ξ ≤ a for all ξ ∈ R
n with |ξ| = 1 and all x ∈ Ω ,

(1.2)
where Ω is a bounded polyhedral domain with boundary Γ = ∂Ω. The stan-
dard weak formulation of (1.1) is to find u ∈ H1

0 (Ω) such that

A(u, v) ≡

∫

Ω

A∇u · ∇v dx = λ

∫

Ω

u v dx ≡ λ b(u, v) ∀ v ∈ H1
0 (Ω), (1.3)

where the space H1
0 (Ω) is the standard space of functions with gradient in

L2(Ω) and with zero trace on Γ .

In many situations, for example, when A has discontinuities or in the case
of irregularly shaped domains, anisotropy in the eigenfunctions becomes ap-
parent. If we use a finite element type method to solve (1.1) (see [1] for an
up to date review) then using anisotropic mesh refinement and polynomial
enrichment is likely to resolve these features in a computationally efficient
way. In order to drive such an adaptive refinement method, we need robust a
posteriori error estimates suitable for use on anisotropically refined meshes.

In this article we advocate the use of discontinuous Galerkin (DG) meth-
ods for the solution of (1.1), due to the advantages they offer over standard
conforming FEMs in the context of hp–adaptivity. For example, they provide
increased flexibility in mesh design (irregular grids are admissible) and the
freedom to choose the elemental polynomial degrees without the need to en-
force continuity between elements. Although a posteriori error analysis is a
mature subject for source problems, for the approximation of eigenvalue prob-
lems relatively little work has been done; for the conforming FEM we refer
the reader to [27,28,26,13] in the case of residual based error estimates and
to [24] for a goal oriented approach; for a DG method, see our recent paper
[37], where a robust residual error estimator is presented on isotropically re-
fined grids, and [23,10] where the goal oriented approach is applied, the latter
on anisotropic meshes. To the authors’ knowledge, the work here represents a
first attempt at residual based a posteriori error estimation for a DG method
applied to an eigenvalue problem on anisotropic grids.

The paper is structured as follows. In the next section we introduce the
Symmetric Weighted Interior Penalty (SWIP) DG discretisation of the model
problem after first defining some appropriate functions spaces and trace oper-
ators. Following this we define some crucial norms and an important identity
result. The anisotropic a posteriori error estimator is stated in Section 3 and a
proof of its reliability given, up to higher order terms. The proof of reliability
follows the same general idea as that presented in [37], which in turn followed
from work in [14,9,12]. In Section 4 we present three numerical experiments
to validate our theoretical results. In all cases exponential rates of convergence
are attained under the anisotropic hp–adaptation strategy and are seen to be
superior to an isotropic hp–adaptive strategy.
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Fig. 1 Affine mapping of the reference element K̂ to an (anisotropic) global element K.

2 Discontinuous Galerkin discretization

In this section, we introduce the hp-version Symmetric Weighted Interior
Penalty (SWIP) DG method for the discretization of (1.1), see [8].

Throughout, we assume that the computational domain Ω can be parti-
tioned into a mesh T comprising hyper-rectangular elements, where each ele-
ment K ∈ T is the image of the reference hypercube (−1, 1)d under an affine
element mapping TK . For each element K we denote by hi,K , i = 1, . . . , d the
measurements of K, we also define for each element:

hmin,K :=
d

min
i=1

{hi,K} , hmax,K :=
d

max
i=1

{hi,K}.

We then define the matrix

MK = [v1,K , . . . , vd,K ] ,

where {vi,K}d
i=1 are the vectors defining the edges of K of length {hi,K}d

i=1,
respectively. See Fig 2 for an example when d = 2.

Remark 1 We remark that, for the analysis which follows, the elemental map-
pings need not be affine, but rather can be composed of an affine mapping and
a C1–diffeomorphism which is sufficiently close to the identity. Please see, for
example, [35].

We refer to F as an interior mesh face of T if F = ∂K ∩ ∂K ′ for two
neighbouring elements K, K ′ ∈ T whose intersection has a positive surface
measure. The set of all interior mesh faces is denoted by FI(T ). Analogously,
if the intersection of the boundary of an element K ∈ T and Γ , i.e. F = ∂K∩Γ ,
is of positive surface measure, we refer to F as a boundary mesh face of T .
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The set of all boundary mesh faces of T is denoted by FB(T ) and we set
F(T ) = FI(T )∪FB(T ). The diameter of a face F is denoted by hF . We allow
for 1-irregularly refined meshes T defined as follows. Let K be an element of
T and F an elemental face in F(K). Then F may contain at most one hanging
node located in the center of F and at most one hanging node in the middle
of each elemental edge of F .

Let us also define for any F ∈ F(T ) the value h⊥
F,K as the diameter of K in

the direction perpendicular to F and similarly the value hF,K as the measure
of F . For any face F ∈ F(T ), we further define

h⊥
F =

{
min{h⊥

F,K , h⊥
F,K′}, if F = ∂K ∩ ∂K ′ ∈ FI(T ),

h⊥
F,K , if F = ∂K ∩ Γ ∈ FB(T ).

(2.4)

Moreover, for any F ∈ FI(T ), we assume that

h⊥
F,K ∼ h⊥

F,K′ , F = K ∩ K ′ .

We denote by hmax,i, with i = 1, . . . , d, the maximum of the hi,K , for all
K. Finally we define

hmin,F =

{
min{hmin,K , hmin,K′}, if F = ∂K ∩ ∂K ′ ∈ FI(T ),

hmin,K , if F = ∂K ∩ Γ ∈ FB(T ).
(2.5)

We notice that h⊥
F ∼ h⊥

F,K and, due to the fact that we consider meshes with
one hanging node per face, we also have hmin,F ∼ hmin,K .

In the work that follows we assume an approximation by tensor–product
polynomial spaces, hence for an element K it is natural to associate a polyno-
mial degree pi,K with each direction vi,K , i = 1, . . . , d. We can now make the
following definition:

pmin,K :=
d

min
i=1

{pi,K} , pmax,K :=
d

max
i=1

{pi,K} ,

For a face F ∈ F(T ), we define pF,K := maxj 6=i pj,K , and p⊥F,K := pi,K if F
is perpendicular to vi,K , for i = 1, . . . , d. Moreover, we assume that, for all
F ∈ FI(T ), we have

p⊥F,K ∼ p⊥F,K′ , pF,K ∼ pF,K′ ,

where K and K ′ share the same face F . Then, for any edge F ∈ F(T ), we
also introduce the notations:

p⊥F =

{
max{p⊥F,K , p⊥F,K′}, if F = ∂K ∩ ∂K ′ ∈ FI(T ),

p⊥F,K , if F = ∂K ∩ Γ ∈ FB(T ),
(2.6)

pmax,F =

{
max{pmax,K , pmax,K′}, if F = ∂K ∩ ∂K ′ ∈ FI(T ),

pmax,K , if F = ∂K ∩ Γ ∈ FB(T ).

(2.7)
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We also define pmin,i, with i = 1, . . . , d, the minimum of the pi,K , for all K.
Finally we define for each element K a vector pK := {p1,K , . . . , pd,K}.

Next, let us define the jumps and averages of piecewise smooth functions
across faces of the mesh T . To that end, let the interior face F ∈ FI(T ) be
shared by two neighbouring elements K+ and K−. For a piecewise smooth
function v, we denote by v+ the trace on F taken from inside K, and by v−

the one taken from inside K−. Let us introduce the non–negative weights w+

and w− with the property that w+ + w− = 1. Then, the (weighted) average
and jump of v across the face F are defined as

{{v}}w = w−v+ + w+v−, [[v]] = v+ n+
K + v− n−

K .

Here, n+
K and n−

K denote the unit outward normal vectors on the boundary of
elements K+ and K−, respectively. Similarly, if q is a piecewise smooth vector
field, its (weighted) average and (normal) jump across F are given by

{{q}}w = w+q+ + w−q−, [[q]] = q+ · n+
K + q+ · n−

K .

On a boundary face F ∈ FB(T ), we accordingly set {{q}}w = q and [[v]] =
vn, with n denoting the unit outward normal vector on Γ . The other trace
operators will not be used on boundary faces and are thereby left undefined.

In order to define the hp-version finite element space on T , we begin by
introducing polynomial spaces on elements. To that end, let K ∈ T be an
element. We set

QpK
(K) = { v : K → R : v ◦ TK ∈ QpcK

(K̂) }, (2.8)

with QpcK
(K̂) denoting the set of tensor product polynomials on the reference

element K̂ of degree less than or equal to pi, bK in the xi-direction, i = 1, . . . , d

on K̂. We then introduce the set of degree vectors p = {pK : K ∈ T }.
For a partition T of Ω and polynomial degree vectors p and T , we define

the hp-version DG finite element space by

Sp(T ) = { v ∈ L2(Ω) : v|K ∈ QpK
(K), K ∈ T }. (2.9)

The SWIP DG discrete version of the eigenvalue problem (1.3 ) is: find
(λhp, uhp) ∈ R × Sp(T ) such that

Ahp(uhp, vhp) = λhp b(uhp, vhp) ∀ vhp ∈ Sp(T ), (2.10)

and with ‖uhp‖0,Ω = 1. The bilinear form Ahp(u, v) is given by

Ahp(u, v) =
∑

K∈T

∫

K

A∇u · ∇v dx −
∑

F∈F(T )

∫

F

(
{{A∇u}}w · [[v]] + {{A∇v}}w · [[u]]

)
ds

+
∑

F∈F(T )

γ(p⊥F )2

h⊥
F

∫

F

[[u]] · [[v]] ds,

(2.11)
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where the gradient operator ∇ is defined elementwise and the parameter γ > 0
is the interior penalty parameter. We remark that the bilinear form represents
an extension of the one presented in [8] to the anisotropic case, with the
modifications suggested in [34]; in particular the penalty parameter has been
modified to cope with anisotropicity. Finally we must make suitable choices
for the weights w+ and w− and the penalty parameter γ. First, if F ∈ FI(T ),
define δ±F = n⊤

F A±nF , where nF is a unit normal vector to F and similarly,
for F ∈ FB(T ) let δF = n⊤An. On an interior face F ∈ FI(T ) we then set

w− =
δ+
F

δ+
F + δ−F

, w+ =
δ−F

δ+
F + δ−F

and

γ = α
δ+
F δ−F

δ+
F + δ−F

,

here, α is a positive scalar. On a boundary face F ∈ FB(T ) we set γ =
αδF . With these selections the method is known to be a stable and consistent
method for values of penalty α sufficiently large, see [8].

To be able to carry on the a posteriori analysis, we must perform a non-
consistent reformulation of the DG discretization (2.10). To this end, we in-
troduce the following lifting operator already used in [16,2], but with suitable
modifications. For any v belonging to S(h) := Sp(T )+H2(T )∩H1(Ω), where

H2(T ) := {v ∈ L2(Ω) : |v|K ∈ H2(K), ∀K ∈ T }, we define L(v) ∈ [Sp(T )]2

by
∫

Ω

L(v) · qhp dx =
∑

F∈F(T )

∫

F

[[v]] · {{qhp}}w ds , ∀qhp ∈ [Sp(T )]2 . (2.12)

Now the following extended bilinear form Ãhp(u, v) can be introduced:

Ãhp(u, v) =
∑

K∈T

∫

K

A∇u · ∇v dx −
∑

K∈T

∫

K

L(u) · A∇v + L(v) · A∇u dx

+
∑

F∈F(T )

γ(p⊥F )2

h⊥
F

∫

F

[[u]] · [[v]] ds.

(2.13)

Remark 2 It is clear that Ãhp(·, ·) ≡ Ahp(·, ·) on Sp(T )×Sp(T ) and Ãhp(·, ·) ≡

A(·, ·) on H1
0 (Ω) × H1

0 (Ω).

We need several norms in the analysis. The standard L2 norm is denoted
by ‖ · ‖0,Ω and the standard H1 norm is denoted by ‖ · ‖1,Ω.

Finally, we denote with ‖ ·‖s,Ω the norm of the Sobolev space Hs(Ω), with
s ≥ 1 and when we need to restrict a norm to a subpart B of the domain Ω,
we will state this explicitly, for example by ‖ · ‖0,B, ‖ · ‖1,B, etc.

We shall also need the following energy norm which represents a minor
modification to that presented in [21]:



hp-adaptive DG methods for eigenvalue problems 7

Definition 1 (Energy norm) For any u ∈ S(h) and for γ > 0

‖ u ‖2
E,T =

∑

K∈T
‖A1/2∇u‖2

0,K +
∑

F∈F(T )

γ(p⊥F )2

h⊥
F

‖[[u]]‖2
0,F . (2.14)

Mimicking the proofs in [16, Lemma 4.3, Lemma 4.4] we can prove that
the bilinear form Ãhp(·, ·) is continuous on Sp(T ) + H1(Ω), i.e.,

|Ãhp(u, v)| ≤ CÃ‖ u ‖E,T ‖ v ‖E,T , (2.15)

with a constant CÃ > 0 independent of h and p, and that it is also coercive in
H1

0 (Ω), i.e.,

Ãhp(u, u) = ‖ u ‖2
E,T .

The distance of an approximate eigenfunction from the true eigenspace is a
crucial quantity in the convergence analysis for eigenvalue problems especially
in the case of non-simple eigenvalues.

Definition 2 Given a function v ∈ L2(Ω) and a finite dimensional subspace
P ⊂ L2(Ω), we define:

dist(v,P)0,Ω := min
w∈P

‖v − w‖0,Ω . (2.16)

Similarly, given a function v ∈ Sp(T ) and a finite dimensional subspace P ⊂

H1
0 (Ω), we define:

dist(v,P)E,T := min
w∈P

‖ v − w ‖E,T . (2.17)

Now let λj be any eigenvalue of problem (1.1), we define E(λj) to be the span
of all corresponding eigenfunctions according to (1.1), moreover, we define
E1(λj) = {u ∈ E(λj) : ‖u‖0,Ω = 1}.

2.1 Identity results

The focus of this subsection is Lemma 1 which links together the two quantities
of interest in our convergence analysis, namely the error in the eigenvalues and
the error in the eigenfunctions.

Definition 3 (Residual of a linear problem) Let us define the residual
for a linear problem −∇ · A∇u = f , with f ∈ L2(Ω), as

R(u, v) := Ãhp(u, v) − b(f, v) , (2.18)

where u is the solution of the linear problem and v ∈ S(h).
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Definition 4 (Residual of the eigenvalue problem) We apply Defini-
tion 3 to the eigenvalue case allowing f = λjuj, so for any eigenpair (λj , uj)
of problem (1.1):

R(uj , v) := Ãhp(uj , v) − λjb(uj , v) , (2.19)

where v ∈ S(h).

Lemma 1 (Identity result for the extended form) Let (λl, ul) be a true
eigenpair of problem (1.3) with ‖ul‖0,Ω = 1 and let (λj,hp, uj,hp) be a computed
eigenpair of problem (2.10) with ‖uj,hp‖0,Ω = 1. Then we have:

Ãhp(ul−uj,hp, ul−uj,hp) = λl‖ul−uj,hp‖
2
0,Ω + λj,hp−λl+2R(ul, uj−uj,hp).

Proof Using the linearity of the bilinear form Ãhp(·, ·) and using (1.3), (2.10);
we have

Ãhp(ul−uj,hp, ul−uj,hp) = λl + λj,hp − 2Ãhp(ul, uj,hp)+2λlb(ul, uj,hp)−2λlb(ul, uj,hp) .
(2.20)

Furthermore, by analogous arguments we obtain

‖ul − uj,hp‖
2
0,Ω = 2 − 2b(ul, uj,hp). (2.21)

Substituting (2.21) into (2.20) we obtain

Ãhp(ul−uj,hp, ul−uj,hp) = λl‖ul−uj,hp‖
2
0,Ω + λj,hp−λl−2Ãhp(ul, uj,hp)+2λlb(ul, uj,hp) .

Finally noticing that Ãhp(ul, uj) = λlb(ul, uj) and using (2.19) we obtain the
result.

3 A posteriori analysis

As in [39], we shall make use of an auxiliary 1-irregular mesh T̃ of affine

quadrilaterals. We construct the auxiliary mesh T̃ refining the mesh T such
that no-hanging nodes in T are hanging nodes in T̃ as well.

In the sequel, we shall use the symbols . and & to denote bounds that
are valid up to positive constants independent of h and p. In particular the
hidden constant may depend on a and on a.

We then introduce the following auxiliary DG finite element space on the
mesh T̃ :

Sep(T̃ ) = { v ∈ L2(Ω) : v| eK ◦ T eK ∈ Qgp
K̃

(K̂), K̃ ∈ T̃ },

where the auxiliary polynomial degree vector p̃K̃ is defined by pi, eK = pi,K for

all children K̃ ∈ T̃ of an element K ∈ T .
The next theorem, which comes from [39], defines an averaging operator

for the auxiliary mesh T̃ .
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Theorem 1 There exists an averaging operator Ihp : Sp(T ) → Sc
ep
(T̃ ), where

Sc
ep(T̃ ) = Sep(T̃ ) ∩ H1

0 (Ω) , (3.22)

that satisfies

∑

eK∈eT

‖∇(v − Ihpv)‖2
L2( eK)

.
∑

F∈F(T )

p2
F h−2

min,F h⊥
F ‖[[v]]‖2

L2(F ), (3.23)

∑

eK∈eT

‖v − Ihpv‖
2
L2( eK)

.
∑

F∈F(T )

(p⊥F )−2h⊥
F ‖[[v]]‖2

L2(F ). (3.24)

Let (λj,hp, uj,hp) eigenpair of (2.10). For each element K ∈ T , we introduce
the following local error indicator ηj,K which is given by the sum of the three
terms:

η2
j,K = η2

j,RK
+ η2

j,FK
+ η2

j,JK
, (3.25)

where the first term ηj,RK
is the residual in the interior of the element K:

η2
j,RK

= p−2
min,Kh2

min,K‖λj,hpuj,hp + ∇ · A∇uj,hp‖
2
0,K ,

the second term ηj,FK
is the residual on the faces of K in the interior of the

domain Ω:

η2
j,FK

=
1

2

∑

F∈FI(K)

∫

F

h2
min,Kp⊥F,K

p2
min,Kh⊥

F,K

|[[A∇uj,hp]]|
2
0,F ds ,

and finally the residual ηj,JK
measures the jumps on the faces of K of the

approximate solution uj,hp:

η2
j,JK

=
1

2

∑

F∈FI(K)

∫

F

(γ2(p⊥F,K)5h2
min,K

p2
min,K(h⊥

F,K)3
+

γ2(p⊥F )2

h⊥
F

)
|[[uj,hp]]|

2
0,F ds

+
∑

F∈FB(K)

∫

F

(γ2(p⊥F,K)5h2
min,K

p2
min,K(h⊥

F,K)3
+

γ2(p⊥F )2

h⊥
F

)
|[[uj,hp]]|

2
0,F ds.

Summing (3.25) on all elements we obtain the global error estimator ηj :

η2
j =

∑

K∈T
η2

j,K . (3.26)

Definition 5 (Alignment measure) For v ∈ H1(Ω) we define the align-
ment measure

M(v, T ) =

( ∑
K∈T h−2

min,K‖MK∇v‖2
0,K

)1/2

‖∇v‖0,Ω
.
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In order to prove the reliability, we decompose a computed eigenfunction
uj,hp into a conforming part and a remainder:

uj,hp = uc
j,hp + ur

j,hp,

where uc
j,hp = Ihpuj,hp ∈ Sc

ep
(T̃ ) ⊂ H1

0 (Ω) is defined using the averaging opera-

tor Ihp in Theorem 1 and the remainder ur
j,hp is given by ur

j,hp = uj,hp−uc
j,hp ∈

Sep(T̃ ). It is straightforward to show that ‖ uj − uj,hp ‖E,T ≤ ‖ uj − uj,hp ‖E, eT ,

therefore, since uj − uc
j,hp ∈ H1

0 (Ω),

‖ uj − uj,hp ‖E,T ≤ ‖ uj − uj,hp ‖E, eT ≤ ‖uj − uc
j,hp‖E, eT + ‖ur

j,hp‖E, eT

= ‖uj − uc
j,hp‖E,T + ‖ur

j,hp‖E, eT (3.27)

Then to prove reliability for eigenfunctions it is just necessary to bound both
terms in the right hand side of (3.27) using ηj . The proof that

‖ur
hp‖E, eT . ηj , (3.28)

is equivalent to [39, Lemma 5.4.6] and we omit it for brevity.
On the other hand, to bound ‖ uj − uc

j,hp ‖E,T in (3.27), we split Ahp(·, ·) =
Dhp(·, ·) + Khp(·, ·) where

Dhp(u, v) =
∑

K∈T

∫

K

A∇u · ∇v dx +
∑

F∈F(T )

γ(p⊥F )2

h⊥
F

∫

F

[[u]] · [[v]] ds,

Khp(u, v) = −
∑

F∈F(T )

∫

F

{{A∇u}}w · [[v]] ds −
∑

F∈F(T )

∫

F

{{A∇v}}w · [[u]] ds.

The form Dhp(u, v) is well-defined for u, v ∈ Sp(T )+H1(Ω), whereas Khp(u, v)

is only well-defined for discrete functions u, v ∈ Sp(T ). Furthermore, we have

A(u, v) = Dhp(u, v) ∀u, v ∈ H1
0 (Ω), (3.29)

as well as

Ahp(u, v) = Dhp(u, v) + Khp(u, v) ∀u, v ∈ Sp(T ). (3.30)

We also recall the standard hp-approximation results from [39, Lemma 5.4.7]:
For any v ∈ H1

0 (Ω), there exists a function vhp ∈ Sp(T ) such that

p2
min,K‖v − vhp‖

2
0,K . ‖MK∇v‖2

0,K ,

‖MK∇(v − vhp)‖
2
0,K . ‖MK∇v‖2

0,K ,

∑

F∈F(K)

h⊥
F,Kp2

min,K

p⊥F,K

‖v − vhp‖
2
0,F . ‖MK∇v‖2

0,K ,

(3.31)

for any element K ∈ T .
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Lemma 2 For any v ∈ H1
0 (Ω), we have

λjb(uj , v−vhp)−Dhp(uj,hp, v−vhp)+Khp(uj,hp, vhp) . M(v, T )
(
ηj+

hmin

pmin
‖λjuj−λj,hpuj,hp‖0

)
‖ v ‖E,T .

Here, vhp ∈ Sp(T ) is the hp-approximation of v satisfying (3.31).

Proof For brevity, let us set

T =

∫

Ω

λjuj(v − vhp) dx − Dhp(uj,hp, v − vhp) + Khp(uj,hp, vhp).

Integrating the volume terms by parts we obtain

T =
∑

K∈T

∫

K

(λjuj + ∇ · A∇uj,hp)(v − vhp) dx −
∑

F∈F(T )

γ(p⊥F )2

h⊥
F

∫

F

[[uj,hp]] · [[v − vhp]] ds

−
∑

F∈FI(T )

∫

F

[[A∇uj,hp]]{{v − vhp}}w ds −
∑

F∈F(T )

∫

F

{{A∇vhp}}w · [[uj,hp]] ds

≡ T1 − T2 − T3 − T4.

Using the Cauchy-Schwarz inequality and the approximation properties (3.31)
we have that

T1 =
∑

K∈T

∫

K

(λj,hpuj,hp + ∇ · A∇uj,hp)(v − vhp) dx +
∑

K∈T

∫

K

(λjuj − λj,hpuj,hp)(v − vhp) dx

. M(v, T )
( ∑

K∈T
η2

j,RK

) 1

2

‖ v ‖E,T + M(v, T )
hmin

pmin
‖λjuj − λj,hpuj,hp‖0‖ v ‖E,T .

For term T2, we again exploit the Cauchy-Schwarz inequality to conclude that

T2 ≤
( ∑

K∈T

∑

F∈∂K

γ2
h2

min,K(p⊥F,K)5

p2
min,K(h⊥

F,K)3
‖[[uj,hp]]‖

2
0,F

) 1

2

( ∑

K∈T

∑

F∈∂K

p2
min,Kh⊥

F,K

h2
min,Kp⊥F,K

‖v − vhp‖
2
0,F

) 1

2

.

Thus, from (3.31), we obtain the bound

T2 . M(v, T )
( ∑

K∈T
η2

j,JK

) 1

2

‖ v ‖E,T .

Similarly, using the fact that w+, w− ≤ 1, term T3 can be bounded as follows

T3 ≤
( ∑

K∈T

∑

F∈∂K/∂Ω

h2
min,Kp⊥F,K

p2
min,Kh⊥

F,K

‖[[A∇uj,hp]]‖
2
0,F

) 1

2

( ∑

K∈T

∑

F∈∂K/∂Ω

p2
min,Kh⊥

F,K

h2
min,Kp⊥F,K

‖v − vhp‖
2
0,F

) 1

2

. M(v, T )
( ∑

K∈T
η2

j,FK

) 1

2

‖ v ‖E,T .

In a similar way we use the Cauchy-Schwarz inequality for term T4:
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T4 . γ−1
( ∑

K∈T

∑

F∈∂K

γ2 (p⊥F )2

h⊥
F

‖[[uj,hp]]‖
2
0,F

) 1

2

( ∑

K∈T

∑

F∈∂K

h⊥
F

(p⊥F )2
‖A∇vhp‖

2
0,∂K

) 1

2

.

From the standard hp-version inverse trace inequality, see [40, Lemma 3.1], we
conclude that

T4 . γ−1
( ∑

K∈T
η2

j,JK

) 1

2

( ∑

K∈T
‖A∇vhp‖

2
0,K

) 1

2

,

furthermore, using the approximation properties in (3.31),

∑

K∈T
‖A∇vhp‖

2
0,K .

∑

K∈T
‖A∇(v − vhp)‖

2
0,K +

∑

K∈T
‖A∇v‖2

0,K . ‖ v ‖2
E,T .

Hence

T4 . γ−1
( ∑

K∈T
η2

j,JK

) 1

2

‖ v ‖E,T .

The bounds for T1, T2, T3, and T4 imply the assertion.

Lemma 3 Let (λj,hp, uj,hp) be a computed eigenpair of (2.10) and let (λj , uj)
be an eigenpair of (1.3). Then we have for uc

j,hp = Ihp uj,hp that:

‖ uj − uc
j,hp ‖E,T . M(v, T )

(
ηj +

(
1 +

hmin

pmin

)
‖λjuj − λj,hpuj,hp‖0

)
,

where v = uj − uc
j,hp ∈ H1

0 (Ω)

Proof Since uj − uc
j,hp ∈ H1

0 (Ω), we have that

‖ uj − uc
j,hp ‖

2
E,T = Ahp(uj − uc

j,hp, v) = A(uj − uc
j,hp, v). (3.32)

To bound the right-hand side of (3.32), we note that, by (3.29),

A(uj − uc
j,hp, v) =

∫

Ω

λjujv dx − A(uc
j,hp, v) =

∫

Ω

λjujv dx − Dhp(u
c
j,hp, v).

It is straightforward to see that Dhp(u
c
j,hp, v) = Dhp(uj,hp, v) + R, with

R = −
∑

eK∈eT

∫

eK

A∇ur
j,hp · ∇v dx .

Furthermore, from (2.10) and (3.30), we have

∫

Ω

λj,hpuj,hpvhp dx = Dhp(uj,hp, vhp) + Khp(uj,hp, vhp),
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where vhp ∈ Sp(T ) is the hp-approximation of v. Combining these results, we
thus arrive at

A(uj − uc
j,hp, v) =

∫

Ω

(λjuj − λj,hpuj,hp)vhp dx +

∫

Ω

λjuj(v − vhp) dx

−Dhp(uj,hp, v − vhp) + Khp(uj,hp, vhp) − R .
(3.33)

Using Poincare’s inequality and (3.31) we have

‖vhp‖0,Ω . M(v, T )
hmin

pmin
‖∇v‖0,Ω + ‖v‖0,Ω ≤

(
M(v, T )

hmin

pmin
+ Cp

)
‖∇v‖0,Ω,

then from (3.33) we obtain:

A(uj − uc
j,hp, v) ≤

(
M(v, T )

hmin

pmin
+ Cp

)
‖λjuj − λj,hpuj,hp‖0,Ω‖ v ‖E,T

+

∫

Ω

λjuj(v − vhp) dx

−Dhp(uj,hp, v − vhp) + Khp(uj,hp, vhp) − R.

The estimate in Lemma 2 now yields

A(uj−uc
j,hp, v) . M(v, T )

(
ηj+

(
Cp+

hmin

pmin

)
‖λjuj−λj,hpuj,hp‖0

)
‖ v ‖E,T +|R|.

(3.34)
It remains to bound |R|; from the Cauchy-Schwarz inequality and (3.28), we
readily obtain

|R| . ‖ ur
j,hp ‖E, eT ‖ v ‖E,T . ηj‖ v ‖E,T . (3.35)

The desired result now follows from (3.34) and (3.35).

The proof of Theorem 2 readily follows from (3.27), (3.28) and Lemma 3.

Theorem 2 (Reliability for eigenfunctions) Let (λj,hp, uj,hp) be a com-
puted eigenpair of (2.10) converging to the true eigenvalue λj of multiplicity
E ≥ 1. Then we have that:

dist(uj,hp, E1(λj))E,T . M(v, T )
(
ηj +

(
1 +

hmin

pmin

))
‖λjuj − λj,hpuj,hp‖0 ,

where uj is the minimizer of (2.16), with P = E1(λj) and v = uj − uc
j,hp.

Proof From (3.27), (3.28) and Lemma 3 we have that:

dist(uj,hp, E1(λj))E,T ≤ ‖uj − uc
j,hp‖E,T + ‖ur

j,hp‖E, eT

. M(v, T )
(
ηj +

(
1 +

hmin

pmin

))
‖λjuj − λj,hpuj,hp‖0 .
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Theorem 3 (Reliability for eigenvalues) Let (λj,hp, uj,hp) be a computed
eigenpair of (2.10) and converging to λj of multiplicity E ≥ 1. Then we have
that:

|λj − λhp| . M(v, T )2(η2
j + G) , (3.36)

where

G =
(
1+

hmin

pmin

)2

‖λjuj−λj,hpuj,hp‖
2
0+2ηj

(
1+

hmin

pmin

)
‖λjuj−λj,hpuj,hp‖0+2|R(ûj, ûj−uj,hp)|,

where uj is the minimizer of (2.16) and ûj is the minimizer of (2.17), with
P = E1(λj) in both cases and v = uj − uc

j,hp.

Proof Applying (2.15) to Lemma 1 and also noticing that λj‖ûj−uj,hp‖
2
0,Ω > 0

we have

|λj − λj,hp| . dist(uj,hp, E1(λj))
2
E,T + 2|R(ûj , ûj − uj,hp)| .

Applying Theorem 2

|λj−λj,hp| . M(v, T )2
(
ηj+

(
1+

hmin

pmin

)
‖λjuj−λj,hpuj,hp‖0

)2

+2|R(ûj, ûj−uj,hp)|.

Remark 3 (Efficiency) It is straightforward to prove efficiency of the error in-
dicator (3.26) using the same techniques as in [37]; we omit the details for
brevity. Unfortunately, as with many other works, for example [9,14,15], this
efficiency result is robust only in terms of h. However, our numerical experi-
ments indicate the error estimate to be robust in both h and p, even though
theoretical results are not available.

4 Numerical Experiments

In this section we present three numerical examples to highlight the perfor-
mance of the a posteriori error estimates when coupled with an anisotropic
adaptive hp-strategy. In all three of the examples we select d = 2 and choose
initial grids with only axiparallel elements; in our experience for two-dimensional
problems a combination of anisotropic h–refinement with isotropic p-enrichment
is often sufficient to obtain highly accurate solutions with minimal computa-
tional effort. In all the examples we use |ηj,K | to determine which elements to
refine based on a fixed fraction strategy. The decision to perform h–refinement
or p–enrichment is taken by approximating the regularity using the technique
described in [31]. If an element has been selected for h–refinement, then we
can perform one of two anisotropic refinements, which cut the element in two
by bisecting opposite faces, or an isotropic refinement. To make the decision
on which we use the method advocated in [38]. Suppose element K has been
selected, let F 1

K and F 2
K be the two sets containing the faces parallel to either

v1,K or v2,K and define

η2
F i

K

= η2
j,FK

|F i

K

+ η2
j,JK

|F i

K

i = 1, 2.
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The choice between isotropic or anisotropic h–refinement is made by compar-
ing η2

F 1

K

and η2
F 2

K

. If η2
F 1

K

> 10η2
F 2

K

then the element is refined anisotropically

in the direction of v1,K ; if on the other hand η2
F 2

K

> 10η2
F 1

K

then the element

is refined anisotropically in the direction of v2,K , if neither of these conditions
is satisfied then isotropic refinement is carried out. We remark that the re-
finement parameter is chosen to be 10 based purely on experience. In all of
our examples we choose the stabilisation parameter α = 10 again based on
experience, but with no relation to the refinement parameter.

4.1 Example 1

In our first example we select Ω = (0, 0.1) × (0, 1) and let A = I, in which
case the eigenvectors have an anisotropic nature influenced by the shape of
the domain. We select an initial grid comprising 10 isotropic elements with
an initial polynomial degree of 2. We compare an isotropic hp–strategy with
the anisotropic h–isotropic p–strategy detailed above for the first eigenpair,
(101π2, sin(10πx) sin(πy)).

A plot showing the convergence of our adaptive anisotropic hp–strategy
compared with a more standard isotropic hp–strategy is shown in Figure 2.
We note, on the basis of the a priori analysis in [32, Section 3.4.6, p. 118], we
plot the error against the square root of the degrees of freedom (DOF1/2). We
notice immediately that the anisotropic strategy is performing extremely well;
indeed, on the final grid the anisotropic strategy has achieved an error over 4
orders of magnitude smaller than the isotropic strategy for the same number of
degrees of freedom. Figure 3(a) shows a plot of the anisotropically refined mesh
together with the polynomial degree distribution after 12 refinement steps. As
we would wish, the mesh has been refined in accordance with the anisotropy
present in the eigenfunction, which is shown in Figure 5(b). Finally, in Table
1, we show the true error |λ1 − λ1,hp|, the error bound η2

1 and the Effectivity
:= η2

1/|λ1−λ1,hp|. We see that, after mesh number 3 and as the mesh is refined,
the effectivity remains bounded between 9 and 30 and is oscillatory, but with
small variations. This indicates that the anisotropic error bound is robust in
the sense that the hidden constant in (3.36) is independent of both h and p
and the extra terms in (3.36) are indeed of higher order.

4.2 Example 2

Our second example is problem (1.1) with A = I on the H-shaped domain
Ω = [0, 1]2/([1/3, 2/3] × [0, 1/3] ∪ [1/3, 2/3] × [2/3, 1]). The initial mesh is
a conforming structured mesh of 7 elements and the initial order of polyno-
mials is 2. In this example the eigenvalue and eigenfunctions are unknown
analytically, but computations on extremely fine meshes reveal that the first
eigenvalue is 69.597800 to the accuracy of the computations. As before, Fig-
ure 4 shows a comparison of the error committed in approximating the first
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Fig. 2 Example 1: Comparison of isotropic hp– and anisotropic hp–strategy.

(a) (b)

Fig. 3 Example 1: (a) Mesh after 12 anisotropic adaptive refinement steps and (b) first
eigenfunction.
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DOF |λ1 − λ1,hp| η2

1
Effectivity

90 8.0403 673.818 83.81
108 7.4433 467.165 62.77
135 6.5666 247.339 37.67
162 6.1466 154.083 25.07
198 4.0506 99.582 24.58
234 2.5646 63.381 24.71
279 1.6484 37.192 22.56
351 7.6326E-01 16.907 22.15
423 2.7082E-01 5.909 21.82
514 9.8094E-02 1.853 18.89
615 5.0994E-02 1.122 22.00
729 2.7859E-02 5.171E-01 18.56
1029 8.1173E-03 1.492E-01 18.38
1472 1.6110E-03 2.943E-02 18.26
1971 5.1050E-04 8.839E-03 17.31
2746 1.0669E-04 1.680E-03 15.75
3886 4.7267E-05 5.390E-04 11.40
5621 1.2214E-05 1.616E-04 13.23
7678 3.9858E-06 4.725E-05 11.86
9123 8.3852E-07 7.816E-05 9.32
11840 1.3767E-07 2.516E-06 18.27
13451 3.5347E-08 5.637E-07 15.95

Table 1 Example 1: Anisotropic hp–strategy effectivities.

eigenvalue when the isotropic and anisotropic adaptive strategies are applied.
On basis of the a priori analysis in [41], we assume an error model of the form

λj,h = λj + Ce−2γ 3
√

DOF,

for problems with discontinuous coefficients or reentrant corners and thus plot
the error against DOF1/3. In this case we do not witness such a dramatic
improvement in the convergence as we saw for Example 1, nonetheless, the
anisotropic strategy is consistently superior to the isotropic strategy and on
the final grid the error is approaching one order of magnitude smaller for the
same number of degrees of freedom. If we consider Figure 5(b) we notice that,
although there are areas in the domain where the eigenfunction has anisotropy,
the eigenfunction has singularities around the reentrant corners. We see in Fig-
ure 5(a) that a combination of anisotropic and isotropic refinement has been
carried out, with isotropic refinement focused on the reentrant corners. Again,
in Table 4.2 we show the effectivities as the mesh is refined. Similarly to Exam-
ple 1, the effectivity is bounded between 9 and 30 after the 2nd mesh, although
the effectivity seems to be growing after the 9th mesh. Ideally we would wish
to have data from another one or two meshes to confirm the effectivity does
remain bounded, but we were hampered by the lack of a more accurate ref-
erence eigenvalue. Nonetheless, the results do indicate robustness of the error
estimate.
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Fig. 4 Example 2: Comparison of isotropic hp– and anisotropic hp–strategy.

(a) (b)

Fig. 5 Example 2: (a) Mesh after 11 anisotropic adaptive refinement steps and (b) first
eigenfunction.

4.3 Example 3

In our final example we consider problem (1.1) with Ω = (0, 1)2 and discon-
tinuous diffusion so that Aij = 0, i 6= j and for i = 1, 2

Aii =

{
1 0.45 < x < 0.55,
100 otherwise.
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DOF |λ1 − λ1,hp| η2

1
Effectivity

63 1.4764 56.00 37.93
90 1.5189 45.82 30.17
144 1.4188 28.23 19.90
180 2.783E-01 16.20 17.46
315 7.2706E-01 9.922 13.65
459 4.3041E-01 5.613 13.04
685 2.4699E-01 3.386 13.71
1129 1.0258E-01 1.051 10.25
2022 2.9340E-02 2.917E-01 9.94
3534 8.7951E-03 9.980E-02 11.35
6162 2.0569E-03 2.465E-02 11.98
9071 5.7294E-04 7.192E-03 12.55
12673 1.4432E-05 2.569E-03 17.80
16514 4.6869E-06 9.5572E-04 20.42

Table 2 Example 2: Anisotropic hp–strategy effectivities.
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Fig. 6 Example 3: Comparison of isotropic hp– and anisotropic hp–strategy.

Again, the eigenvalues and eigenfunctions of this problem are unknown, but
calculations on an extremely fine mesh reveal that the first eigenvalue has
value 852.527814501 to the accuracy of our computations. Comparisons be-
tween anisotropic and isotropic hp–strategies are shown in Figure 6, again the
anisotropic strategy is seen to be far superior than the isotropic one. Note
that the initial mesh was chosen so that the discontinuities in A occurred only
along elemental boundaries and not in their interior. Again, in Table 4.3 we
show the effectivities as the mesh is refined. For this example the initial values
of the effectivity index are quite huge probably due to the fact that the initial
mesh is very coarse compared to the size of the inclusion. Also comparing with
Example 1 and Example 2, the effectivity index seems to settle to a greater
value. This can be explained in view of the fact that the hidden constant in
(3.36) may depend on A.
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(a) (b)

Fig. 7 Example 3: (a) Mesh after 12 anisotropic adaptive refinement steps and (b) first
eigenfunction.

DOF |λ1 − λ1,hp| η2

1
Effectivity

3600 2.9216 9.079E+04 31074.38
4372 2.1164E-01 1.218E+03 5755.31
5436 1.8483E-01 3.700E+02 2001.98
6705 5.9894E-02 1.460E+02 2438.09
8163 2.6519E-02 54.73 2063.76
9203 2.6517E-02 23.31 878.95
10287 6.6503E-03 3.744E-01 56.30
11825 4.8241E-04 2.650E-02 54.94
13444 1.0998E-05 2.450E-03 222.82
15690 2.1629E-07 0.2.992E-05 138.33
17836 1.7958E-08 1.068E-06 59.45

Table 3 Example 3: Anisotropic hp–strategy effectivities.
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9. L. Zhu, S. Giani, P. Houston and D. Schötzau, Energy norm a-posteriori error esti-
mation for hp-adaptive discontinuous Galerkin methods for elliptic problems in three
dimensions, M3AS 21(2):267-306, 20011.

10. E.J.C Hall and S. Giani, Discontinuous Galerkin Methods for Eigenvalue Problems on
Anisotropic Meshes, Enumath 2011. To Appear.
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