Skip to main content
Log in

Mathematica implementation of the high order finite element method applied to eigenproblems

  • Published:
Computing Aims and scope Submit manuscript

Abstract

In this paper an \(hp\)-FEM implementation on Mathematica is discussed. FEM-implementations on higher-level programming platforms are useful for prototyping new algorithms and ideas, but also serve as testing ground for interesting programming techniques. Here, an \(hp\)-adaptive algorithm for eigenproblems, and the use of precomputed data and generation of highly graded \(hp\)-meshes, are examples of the former and latter, respectively. The performance of the code is evaluated in relation to a suite of benchmark problems for the Laplacian and thin solids in elasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. MATLAB follows the model of C++ and similar languages, whereas Mathematica follows the Common Lisp.

References

  1. Ainsworth M, Coyle J (2003) Hierarchic finite element bases on unstructured tetrahedral meshes. INJME 58(14):2103–2130

    MathSciNet  MATH  Google Scholar 

  2. Alberty J, Carstensen C, Funken SA, Klose R (2002) Matlab implementation of the finite element method in elasticity. Computing 69:239–263

    Article  MathSciNet  MATH  Google Scholar 

  3. Artioli E, Beirǎo da Veiga L, Hakula H, Lovadina C (2009) On the asymptotic behaviour of shells of revolution in free vibration. Comput Mech 44(1):45–60

    Article  MATH  Google Scholar 

  4. Betcke T, Trefethen LN (2005) Reviving the method of particular solutions. SIAM Rev 47(3):469–491

    Article  MathSciNet  MATH  Google Scholar 

  5. Braess D (2001) Finite elements: theory, fast solvers and applications in solid mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  6. Chapelle D, Bathe KJ (2003) The finite element analysis of shells. Springer, New York

    Book  MATH  Google Scholar 

  7. Driscoll TA (1997) Eigenmodes of isospectral drums. SIAM Rev 39(1):1–17

    Article  MathSciNet  MATH  Google Scholar 

  8. Giani S, Grubis̆ić L, Ovall J (2011) Reliable a-posteriori error estimators for \(hp\)-adaptive finite element approximations of eigenvalue/eigenvector problems. ArXiv:1112.0436

  9. Grubis̆ić L, Ovall JS (2009) On estimators for eigenvalue/eigenvector approximations. Math Comp 78:739–770

    Article  MathSciNet  Google Scholar 

  10. Hakula H, Hyvönen N, Tuominen T (2012) On \(hp\)-adaptive solution of complete electrode model forward problems of electrical impedance tomography. J Comput Appl Math 236:4645–4659

    Article  MathSciNet  MATH  Google Scholar 

  11. Houston P, Senior B, Süli E (2003) Sobolev regularity estimation for \(hp\)-adaptive finite element methods. In: Proceedings of ENUMATH 2001, Ischia, pp 631–656

  12. Luo XJ, Shephard M, Remacle JF, O’Bara R, Beall M, Szabo B (2002) \(p\)-version mesh generation issues. In: IMR, Citeseer, pp 343–354

  13. Maeder RE (2000) Computer science with Mathematica. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  14. Mitchell W, McClain MA (2011) A comparison of \(hp\)-adaptive strategies for elliptic partial differential equations (preprint)

  15. Mitchell W, McClain MA (2010) A collection of 2D elliptic problems for testing adaptive algorithms. NISTIR 7668, NIST, Gaithersburg

  16. Rübenkönig O, Liu Z, Korvink JG (2012) Integrated engineering development environment. Mathematica J. doi:10.3888/tmj.10.3-8

  17. Schwab C (1998) \(p\)- and \(hp\)-finite element methods. Numerical mathematics and scientific computation. Oxford University Press Inc, New York

  18. Solin P, Segeth K, Dolezel I (2003) Higher-order finite element methods. Chapman & Hall, London

    Google Scholar 

  19. Szabo B, Babus̆ka I (1991) Finite element analysis. Wiley, London

    MATH  Google Scholar 

  20. Trefethen LN, Betcke T (2006) Computed eigenmodes of planar regions. In: Recent advances in differential equations and mathematical physics. Contemp Math 412:297–314

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harri Hakula.

Appendices

Implementation of the integrated legendre polynomials

figure a5

Typical main programme

figure a6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hakula, H., Tuominen, T. Mathematica implementation of the high order finite element method applied to eigenproblems. Computing 95 (Suppl 1), 277–301 (2013). https://doi.org/10.1007/s00607-012-0262-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-012-0262-4

Keywords

Mathematics Subject Classification

Navigation