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Abstract The purpose of this work is to speed up simulations of neural tissues based
on the stochastic version of the Hodgkin–Huxley model. Authors achieve that by
introducing the system providing random values with desired distribution in simulation
process. System consists of two parts. The first one is a high entropy fast parallel
random number generator consisting of a hardware true random number generator and
graphics processing unit implementation of pseudorandom generation algorithm. The
second part of the system is Gaussian distribution approximation algorithm based on
a set of generators of uniform distribution. Authors present hardware implementation
details of the system, test results of the mentioned parts separately and of the whole
system in neural cell simulation task.
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S260 K. Gugała et al.

1 Introduction

Science since the very beginning tries to understand processes that take place in the
nature. One of the methods to truly understand surrounding world is simulation. Unfor-
tunately complexity of the natural processes entails an elongation of the simulations
time and dramatically increase the need of computing power. This paper focuses on
these problems, and propose solutions that speeds up simulations of natural processes
and simplifies computations in some areas of it. We concentrate on simulations of
neural cells based on the Hodgkin–Huxley model [6], especially on a stochastic ver-
sion of it [9].

Simulations of biological processes (e.g. an electric potential flow on a neural cell
membrane) often requires large amount of random values [5] with specified distribu-
tion. Quality of the projection of natural stochastic processes in simulation environment
forces use of high entropy random generators. Increasing the generation speed of ran-
dom values often leads to decrease its randomness. Building the high speed random
generator without losing its level of randomness can be a milestone in the biological
processes simulations.

Recently an often approach in simulation tasks is to use GPU implementation. The
use of the well known very fast parallel pseudorandom generators becomes natural
in this solution. Higher level of randomness demands the necessity of use of more
complex, and hence slower, algorithms like Mersenne-Twister. Main disadvantage of
the mentioned solutions is its possibility to generate only a pseudorandom values. In
the natural processes, which we are trying to simulate, there is no such thing as pseudo
randomness.

On the other hand there is a number of truly random hardware generators available
on the market. These generators are based on such phenomena as temperature flow,
space radiation, flashing of the pulsar, etc. The main disadvantage of these solutions
is the generation speed, and often very slow random data transfer rate.

In this paper we introduce solution that combines advantages of mentioned families
of the random generators.

Second aspect of this work is to concentrate on acquiring proper distribution of
random data for neural cell simulation purposes. Stochastic version of the Hodgkin–
Huxley neural cell model requires Gaussian distribution of random data. Classic
approach uses Box–Muller transformation [Eq. (1)] to acquire eligible distribution.
In this paper we are showing Gaussian distribution approximation algorithm basing
on the set of uniform distribution values. Further in the paper we will show that our
generator is faster than classic Box–Muller transform approach, and quality of approx-
imated data is satisfactory in simulations based on the Hodgkin–Huxley neural cells
model.

z1 = √−2 ln u1 sin(2πu2)

z2 = √−2 ln u1 cos(2πu2)
(1)

In the next section we briefly describe the Hodgkin–Huxley neural cell model and
stochastic version of it. After that, in Sect. 3, we present our proposal of a random
generation system. Next, in Sect. 4, Gaussian approximation algorithm is presented.
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Random number generation system S261

In Sect. 5 sample implementation tests results are shown. Finally, in Sect. 6, discussion
on results presented in section five and short summary of the paper are presented.

2 Hodgkin–Huxley neural cell model

Models, that we are considering, are describing the potential on the neuron’s mem-
brane, and are based on the idea of an equivalent electrical circuit which is described
with a differential equation of the form [6]:

C
dV

dt
= I − gNam3h(V − VNa) − gK n4(V − VK ) − gL(V − VK ) (2)

where V is a potential of the neuron’s membrane, gNa, gK and gL are the conduc-
tivities of certain types of ions (sodium, potassium and chloride, respectively) that
flow through the membrane. Parameters VNa, VK and VL are representing the reversal
potential of sodium, potassium and chloride ions, respectively, while I is an input cur-
rent of the neuron. Additionally the Hodgkin–Huxley model is described with three
following equations [6]:

dn

dt
= αn(V ) · (1 − n) − βn(V ) · n

dm

dt
= αm(V ) · (1 − m) − βm(V ) · m

dh

dt
= αh(V ) · (1 − h) − βh(V ) · h

(3)

of variables m, n and h, which are showing the behaviour of the single channel,
which is controlling the movement of ions in-between interior and exterior of the
neuron. A single gate, in most of the basic models, can be in one of two states—
opened (permissive) and closed (non-permissive), and the first part of each equation
αx (V ) · (1 − x) refers to the transition from non-permissive to permissive state, while
part βx (V ) · x—conversely [6].

Furthermore in the model we used an assumption that a single channel can be at once
in one of few states, where only one is permissive [3]. To describe the relationship
between the states we used Markov kinetic schemes [3] (scheme (4) refers to the
potassium channels and (5)—to the sodium ones)
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where α and β are the potential functions [6] and are describing the probability of
transfer of one channel between states. The main equation of the model gets a new
form [3]:

C
dV

dt
= I − gNa [m3h0] (V − VNa) + gK [n4] (V − VK ) + gL(V − VK ) (6)

where [m3h0] and [n4] refer to the number of gates in the open states of sodium and
potassium channels, respectively.

2.1 Stochastic version of the model

It has been already shown that using Markov kinetic schemes gives an opportunity
of simple transfer of the model from the deterministic to stochastic description [10].
Using description shown in [9] or [10] we can take the number of gates �n AB that
transfer from state A to state B (see scheme (8)) from the binomial distribution (9),
where n A and nB refer to the number of gates in state A and B, respectively. Probability
of transfer of one gate from state A to state B in moment of time between t and t +�t is
described with value p = �t · n AB . Under some assumptions [4] we can approximate
the binomial distribution with the normal distribution N (μ, σ ), where μ = �n AB · p
and σ = �n AB · p · (1 − p).

n A
rAB �

� rB A
nB (7)

P(X = �n AB) =
(

n A

�n AB

)
p�n AB (1 − p)n A−�n AB (8)

3 Random number generation system overview

Our proposal of random number generation system combines solution based on fast
parallel pseudorandom algorithm and true random generator with high entropy. Advan-
tages of one neutralize disadvantages of the other one.

The main idea of our system is a fast parallel pseudorandom generator with peri-
odically replaced seed. New seed is taken from a true random number generator, and
swaps old seed of parallel pseudorandom generator just before it hits its period. Our
system can work with any generator—in our test implementation we use generator
based on inverter rings [13,14] implemented in a FPGA. Parallel pseudorandom algo-
rithm was implemented with the NVIDIA CUDA C programming language and runs
on the GPU [2].

3.1 Implementation

The system architecture is shown in Fig. 1. Main part of it is a PC class computer
equipped with the NVIDIA GPU with the CUDA technology. Computing capability
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Fig. 1 Random data generation system

of this GPU had to be 2.0 or higher—because we need to use an asynchronous GPU
memory access [2] in order to swap seed of a running pseudorandom algorithm.

The true random generator is connected to a PC class computer through the data
link. The software application controls work of the parallel GPU algorithm and reads
data from the true random number generator. Just before the GPU pseudorandom
generator hits its period, the control application swaps its seed. Details about the
swapping algorithm are discussed in the following subsection.

Some works show that implementation of a pseudorandom generator in the FPGA
can be more efficient [15]. However for our purpose—the simulations of neural cells
with use of GPUs—this way of implementation requires transmission of a large
amounts of the random data between FPGA and a graphic card through the PCI bus
which is very slow [2].

3.1.1 Seed replace algorithm

Parallel pseudorandom algorithm with a periodically seed replace mechanism is
depicted in Fig. 2. Whole runtime (GPU and CPU part) is controlled by a CPU appli-
cation. This is a multi-threaded application where one thread is responsible for moni-
toring GPU part, and the other one, in the mean time, reads random data from the true
random number generator and prepares seeds arrays. Every pseudorandom algorithm
implemented in GPU works in parallel with many threads. Each thread requires its
own seed, thus seeds delivered into GPU are in fact seed arrays.

A generation thread reads the seed at the beginning of each generation loop and it
is the only critical section of the algorithm. It must be assured that the seed data stays
consistent while it is being read by the generation thread.

4 Approximation of the Gaussian distribution algorithm overview

Second part of the solution presented in this paper focuses on the approximation of
Gaussian distribution algorithm. It is based on the set of uniform distribution gener-
ators. Output value is calculated as a mean value of draws from the set of uniform
generators. Detailed description of mathematics and implementation is depicted in
following subsections.
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Fig. 2 The seed swap algorithm

4.1 Mathematical background

We are considering a new generator of random numbers from approximation of
Gaussian distribution, created with use of N given uniform generators. We will assume
that the only known parameters are N—the number of uniform generators and σ—the
standard deviation of the Gaussian distribution, as any mean value μ can be obtained
simply by shifting samples by wanted value. In Fig. 3 we are showing a simple scheme
of arrangement of component uniform generators, where N is the number of generators
and x determines the range of the smallest generator.

Each new number xG from the Gaussian distribution is calculated as a mean value
of N numbers taken from each uniform generator:

xG = x1 + x2 + . . . xN

N
, (9)

where xk is a number taken from kth generator, for k = 1, 2, . . . , N . For each compo-
nent uniform generator we can count the mean value and variance of the distribution:

μk = E Xk =
kx∑

i=0

i · 1

kx + 1
= kx

2
, (10)
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Fig. 3 Scheme of N uniform generators

σ 2
K = D2 Xk = E X2

k − (E Xk)
2
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12
. (11)

With counted μk and σ 2
k of a single uniform distribution, it is now easy to obtain

the mean value μ and standard deviation σ of our Gaussian generator:
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N∑

k=1

μk · 1

N
=

N∑

k=1

kx

2
· 1

N
= x (N + 1)

4
, (12)

σ =
√

σ 2
1 + σ 2

2 + . . . + σ 2
N

N
=

√∑N
k=1 σ 2

k

N

=

√
∑N

k=1

(
kx(kx+1)

12

)2

N
. (13)

Above Eq. (12) and (13) allow us to form the following set of equations for μ and
x :

⎧
⎨

⎩

−2 (2N + 1) μ2 − 3 (N + 1) μ + 9Nσ 2 (N + 1) = 0

x = 4μ

N + 1
(14)
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Fig. 4 The approximation
algorithm

where x is given explicitly, while for μ it is necessary to solve the quadratic
equation.

4.2 Implementation

The algorithm was implemented on GPU using CUDA technology. It consists of a
set of parallel pseudorandom generators with the swapped seeds. These generators
produce uniform distributed stream of random data. In order to achieve approximated
Gaussian distributed value, algorithm calculates the mean value from values draw
from each uniform generator in the set. Furthermore, to simplify calculations, number
of uniform generators N in the set, and variance σ of the output is always selected as
the power of two, thus divisions in the mean value calculation and normalization are
implemented as, simple and fast, bit shifts. The approximation algorithm is depicted
in Fig. 4.

5 Tests of the sample implementations

This section presents tests of the sample implementations of the system. Next subsec-
tion shows the results of a statistical tests of the generation system with a periodically
swapped seed, while the second one focuses on the quality tests of the approximation
algorithm. The last subsection presents usage of the sample implementation of the
complete generating system (consisting of a both mentioned parts) in a neural cells
simulation task.
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5.1 Random generator system

Quality of a random data generated with our system was rated with statistical tests from
packets: DIEHARD [7] and SP800-22 [8]. For the test purpose we choose a parallel
GPU implementation of the Xorshift with swapped seeds taken from the true random
number generator based on inverter rings [13,14] implemented in Xilinx Virtex 5
FPGA. The tests were run five times, and for every run a new set of random data was
generated. The results depicted in the next part of this subsection are mean results of
all five runs of a test.

Figure 5 shows results of a tests from the DIEHARD packet. In this case random
sequences of 3,000,000 of a 32 bits values were tested. On the graph two statistical
significance levels were marked with the use of four lines. Red lines indicate statis-
tical significance level α = 0.01, while green indicate level α = 0.05. Blue dots
mark p-values calculated in particular test. In some test cases, it is possible to cal-
culate final p value. It is done with Kolmogorov–Smirnov test and is marked with
red dot. If the most of the points is placed between lines signalizing actual signif-
icance level the test is considered as passed, which is shown on the graph with the
bold caption. In this particular case examined random number generator has passed all
tests.

Tests from SP800-22 packet were run on 3,122,000 of 32 bits random values. The
statistical significance level was set to α = 0.01, and is marked on the graph with red
lines. Test parameters were set according to documentation [8]. Results are shown in
Fig. 6, and should be interpreted as in the DIEHARD case.

5.2 Approximation algorithm

5.2.1 χ2 test of goodness

This part of the paper we have devoted for the considerations on χ2 test of goodness,
as the most popular and commonly used test. This test can be any statistical test, which
statistics has the χ2 distribution, when founded null hypothesis is true. The χ2 test,
by putting the null hypothesis, gives the possibility to verify the normality of tested
data.

In Table 1 we gained the probabilities with which it is possible to reject the founded
null hypothesis. If so, probability close to value 0 gives a good chance to accept the
null hypothesis and at the same time—rejects that considered generator gives values
from Gaussian distribution. Similar, values of probability close to value 1 confirms
that we are dealing with the normal distribution.

Probabilities gained in Table 1 show how the results varied from each other. We
have tested the built in MATLAB environment generator normrnd and commonly
used Box-Muller generator [1], with both—sine and cosine—options, in comparison
with our generator, for different number of uniform component generators (N = 2,

350, 2 000). For each of tested generators, we performed 10 independent attempts,
each time we counted the mean value of gained data. The results show that, for small
number N of uniform generators the mean value of probability is very small, which
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Fig. 5 DIEHARD test results for Xorshift generator with periodically swapped seed

makes us to reject our assumption of the normality of our data. It is also easy to notice,
that for higher number of generators the mean value of probability is growing, and for
N = 2,000 this mean value is greater than for commonly used Box-Muller generator,
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Fig. 6 SP800-22 test results for Xorshift generator with periodically swapped seed

what gives the assumption that for even higher number of uniform generators we will
be able to obtain the probability value close to 1.

In the next section, we will also show histograms for chosen numbers of generators,
where it will be possible to compare data from our generator with the real Gaussian
distribution curve.
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Table 1 Probabilities

No. of attempt Matlab normrnd Box-Muller
sinus

Box-Muller
cosinus

Our generator

N = 2 N = 350 N = 2,000

1 0.0674 0.7297 0.5024 0 0.3867 0.0387

2 0.7060 0.3838 0.2947 0 0.1958 0.9801

3 0.0688 0.4028 0.3683 0 0.0005 0.8320

4 0.7121 0.7687 0.7022 0 0.4862 0.1109

5 0.4274 0.6356 0.2888 0 0.0020 0.9337

6 0.7767 0.6701 0.3087 0 0.1869 0.9285

7 0.5033 0.3105 0.9662 0 0.0028 0.7321

8 0.7854 0.1348 0.0350 0 0.0021 0.4289

9 0.9566 0.0501 0.4856 0 0.2353 0.6371

10 0.7536 0.8635 0.2280 0 0.0041 0.9003

Mean value 0.5757 0.4950 0.4180 0 0.1502 0.6522

5.2.2 Histograms

One of the ways of analysing of gained data are the histograms. Before the histogram
is being drawn it is necessary to pick out the number of bins. There is a lot of different
rules of choosing the number of bins, depending on features that we want to extract
from the data. We used the Struges’ rule [11,12]:

k = ⌈
log2 n + 1

⌉
(15)

where n refers to the number of generated probes. The Struges’ rule is one of the most
common rules, used to analyze the normality of data. In our case n = 10,000,000,

thus k = 25.

In Fig. 7 there are shown four histograms created from data taken from our gen-
erator, with the assumption of different number of component uniform generators
(N = 2, 3, 350, 2,000). Additionally, for comparison, in Table 2 there are shown
the differences between histograms and the Gaussian curve for different analyzed
generators (MATLAB normrnd, Box-Muller).

Data collected from our generator had to be normalized. It was performed by divid-
ing the values of bars by the area beneath the curve designated by the histogram. New
values of bars are used to determine the error between the histogram and the Gaussian
curve. This error is counted as a sum of differences between the value of each bar
and the corresponding value of Gaussian distribution. Either the histograms (Fig. 7)
or the errors (Table 2), confirms that with properly picked number of component uni-
form generators, our generator does not deviate from results obtained with MATLAB
normrnd or Box-Muller generators.

The huge advantage of our generator is the possibility of parallelization of calcu-
lations and thus speed up of generation of huge number of data.
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Fig. 7 A. N = 2 B. N = 3 C. N = 350 D. N = 2,000

Table 2 Probabilities

No. of attempt Matlab normrnd Box-Muller
sinus

Box-Muller
cosinus

Our generator

N = 3 N = 350 N = 2,000

1 0.0155 0.0172 0.0169 0.4332 0.0179 0.0183

2 0.0165 0.0162 0.0175 0.4328 0.0174 0.0179

3 0.0155 0.0168 0.0171 0.4339 0.0190 0.0173

4 0.0165 0.0163 0.0175 0.4345 0.0173 0.0174

5 0.0170 0.0165 0.0170 0.4327 0.0184 0.0183

6 0.0163 0.0172 0.0174 0.4332 0.0177 0.0176

7 0.0166 0.0165 0.0167 0.4332 0.0190 0.0183

8 0.0160 0.0175 0.0163 0.4315 0.0193 0.0181

9 0.0188 0.0198 0.0176 0.4340 0.0185 0.0180

10 0.0166 0.0186 0.0180 0.4326 0.0177 0.0180

Mean value 0.0165 0.0173 0.0172 0.4332 0.0182 0.0179
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Fig. 8 Model output of tested neural cell model

5.3 Combined system in a neural cell simulation task

Last part of the tests was, in our point of view, the most important. It relies on use of our
system in neural cell simulation. The model of the cell was based on Hodgkin–Huxley
stochastic model. We used combined system of the parallel pseudorandom generator
with swapped seed and approximation of Gaussian distribution algorithm. We evaluate
shape of action potential curve of a simulated cell. Input current and internal cell
parameters of all tests were identical and do not influence on the results. Test model was
build with Xorshift parallel random generator, true random generator based on inverter
rings implemented in FPGA and approximation of Gaussian distribution algorithm
with varying number of uniform generators.

Figure 8 presents model output curve and Figs. 9, 10 and 11 show action poten-
tial obtained from test cell model with various number of uniform generators—
respectively 2, 4, and 8. Model output was obtained from the stochastic cell model
based on true number generator, where the Gaussian distribution was obtained from
the Box-Muller transform.

6 Summary and conclusion

Test show that simple and fast random number generator properties can be improved
by use of the system. In our example parallel implementation of Xorshift pseudo-
random generator pass very restrictive statistical tests. This solution combines profits
of high entropy hardware random generators with speed of parallel pseudorandom
algorithms.
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Fig. 9 Output of tested neural cell model with two uniform generators

Fig. 10 Output of tested neural cell model with four uniform generators

Approximation of Gaussian distribution algorithm is fast alternative to commonly
used Box–Muller transformation. Our test showed that quality of generated random
stream is accurate and could be used in various areas.

The last test proved usability of proposed system in neural cell simulations based on
stochastic version of Hodgkin–Huxley model. Using only eight uniform distribution
generators we were able to produce output signal as good as model.

123



S274 K. Gugała et al.

Fig. 11 Output of tested neural cell model with eight uniform generators

Concluding, proposed system proves its usability and functionality in neural cells
simulation tasks. Using this solution could give benefits of faster simulations without
loosing accuracy.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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