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Abstract Several application domains involve detecting complex situations and react-
ing to them. This asks for a Complex Event Processing (CEP) engine specifically
designed to timely process low level event notifications to identify higher level com-
posite events according to a set of user-defined rules. Several CEP engines and accom-
panying rule languages have been proposed. Their primary focus on performance often
led to an oversimplified modeling of the external world where events happens, which
is not suited to satisfy the demand of real-life applications. In particular, they are
unable to consider, model, and propagate the uncertainty that exists in most scenarios.
Moving from this premise, we present CEP2U (Complex Event Processing under
Uncertainty), a novel model for dealing with uncertainty in CEP. We apply CEP2U
to an existing CEP language—TESLA—, showing how it seamlessly integrate with
modern rule languages by supporting all the operators they commonly offer. More-
over, we implement CEP2U on top of the T-Rex CEP engine and perform a detailed
study of its performance, measuring a limited overhead that demonstrates its practical
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applicability. The discussion presented in this paper, together with the experiments
we conducted, show how CEP2U provides a valuable combination of expressiveness,
efficiency, and ease of use.

Keywords Complex event processing · Uncertainty management ·
Uncertainty modeling

Mathematics Subject Classification 68W01 · 68N01

1 Introduction

Several systems operate by observing a set of primitive events that happen in the
external environment, interpreting and combining them to identify higher level com-
posite events, and finally sending notifications about these events to the components
in charge of reacting to them, thus determining the overall system’s behavior. Exam-
ples are sensor networks for environmental monitoring [12,22]; financial applications
requiring a continuous analysis of stocks to detect trends [18]; fraud detection tools,
which observe streams of credit card transactions to prevent frauds [40]; RFID-based
inventory management systems, which perform a continuous analysis of registered
data to track valid paths of shipments and to capture irregularities [45].

More in general, as observed in [28], the information system of every complex
company can and should be organized around an event-based core that acts as a
nervous system to guide and control the operation of other sub-systems.

The general architecture of such an event-based application is shown in Fig. 1. At
the peripheral of the system are the sources and the sinks. The former observe primitive
events and report about them, while the latter receive composite event notifications
and react to them. The task of identifying so called composite events from primitive
ones is referred as Complex Event Processing (CEP) and relies on a Engine which
operates on the basis of a set of rules conceived and deployed by rule managers.

In the last few years several CEP engines and accompanying rule languages have
been proposed, both from the academia and from the industry [17]. One of the main

Fig. 1 The high level view of a CEP application
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goals of such engines is to provide low delay processing of incoming primitive events.
As we observed in [17], this often led to the design of oversimplified languages for rule
definition, which are not well suited to capture the complexity of the aforementioned
application scenarios. In particular, one of the main limitations of existing approaches
is their inability to consider, model, and propagate the uncertainty that exists in most
applications [7].

Starting from these premises, we developed CEP2U (Complex Event Process-
ing under Uncertainty), a new model for dealing with uncertainty in complex event
processing. CEP2U considers two types of uncertainty, namely uncertainty in the data
coming from sources, and uncertainty in the induction step that derives composite
events from primitive ones. The first form of uncertainty models the inherent impre-
cision of the information collected from sources. An example of this kind of uncer-
tainty is the error introduced by a set of distributed sensors that measure temperature
and humidity in a large area for weather forecast. CEP2U allows to represent such
uncertainty and to propagate it into the generated composite events, e.g., the expected
weather. The second form of uncertainty models the imprecision of rules, i.e., the pos-
sibility that rules do not completely reflect the behavior of the monitored environment.
As an example, a rule that detects a fire event from smoke and high temperature may
generate false positives if a smoker triggers a sensor for smoke detection.

In designing our model of uncertainty, we had four goals: (i) expressiveness: to
make our model suitable for disparate real-world scenarios; (ii) generality: to allow
easy integration of our model into existing rule languages; (iii) simplicity: to keep the
model as simple and easy to use, read, and understand as possible; (iv) efficiency: to
keep the overhead introduced by uncertainty management small w.r.t. event processing.

Organization of the paper The rest of the paper is organized as follow. Section 2
presents background work in the field of complex event processing; it introduces the
TESLA language and uses it to discuss the main features offered by existing systems.
Section 3 presents the problem statement in details. The CEP2U model of uncertainty is
described in Sect. 4, where we show, using TESLA as a practical example, how it can be
easily integrated into the data and rule models of most existing CEP systems. Section 5
describes how we extended our T-Rex CEP engine [15] to fully support CEP2U.
The performance of this prototype are thoroughly studied in Sect. 6 to show how the
additional processing required by our uncertainty model introduces a limited overhead.
Finally, Sect. 7 describes related work and Sect. 8 provides some conclusive remarks.

2 Background

2.1 Complex event processing

A heterogeneous world Although complex event processing is a relatively new area
of research, several CEP engines have been developed in the last few years, each one
bringing its own data model, its own rule definition language, and its own processing
algorithm and implementation.

Two main approaches have emerged and are currently growing in parallel [17].
On the one hand, there are systems developed by the database community, based on a
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processing model that is similar to that of relational databases, augmented with ad-hoc
operators to support on-the-fly data processing. They are known as Data Stream Man-
agement Systems (DSMSs) [8]. Similar to SQL queries, the rules of DSMSs include
operators that specify how to manipulate the (streaming) input information to trans-
form it and generate one or more output streams.

On the other hand, the solutions proposed by the community working on event-
based systems adopt rules that specify how composite events are defined starting from
patterns of primitive ones. These kinds of rules do not express the processing steps to
be performed on input events explicitly; on the contrary, the computation is implicitly
specified by the pattern. The TESLA language [14] used in the remainder of the paper
belongs to this second class.

A small world, after all Despite their differences, these two approaches pose their roots
on a common ground. Indeed, at the core of existing systems is usually a reduced set
of abstract operators: selection, to isolate the primitive events relevant for processing
based on their content; combination of multiple events based on their mutual relations
in terms of content and occurrence time; negation, to identify events that must not occur
in order to satisfy the rule; aggregation, to build composite events by putting together
the content of the primitive events they come from; production of new (composite)
events.

Next section presents these abstract operators in details, through a concrete example
developed in TESLA, which is also the language we use in the remainder of the paper
as a practical case to show how CEP2U is applicable to all the aforementioned abstract
operators.

2.2 A concrete example

Tunnel Ventilation System (TVS) are crucial to guarantee safety in tunnels. To this
end, they are constantly monitored by several sensors to detect possible failures, such
as obstructions. In usual setups sensors are evenly distributed along the tunnel and they
measure the temperature and the concentration of oxygen in air. Now, consider a CEP
application designed to detect TVS malfunctioning. Such application has to recognize
critical situations starting from the raw data measured by sensors. Depending on the
environment, the application requirements, and the user preferences, the presence of
a TVS malfunctioning can be specified in many different ways. Here we present three
possible definitions of the TVS malfunctioning event, and we use them to illustrate
the abstract operators provided by event processing languages.

(D1) There is a TVS malfunctioning when there is an oxygen concentration lower
than 18 %, while a temperature higher than 30◦ was detected in the same sector
of the tunnel in the previous 5 min. The malfunctioning notification has to embed
the sector of the tunnel, together with the oxygen concentration and temperature
actually measured.

(D2) There is a TVS malfunctioning when there is a temperature higher than 30◦ in
absence of a traffic jam in the same tunnel sector.
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(D3) There is a TVS malfunctioning when there is an oxygen concentration lower
than 18 % and the average temperature in the last 5 min, in the same tunnel
sector, was higher than 30◦.

To be implemented in a CEP system, all these definitions require the ability to select
relevant notifications according to the values they carry (e.g., those about temperature
higher than 30◦). Definition D1 also contains a specific example of combination, by
coupling heterogeneous events (i.e., temperature and oxygen concentration) according
to their relations on time (i.e., detected in the previous 5 min) and on content (e.g., those
occurred in the same sector of the tunnel). Similarly, definition D2 introduces negation
by requiring an event (the traffic jam) not to occur in a given interval; while definition
D3 introduces aggregation by requiring a specific function (average) to be applied
to a specified set of elements (temperature readings in the last 5 min) to calculate
the value associated with the composite event. Finally, each definition also states
which notifications (i.e., TVS malfunction) have to be produced when the condition
is verified. By doing this, it also specifies the internal structure of such notifications
(e.g., TVS malfunctioning notification has to embed the tunnel sector and the oxygen
and temperature readings).

2.3 TESLA in a nutshell

This section leverages the example above to introduce TESLA and to show how the
abstract operators above map to a concrete CEP language. The reader interested in a
complete description of TESLA, including a rigorous discussion of its semantics, may
read [14].

2.3.1 TESLA event and rule model

TESLA assumes that each event notification has a type, which defines the number,
order, names, and types of the attributes that build the notification. Moreover, by
assuming that events occur instantaneously at some points in time, TESLA notifica-
tions also include a timestamp, which represents the time of occurrence of the event
they encode.

Referring to the TVS example above, the TESLA event model allows to capture
the fact that the air temperature at time 10 in the tunnel sector at 16.2 km is 24.5 C,
using the following notification:

Temp@10(km=16.2, value=24.5)

where Temp represents the type of the notification, which includes two attributes: a
value that identifies the tunnel sector in which the temperature was measured, and the
actual reading (both represented as floats).

As a final remark, notice that in the following we assume events to enter the system
in timestamp order. This is a typical assumption in CEP systems, which delegate the
ordering of events to external protocols. Existing solutions include waiting for a (fixed)
time for out-of-order events before start processing, or introducing flexible heartbeats
which take into account both clock synchronization and event propagation delays [41].
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TESLA rules define composite events from simpler ones. The latter can be observed
directly by sources (i.e., they can be primitive events) or they can be composite events
defined by other rules.1 Each TESLA rule has the following general structure:

Rule R
define CE(att_1:Type_1, ..., att_n:Type_n)
from Pattern
where att_1 = f_1, .., att_n = f_n
consuming e_1, .., e_n

Thedefine andwhere clauses, taken together, represent the production operator
we identified above. Indeed, the former introduces the new composite event and its
structure, while the latter defines the actual values for the attributes att_1, ..,
att_n of the new event using a set of aggregation functions f_1, .., f_n,
which may depend on the arguments defined in Pattern. This pattern, part of the
from clause, sets the conditions that lead to the composite event, selecting the prim-
itive events and combining them according to well precise relationships. Finally, the
optional consuming clause defines the set of events that have to be invalidated for
further firing of the same rule.

2.3.2 TESLA by examples

To present the operators supported by TESLA in an easy and clear way, we use the
three definitions of TVS malfunctioning presented above, showing how they can be
encoded in TESLA. In particular, definition D1 can be represented by the TESLA
Rule R1 below:

Rule R1
define TVS_Malfun(km:double, temp:double, ox:double)
from Oxygen(concentr=<18% and km=$a) and

last Temp($a-10 < km < $a+10 and value>30)
within 5 min. from Oxygen

where km=Oxygen.km and temp=Temp.value and ox=Oxygen.concentr

First, Rule R1 selects Oxygen and Temp events based on their content (i.e.,
concentr<18% and value>30). Then, it combines the two on the basis of their
content (i.e., the value of attribute km put in relation using parameter $a) and their
time of occurrence (i.e., within 5 min). Finally, it produces TVS malfunctioning
events (TVS_Malfun) setting its attributes as specified by the where clause.

Notice how Rule R1 uses the last-within operator to bind each Oxygen
event with the last Temp event observed. Alternative behaviors could be obtained
by using other operators provided by TESLA for combining events. For example,
the first-within operator would consider only the first Temp event observed
within the specified time window, while the each-within operator would consider
all available Temp events, producing a different TVS malfunctioning for each of
them. The complete set of combination operators provided by TESLA enables fully
customizable selection policies [17], thus allowing the domain experts to specify

1 This mechanism allows the definition of “hierarchies of events”.
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which events have to be considered when multiple choices are available. For a formal
description of their semantics see [14].

The second definition of a TVS malfunctioning introduced above (i.e., D2) can be
used to show how time-based negations are expressed in TESLA:
Rule R2
define TVS_Malfun(km:double, temp:double)
from Temp(km=$a and value>30) and

not TrafficJam($a-10 < km < $a+10)
within 5 min. from Temp

where km=Temp.km and temp=Temp.value

Rule R3 shows an example of aggregation function (i.e., Avg) to express definition
D3.
Rule R3
define TVS_Malfun(km:double, temp:double, ox:double)
from Oxygen(concentr=<18% and km=$a) and

30 < $t = Avg(Temp($a-10 < km < $a+10).value
within 5 min. from Oxygen)

where km=Oxygen.km and temp=$t and ox=Oxygen.concentr

Notice that the computed value of an aggregate can be used in the from clause,
as in this case, to constrain the triggering of the rule, but it may also be used in the
where clause, to set the attributes of the produced event.

3 Problem statement

CEP rules are conceived to model—and capture—some aspects of interests of the
real world. As for any modeling approach, accuracy is crucial. At the same time,
our ability to capture a phenomenon is often affected by some form of uncertainty.
Ignoring it may lead to incomplete, inaccurate, or even incorrect decisions concerning
the phenomenon itself. To achieve an effective management of uncertainty for CEP,
the following three aspects must be considered:

– identification of the sources of uncertainty;
– modeling of uncertainty;
– propagation of uncertainty across the system.

Identification The first step requires a careful analysis of the phenomenon to model,
the way it is captured, and in general the environment where CEP is deployed, in order
to identify the potential sources of uncertainty. For example, the limited accuracy of
sensors may introduce uncertainty in data observations. In addition, even in presence
of precise data observations, the behavior of the phenomenon under observation may
depend from aspects hard to capture or changing over time, which if not considered may
lead to imprecise models. As an example, when trying to detect fire in a building, the
presence of smoke can be the key indicator, but it may also be unrelated with fire (e.g.,
if someone is smoking near the sensor), while high temperature is another indicator
but its exact definition may change during the year (e.g., during the summer there is
a non-negligible probability of having high temperature readings even without a fire).

Modeling Once the sources of uncertainty have been identified they must be incorpo-
rated into the CEP system. The modeling phase aims at providing a sound mathematical
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foundation to represent uncertainty, let the CEP engine be aware of it, and manipulate
it consistently. For example, probability theory can be used to model measurement
errors, allowing the CEP engine to process uncertain values and combine them with
other, possibly certain, ones.

Propagation An uncertainty-aware CEP engine should produce a result characterized
by an appropriate degree of uncertainty, consistent with: (i) the identified sources of
uncertainty and (ii) the models adopted to represent them.

As mentioned in the introduction, the design of a CEP system should meet three key
requirements: (i) expressiveness of the rule definition language, (ii) simplicity of this
language, which results in a reduced effort in writing rules and increase readability and
maintainability; (iii) efficiency in processing rules, to better support those scenarios,
like financial applications, where a lower latency in detecting composite events results
in a tangible advantage over competitors.

The same requirements should also drive the process of integrating uncertainty into
CEP. Concretely, in presence of uncertainty, rules should remain concise and easy
to write and read, while the overhead resulting from the introduction of uncertainty
should be relatively limited.

4 Model of uncertainty

This section describes the CEP2U model in details. As underlined above, the first step
to model uncertainty consists in the identification of its sources. CEP2U focuses on
two possible sources of uncertainty:

– uncertainty in events, i.e., the uncertainty deriving from an incorrect observation of
the phenomena under analysis. This means to admit that the notifications entering
the CEP engine can be characterized by a certain degree of uncertainty.

– uncertainty in rules, i.e., the uncertainty deriving from incomplete or erroneous
assumptions about the environment in which the system operates. This means to
admit that the CEP engine has only a partial knowledge about the system under
observation, and consequently the CEP rules cannot consider all the factors that
may cause the composite events they are in charge of detecting.

CEP2U models uncertainty in events using the theory of probability, while it exploits
Bayesian Networks (BNs) [25] to model uncertainty in rules. In particular, it extends
the model of events to include probabilistic data into event notifications, while it
automatically builds a BN for each TESLA rule deployed in the system. Domain
experts are expected to extend such BNs to capture a-priori knowledge about those
aspects of the environment that cannot be directly observed by sources.

4.1 Uncertainty in events

In this section we focus on uncertainty that affects event notifications, showing how
we model it and how we propagate it during processing.
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4.1.1 Modeling uncertainty in events

For each event e, CEP2U considers two forms of uncertainty:

(i) the uncertainty regarding the content of e (i.e., regarding the values of its
attributes).

(ii) the uncertainty regarding the occurrence of e;

The first form of uncertainty stems from the fact that most attributes that builds
event notifications hold a measure of some physical entity or phenomenon. These
measures are inevitably affected by some degree of uncertainty, which derive from
the inaccuracy, imprecision, and noise that affect sensors. CEP2U models this kind of
uncertainty by considering the value of each attribute Attri as a sample from a random
variable X ′

i = Xi + εi , where Xi is the real, unknown value that would be measured
in absence of errors, while εi is the measurement error.

CEP2U assumes that the probability distribution function (pdf) of εi is known.
It depends upon the noise at sources, including fabrication randomness of sensors,
inaccuracies in the measurement technique, etc. This information can be provided by
the sources themselves (e.g., a sensor knows an estimate of its error and attaches it
to the event notifications it produces) or it can be provided by a domain expert and
integrated into event notifications before processing. Notice that our model supports
generic pdfs, including discrete functions.

The second form of uncertainty is modeled through an estimate of the probability of
occurrence of e. Events whose occurrence is assumed to be certain have a probability
of 1, while events whose occurrence is not certain have a lower probability. In CEP2U,
we assume all primitive events to be certain.2

The definitions above result in extending the event model presented in Sect. 2.3 as
follows:

(i) For each event notification attribute Attri , the information received by the CEP
engine is the couple: 〈X ′

i , pdf i 〉, where X ′
i is the observed value of Attri and pdf i

is the probability distribution function of εi .
(ii) Each event notification is augmented with an explicit probability of occurrence;

As a concrete example, consider our TVS scenario. The air temperature in a given
tunnel sector at a specific time could be captured by the following event notification:

Temp@10 %1 (km = <16.2, U(-1, 1)>, value = <24.5, N(0,1)>)

where %1 represents the probability of occurrence of the event Temp (it is certain that
the measure was taken and consequently it is certain that the event occurred), while
both the km and the value attributes have an associated uncertainty modeled through
the pdfs of their measurement errors, which is a uniform (U) between −1 and 1 for
km and a Gaussian (N) with mean 0 and variance 1 for value.

Before ending this section we need to discuss the aspect of events that was neglected
so far: the time of occurrence. As the careful reader may have already noticed, we

2 In particular, we assume that we receive all events (no false negatives) and that all received events actually
occurred (no false positives). CEP2U can models the presence of false positives and negatives as part of the
uncertainty in rules, as discussed in Sect. 4.2.2.
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are assuming that the time at which events occur, and consequently the timestamp
associated with event notifications (see Sect. 2.3.1), is a definite value. This is a debat-
able assumption. In principle, we could easily associate a degree of uncertainty to
timestamps, modeling them as random variables instead of crisp values. On the other
hand, we cannot ignore the fact that time represents a very critical aspect for every CEP
system. Indeed, some of the fundamental CEP operators rely on timing constraints.
This is the case of windows [8], sequence operators [17], and the xxx-within
operator in TESLA, not to mention time-based aggregates.

Associating uncertainty to a critical parameter as time could impact the semantics
of rule languages, which often model cause-effect relationships and rely on temporal
ordering to express causality. Furthermore, associating uncertainty to time would also
negatively impact the efficiency of processing, with a potential explosion of the com-
posite events captured, since primitives events “floating” in time may trigger much
more rules than events whose occurrence time is precisely known. These considera-
tions motivate our choice but we do not exclude to change it in the future.

4.1.2 Propagating uncertainty in events

Here we consider the abstract operators described in Sect. 2 and we show how uncer-
tainty in primitive events propagates to composite events.

Selection Consider the following, simplified version of Rule R1, which detects a
malfunction every time a Temp event is detected that satisfies the two constraints:
km<17.1 and value>30:
define TVS_Malfun()
from Temp(km<17.1 and value>30)

When a Temp event enters the system whose attributes have an associated uncer-
tainty, the satisfaction of the constraints in rule becomes uncertain, also. In such a
situation we can compute the probability that each constraint is satisfied from the pdf
of each attribute’s measurement error εi .

As an example, assume that a Temp event is received at time 13 with the following
measured values and associated errors:
Temp@13 %1 (km = <16.2, U(-1, 1)>, value = <31.8, N(0,1)>)

The probability that the first constraint in rule above is satisfied is: P(Xkm < 17.1)

where Xkm is the real, unknown value of attribute km. We know that:

X ′
km = Xkm + εkm

which means:

Xkm = X ′
km − εkm ∼ U (16.2 − 1, 16.2 + 1) = U (15.2, 17.2)

Accordingly, the probability that Xkm is lower than 17.1 corresponds to calculating
P(U (15.2, 17.2) < 17.1) = 0.9. Similarly, for attribute value we have:

Xvalue = X ′
value − εvalue ∼ N (31.8 − 0, 1) = N (31.8, 1)
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Accordingly, the probability that it is greater than 30 is equivalent to calculating
P(N (31.8, 1) > 30) = 0.964.

Finally, CEP2U assumes that the values of different attributes are independent
from each other.3 Under this assumption, the overall probability that the Temp event
satisfies both constraints in the rule above is the product of the probability that each
constraint is satisfied, i.e., 0.9 · 0.964 = 0.868. Since these are the only constraints in
the rule, this is also the probability that the TVS_Malfun event is generated, i.e., the
probability of occurrence that CEP2U associates to the composite event.

Combination In several situations, composite events combine several primitive event
by relating them on the basis of the values of their attributes.This case requires a
different processing w.r.t. the selection case, as it relies on the comparison of multiple
distributions. As an example, consider the following rule:

define TVS_Malfun()
from Oxygen(km=$a) and

last Temp($a-10 < km < $a+10 and value>30)
within 5 min from Oxygen

which requires the combination of Oxygen and Temp under the constraint that they
occur in a neighborhood of 10 km. As in the previous case, the evaluation of such
constraint may be affected by uncertainty, since both event notifications may associate
a measurement error to attributekm. To show how CEP2U addresses such case, assume
we receive the following events:

Temp@10 %1(km=<10.5, N(0,1)>, value=<31.8, N(0,1)>)
Oxygen@12 %1(km=<10.3, N(0,2)>)

We already know from the previous example that the (selection) constraint on
value is satisfied with probability 0.964. We now want to compute the probability that
the constraint onkm is satisfied. Assuming that the two readings ofkm are independent
from each other,4 we want to compute the following probability:

P(−10 < XT emp.km − X Smoke.km < +10)

We know that:

XT emp.km = X ′
T emp.km − εT emp.km

∼ N (10.5 − 0, 1) = N (10.5, 1)

X Oxygen.km = X ′
Oxygen.km − εOxygen.km

∼ N (10.2 − 0, 2) = N (10.2, 2)

3 In principle, we could remove this assumption and consider a multivariate pdf that involves all the
attributes of incoming events, but this would complicate the model and it would require information that is
usually unavailable at sources.
4 This is a reasonable assumption, since the two readings come from different, independent sources. Only
the occurrence of a TVS malfunctioning, whose probability is exactly what we are computing, may lead to
correlated readings.
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from which we derive:

XT emp.km − X Oxygen.km ∼ N (10.5 − 10.2, 1 + 2)

= N (0.3, 3)

This probability can be computed as: P(−10 < N (0.3, 3) < +10) = 0.999.
Combining this result with the previous one (about the selection operator) we calculate
the overall probability of occurrence of TVS_Malfun as: 0.964 · 0.999 = 0.963.

Notice that the merging of random variables required to combine primitive events
together, may result in complex pdfs that do not admit a closed formulation. CEP2U
can deal with such cases exploiting Monte Carlo simulations, but they potentially
require expensive computations to be performed online. However, their execution
time may be tuned such that users can trade precision for efficiency.5 In addition, we
expect most applications to involve linear combinations of well known distributions,
which can be analytically evaluated and computed (as in the example above).

Negation Capturing the probability that a negation is satisfied is relatively easy. Indeed,
assume we do not want an event of type T to occur in a given time window w. Also
assume we receive n events of type T in w. Let us call pi , 1 ≤ i ≤ n, the probability
that the i th event occurs and satisfies the constraints stated by the rule (calculated
as explained in the previous paragraphs). The probability that the negation constraint
is satisfied equals to the probability Pneg that no T event occurs in w, which can be
computed as follows:

Pneg = 1 −
n∏

i=1

pi

As an example, consider the following rule, which is a simplified version of Rule
R2 presented in Sect. 2:

define TVS_Malfun()
from Temp(km=$a and value>30) and

not TrafficJam($a-10 < km < $a+10)
within 5 min. from Temp

It includes a negation, requiring that no TrafficJam happens near the area where
a high temperature was detected. Now assume we received the following three notifi-
cations:

TrafficJam@10 %1(km=<25.3, N(0,2)>)
TrafficJam@12 %1(km=<24.8, N(0,3)>)
Temp@14 %1(km=<10.5, N(0,1)>, value=<31.8, N(0,1)>)

5 To better understand the overhead introduced by Monte Carlo simulations, we performed some exper-
iments using curve fitting from randomly generated samples to approximate an unknown function. In
presence of hundreds of samples, curve fitting required some hundreds of milliseconds to complete in our
reference hardware. This is two order of magnitude higher than the typical processing time of a CEP engine
(see Sect. 6 for more details). However, by reducing the granularity of the sampling intervals we could
easily reduce the computation time to a few milliseconds. As future work, we plan to perform a detailed
analysis of the tradeoffs between efficiency and precision.
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By applying the process explained for combination operators, we obtain the follow-
ing probability for the two TrafficJam events: 0.055 and 0.141. Using the formula
above, the overall probability of occurrence of the TVS_Malfun event is:

Pneg = 1 −
2∏

i=1

pi = 1 − (0.055 · 0.141) = 0.992

The overall probability of TVS_Malfun is computed starting from the probability
of temp and the probability of negation 0.992.

PTVS_Malfun = Pneg · Ptemp = 0.992 · 0.964 = 0.956

Aggregation Computing an aggregation requires applying a function f to the val-
ues extracted from a set of primitive events. As an example, consider the following
simplified version of Rule R3:

define TVS_Malfun()
from Oxygen() and 30 < $t=Avg(Temp().value

within 5 min. from Oxygen)

In this case the uncertainty of the aggregate value only depends on the uncertainty
of the attribute value in Temp. In general, the theory of probability dictates how
to compute the pdf of a random variable that results from applying a function f to a
set V = {v1, . . . , vn} of random variables. In our example, such pdf represents the
distribution of the average of all value in Temp events received within 5 min from
Oxygen. For example, assume that n different Temp events have been received, with
a value vi and an error εi ∼ N (0, σ 2

i ). By remembering that X ′
i = Xi + εi , and that a

linear combination of Gaussian pdfs is a Gaussian itself, the constraint on the average
value of the attribute can be computed with the formula:

P

(
N

(
n∑

i=1

vi

n
,

n∑

i=1

σ 2
i

n2

)
> 30

)

As already mentioned, in general things can be more complex, since combining
random variables may lead to pdfs that do not admit a closed form. CEP2U may exploit
Monte Carlo simulations to solve those cases.

Finally we note that, in the general case, a rule may also introduce additional
(selection and composition) constraints that apply to the primitive events included in
the computation of an aggregate as shown in the following rule.

define TVS_Malfun()
from Oxygen() and

30 < $t = Avg(Temp($a-10 < km < $a+10).value
within 5 min. from Oxygen)

In this case, the set of events to be considered for the computation is itself uncertain,
as it depends on the satisfaction of additional constraints (i.e., the condition on km),
which affects the distribution of the aggregated value. CEP2U supports this general

123



116 G. Cugola et al.

case by considering the contribution of every possible subset S of primitive events
(temp events in our example), weighted by the probability that all (and only) the events
in S satisfy the selection and composition constraints. As a simple example assuming
we receive two temp notifications t1, t2, in this case we compute the aggregate value
as follows:

avg(t1, t2) · P(t1, t2) + avg(t1) · P(t1) + avg(t2) · P(t2)

where P(t1), P(t2) represent the probability that t1 (respectively t2) occurs, while
P(t1, t2) represents the probability that both t1 and t2 occur. Being t1 and t2 two
random variables, their average is still represented by a random variable, thus the
above computation generates another random variable.6

Production In all the examples above, we considered simplified versions of the rules
presented in Sect. 2, in which the TVS malfunctioning event does not contain any
attribute. Within this assumption, the uncertainty related to the measurement error
only reflects on the probability associated to the occurrence of the composite events.
In the general case, composite events include one or more attribute, whose value is
determined starting from the attributes of primitive events. As an example consider
again a simplified version of Rule R1:

Rule R1
define TVS_Malfun(km:double, temp:double)
from Oxygen(km=$a) and last Temp($a-10 < km < $a+10 and value>30)

within 5 min. from Oxygen
where km=Oxygen.km and temp=Temp.value

where the TVS malfunctioning event includes two attributes, km and temp. The first
one is initialized to the tunnel sector of Oxygen and the second one to the value
of Temp. CEP2U deals with such cases by propagating the uncertainty associated to
the attributes of primitive events to the attributes of composite events. For instance,
assume that we receive the following events:

Temp@10 %1(km=<10.5, N(0,1)>, value=<31.8, N(0,1)>)
Oxygen@12 %1(km=<10.3, N(0,2)>)

We already seen this situation when discussing composition and we computed the
probability ofTVS_Malfun as PT V S_Mal f un = 0.963. Now, we also have to compute
the attributes of the composite event with their pdfs. The resultingTVS_Malfun event
becomes:

TVS_Malfun@12 %0.963(km=<10.5, N(0,2)>, temp=<31.8, N(0,1)>)

In most cases, we expect that the values of the attributes in composite events are
copies of primitive event attributes (as in the example above) or linear combinations

6 Notice that, in the general case, the cost for computing the value of an aggregate can grow exponentially
with the number of event notifications received. To limit the impact of this problem, it is possible to trade
precision for efficiency, e.g., by approximating to 0 the occurrence probability of an event when it is
sufficiently low (below a certain threshold) and to 1 when it is sufficiently high (above a certain threshold).
The thresholds can be chosen based on the requirements in terms of precision and processing time.
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of them. Not only CEP2U supports these simple operations, but also extends to the
general case of non linear operations over different pdfs by relying on approximate
distributions as discussed for combinations and aggregations.

Hierarchies of events Several existing languages for CEP, including TESLA, allow the
definition of rules that consider some composite events as their input to produce other
(higher level) composite events. This enables rules manager to create hierarchies of
events.

Consider for instance our tunnel ventilation system scenario. A user may want to
define a rule that combines several TVS_Malfun events to detect a Danger (higher
level) composite event.

Managing uncertainty in presence of hierarchies of events may become complex.
Let us consider a rule R1, which generates a composite event CE used by another rule
R2. In principle, the evaluation of uncertainty carried on in rule R2 over CE could
depend from the computation performed in R1 to generate CE. An example of this
situation is reported below:

Rule R1
define CE(attr:double)
from SE(attr>10)
where CE.attr = SE.attr

Rule R2
define CE2()
from CE(attr>20)

Clearly, the evaluation of the selection constraint in rule R2 (i.e., attr>20) is not
independent from the evaluation of the selection constraint in rule R1 (attr>10).
Indeed, the attribute CE.attr is directly computed from SE.attr.

Intuitively, tracing the dependencies from rule to rule would severely impact on the
complexity of processing, especially in presence of deep hierarchies, with multiple
rules involved. Because of this, in CEP2U we decided to take a different approach,
introducing two simplifying assumptions: (i) if an eventCE is generated from a rule R1
and used as input for another rule R2, then R2 considersCE as occurred with probability
1; (ii) when a rule evaluates an event CE, it assumes that every computation involving
the attributes of CE is independent from the process that led to the generation of CE.

Intuitively, through these assumptions CEP2U “forgets the past”, ignoring the
processing that led to the generation of an event CE while evaluating it. In other
words, CEP2U considers all the events relevant for processing, including composite
events generated in recursive rules, as if they were produced by external, independent,
sources.

Since recursive rules are often used to build layers of abstraction, the assumption
above can be interpreted by saying that CEP2U users “trust” the results of lower levels
when writing rules that define events at a higher level. While this may introduce some
approximation in the computation of probability, it simplifies the semantics of rules and
their design. Moreover, this enables CEP2U to process all input events in the same way,
regardless if they are primitive events or composite events generated from other rules.

To mitigate the burden associated to recursive evaluation of composite events when
their probability of occurrence is extremely low, we introduce an explicit (optional)
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clause to each rule, min probability. Such clause represents the minimum prob-
ability for considering the produced events as occurred and can be set by domain
experts based on the application scenario at hand. If such a threshold is not reached
the composite event is discarded for further processing and not delivered to interested
sinks. Notice that this mechanism has the additional consequence of smoothing the
effect of assumption (i).

A note about consumption Another key feature considered in most CEP language,
including TESLA, is the consumption policy [13,17]. It specifies which (primitive)
events that fired a certain rule R have to be consumed, i.e., excluded from further
evaluations.

In general, it is easy to understand that the model of uncertainty we introduced so
far is not impacted by the mechanism of event consumption. Similarly, CEP2U has no
impact on event consumption. Considering the specific case of TESLA, a definition
of the currently supported consumption policies can be found in [14]. They apply
seamlessly in presence of uncertainty.

4.2 Uncertainty in rules

In the previous section we focused on the uncertainty associated with event notifi-
cations, under the assumption that the rules that detect composite events from prim-
itive ones were definite and “certain”. Here we relax this assumption and explain
how CEP2U models the uncertainty deriving from rules using Bayesian Networks
(BNs).

We adopted BNs to model the uncertainty in rules because they constitute a natural
way to represent the dependencies between concepts. This perfectly fits our goal of
modeling the uncertainty in the causal relationship between primitive and composite
events.

As we will better explain later, one of the main drawbacks of BNs is represented by
the complexity of their definition. To overcome this issue, CEP2U offers an automatic
generation of BNs from rules and enables domain experts to modify and enrich them
to better fit the scenario under analysis.

4.2.1 Bayesian networks

Before giving the details of our solution, we provide an intuitive description of BNs.
A BN is a graphical statistical model used to represent the conditional dependencies
between random variables. Each BN is a directed acyclic graph (DAG): each node
represents a random variable, while an edge from node N1 to node N2 represents a
causal dependency between N1 and N2, i.e., N1 causes N2. Each node has an associated
probability function that specifies the probability of each value that the node can
assume as a function of the values assumed by parent nodes. BNs can be used to
infer the expected values for one or more variables, given the values (or the a-priori
distribution of values) of other variables in the network.

Figure 2 shows a simple BN that models the availability of hot water using three
random variables: Solar Panel, Boiler, and Hot Water.
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Fig. 2 Bayesian Networks: an example

Each of the three variables can assume two values, ON and OFF. The two edges
enteringHot Water represent a causal dependency of this variable from bothSolar
Panel and Boiler. This dependency is quantified in the table associated to Hot
Water: the availability of hot water is certain when both the boiler and the solar panel
are ON, and highly probable (P(ON) = 0.9) when at one of them is ON and the other is
OFF. When both the boiler and the solar panel are OFF then it is highly probable that
there is no hot water ((P(OFF) = 0.9). Notice that the network includes also a causal
dependency between Solar Panel and Boiler, which models the presence of a
controller to switch the boiler ON or OFF depending on the state of the solar panel.
Finally, the state of the Solar Panel does not causally depend from any other
random variable; accordingly, its table is filled with the a-priori probability that the
solar panel is working correctly.

A BN can be used to answer queries about its variables and their causal relationships.
For example, the network can be used to extract updated knowledge on the state of
one or more variables when other variables are observed. In our case, we may observe
that the solar panel is working (the value of Solar Panel is ON with probability
1) and use this information to compute the probability of having hot water equal to
98 %.

4.2.2 Modeling uncertainty in rules through Bayesian networks

As a concrete example to motivate the need of considering uncertainty not only in
events but also in rules, consider Rule R1 again:

define TVS_Malfun(km:double, temp:double, ox:double)
from Oxygen(concentr=<18% and km=$a) and
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last Temp($a-10 < km < $a+10 and value>30)
within 5 min. from Oxygen

where km=Oxygen.km and temp=Temp.value and ox=Oxygen.concentr

It describes how the presence of a TVS_Malfun event can be detected through
the contemporary observation of high temperature and low oxygen concentration.

As it often happens in computer systems, this rule implicitly assumes a closed world
in which only the three entities of oxygen, temp, and malfunctions exist, and there
are no additional factors that influence their occurrence and their causal dependencies.
However, reality is much more complex than this and a lot of other factors may actually
influence the behavior of our tunnel. Some of these factors could be impossible to
observe and measure, or it could be too complex to precisely monitor them. In general
every modeling activity abstracts away those details that are considered marginally
relevant, but in doing so it trades simplicity for precision, exposing to the risk that these
omissions could result in incomplete models, possibly leading to wrong deductions.
The ability to model the level of uncertainty present in rules is precisely what we offer
to avoid this risk.

In particular, given a TESLA rule R: (i) CEP2U automatically translates R into a
corresponding BN; (ii) rule managers or other domain experts are offered the chance
to enrich such BN to include additional factors that may influence the occurrence of
events; (iii) the updated BN is then evaluated to compute the probability of occurrence
of composite events, taking into account the factors added in the previous step; (iv) the
computed value is integrated with the results obtained by considering the uncertainty
in events and propagated to the composite events generated by R.

Notice that steps (i–iii) occur at rule design time. Step (i) is performed by the
CEP system every time a new rule is deployed. Rule managers may refine rules by
enrichment—step (ii)—, automatically triggering step (iii). Step (iv) is the only one
that occurs at run-time, while the CEP engine processes incoming events.

Translation Each TESLA rule defines how the occurrence of a composite event can
be detected from the observation of one or more primitive events. Put in other terms,
it models a causal dependency among the composite events and the primitive ones.
Moving from this consideration, CEP2U automatically translates each Rule R into a
BN, which includes one node for each event (primitive or composite) in R and one
edge (a causal relationship) connecting the composite event to each primitive event.
As an example, Fig. 3 shows the BN obtained from Rule R1.

Notice that this approach considers the composite event as the cause that determined
the primitive events. This is reasonable in several situations, including our example of
TVS malfunctioning, but there are scenarios in which what we observe (the primitive
events) are the causes of the phenomenon that we are interested to detect (the composite
event). For instance, this is the case of an application that measures seismic waves in
a certain shore-side area to detect possible sea-quakes. In such situations, the rule
managers may decide to revert the direction of the BN edges automatically created by
CEP2U.

Moreover, the automatic translation assumes the composite event to be the only
cause of all the primitive events. In other words, the presence of a composite event
(TVS_Malfun in our example) always determines the occurrence of all primitive
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Fig. 3 The Bayesian network generated from Rule R1
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Fig. 4 Bayesian network for Rule R1: an example of enrichment

events (Temp and Oxygen in our example) with probability 1. Domain experts are
allowed to modify this model by editing the BN, as described in the following (see
the enrichment phase below).

As a final consideration, we want to recall that CEP2U uses BNs to model the
contribution of uncertainty deriving from rules, exclusively. As a consequence, it
abstracts away most aspects present in rules. In particular, each node in the BN obtained
from a Rule R models a purely Boolean variable that represents, in abstract, the
occurrence of an event that fully satisfies the constraints in R. For instance, node
Temp in Fig. 3 represents the occurrence of a Temp event that satisfies the constraints
($a− 10 < km < $a+ 10 and value>30).

Enrichment During the enrichment phase, we allow rule managers or other domain
experts to edit the BN, changing the direction of edges (see discussion above) if
necessary, and introducing new nodes together with their causal dependencies with
existing primitive and composite events.

Figure 4 shows a possible enrichment of the BN obtained from Rule R1. In this
case, we identified TrafficJam as an external cause of high temperature and low
oxygen concentration. Accordingly, we added a new node representing such factor and
connected it to both Temp and Oxygen. CEP2U admits generic (discrete and contin-
uous) variables in BN, not only binary ones. In this case, we assumed TrafficJam
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may get three values: HIGH, MEDIUM, and LOW, and we added to the BN the a-priori
distribution of these values. Notice that these distributions can be modified over time,
for example to better represent variable scenarios such as seasonal trends.

Furthermore, when including additional nodes in the BN, the domain experts should
also model how they influence existing ones. In Fig. 4, we modified the probability
tables of Temp and Oxygen to take into account the possible presence of traffic jams.

Evaluation The goal of the evaluation step is to determine the probability of occur-
rence of the composite event under the hypothesis that the primitive events have been
observed. In practice, every node that represents a primitive event is set as happened
(i.e., P(YES) = 1), and the BN is solved [25].

If the BN was a direct and “non-enriched” translation of a TESLA rule, the result of
this step is to associate a probability of 1 to the occurrence of the composite event. For
example, in the BN in Fig. 3 when both Temp and Oxygen are observed, the proba-
bility of occurrence of the TVS_Malfun event evaluates to one as well. This is not the
case if the BN was enriched. Changing the probability tables of the various nodes or
introducing new factors, like theTrafficJam in Fig. 4, changes the result of the eval-
uation step. As an example, solving the BN in Fig. 4 we get a probability of 98.70 for
the occurrence of TVS_Malfun. Indeed, now the occurrence of Oxygen and Temp
events cannot be directly and uniquely related to the occurrence of the TVS_Malfun
event, as the former ones may also be caused by the presence of a traffic jam.

Propagation Summing up the process explained so far, CEP2U produces two prob-
abilities of occurrence for composite events. One by looking only at the uncertainty
intrinsically related with events (see Sect. 4.1) and one by looking only at the uncer-
tainty coming from rules, as just discussed. At this point, we need to merge them in a
single probability value, but this is straightforward. Indeed, these two probabilities are
independent by construction, accordingly we may combine them by simply multiply-
ing the two. The result is the uncertainty we associate to the composite event (hence
the name “propagation” of this step).

4.3 Discussing CEP2U design

As mentioned in Sect. 3, when it comes to design an uncertainty model for CEP, there
are some key requirements that must be carefully considered. Focusing on the rule
language, they include a balanced trade-off between simplicity and expressiveness.

CEP2U allows engineers and domain experts to easily capture the two sources of
uncertainty we identified in our analysis: the uncertainty coming from events and the
uncertainty in rules.

In addition, CEP2U meets the separation of concern principle by considering them
independently, as the uncertainty coming from rules does not affect the pdfs of the
attributes in composite events, which are entirely and uniquely determined by the
processing of the uncertainty coming with events. More specifically, the BNs we
create are completely unaware of attribute values and only reason about event occur-
rences, while the processing of uncertainty associated with attributes assumes rules
are definite and correct. This modeling choice allows a precise and clear separation of
the factors that influence uncertainty in CEP, which keeps the model simple and easy
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to understand, while enabling its efficient evaluation at run-time, as discussed later on
in Sect. 6.3.

Moreover, this approach maximizes the generality of our model, which has virtually
no impact on the rule language. In integrating CEP2U with TESLA we only added
a new (optional) min probability clause, the rest of the language remained the
same.

Finally, the easiness of integrating CEP2U in TESLA, a language that includes all
the typical CEP operators, hints at its general applicability to other CEP languages.

5 Implementation

The validation of CEP2U has been carried on by implementing the model and its
TESLA incarnation into our T-Rex engine [15]. In this section we illustrate such
implementation. The discussion will proceed by difference with respect to the previ-
ous implementation of T-Rex, focusing on the components introduced or modified to
support our model of uncertainty.

The interested reader can find a detailed description of the architecture of T-Rex in
[15]. Concerning specifically the event processing algorithm, i.e., the algorithm used
to perform pattern matching over incoming events, we started from the CDP algorithm
described in [16,29].

Figure 5 shows the overall architecture of T-Rex, highlighting the components that
have been added or modified to support uncertainty. In particular:

– we modified the processing algorithm of T-Rex to fully support the new CEP2U
data model, which includes uncertainty on the occurrence and on the content of
events;

– we implemented a BN Translator, BN Editor, and BN Evaluator,
which automatically generate BNs from TESLA rules, support their editing, and
evaluate them, respectively.

Columns

Static
Index

Stored
Events

Rule Manager

Rules

Generator GeneratorGenerator

Incoming Events

Subscription Manager

Queue
BN Translator

BN Editor

New Components

Rule1 Rule2 Rule3

BN Evaluator

Fig. 5 Architecture of the T-Rex engine: components introduced and modified to support uncertainty

123



124 G. Cugola et al.

The first change is required to deal with the uncertainty in events during processing,
to take into account possible measurement errors, and to propagate them into the
generated composite events. The second change introduces the components to define
and evaluate the uncertainty in rules.

5.1 Implementing uncertainty in events

The CDP processing algorithm adopted by T-Rex organizes events into ad-hoc data
structures called Columns. More precisely, it generates a separate column for each
primitive event appearing in each rule R. As an example, in Fig. 5 we see the
engine handling three rules, each one involving four primitive events (and thus
defining 4 columns). For efficiency reasons, a single copy of each event is stored
in the Stored Events repository, while only pointers are actually present in
Columns.

When a new event e enters the engine, the Static Index determines the set of
columns it is relevant for based on e’s type and content. In other words the Static
Index implements the selection of primitive events, as described in Sect. 2. When
the primitive events have been collected, the Columns component is responsible for
performing the combination of such events, for evaluating negations, and for executing
all the computations—including aggregation—that is necessary to understand if the
pattern expressed in a rule is satisfied. When this happens, the Generators (one for
each rule) are responsible for producing the corresponding composite events. Finally,
the composite events enter the Subscription Manager, which is responsible for
delivering them to the interested (local or remote) sinks.

As discussed in Sect. 4, considering the uncertainty in events impacts all the
abstract operators of a CEP engine: selection, combination, negation, aggregation,
and production. Accordingly, we had to modify the Static Index, Columns,
and Generators components.

The Static Index received the most substantial changes. The goal of this com-
ponent is to match incoming events against the selection constraints expressed by rules.
This is the typical task performed by publish-subscribe systems, and several efficient
algorithms have been proposed for it [3]. In absence of uncertainty we reused one of
this algorithms, which exploits complex indexed structures to reduce the processing
effort. Unfortunately, such mechanisms cannot be applied in presence of uncertain
data. Accordingly, we re-implemented the Static Index from scratch using a
simpler but more flexible algorithm that evaluates constraints and their satisfaction
probability sequentially against each incoming event. Despite this significant change,
the overhead of uncertainty handling over the selection step is limited. We will inves-
tigate this aspect in details in Sect. 6.

Uncertainty has a minor impact on the structure of the Columns component.
Indeed, we simply modified the functions used to evaluate the constraints appearing
in a rule—e.g., constraints on the combination of events, on negation, or on the values
of aggregates—so that they do not return whether a constraint is satisfied or not (as a
Boolean value), but its satisfaction probability (as a double).
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Finally, the Generators have been modified to include the probability of occur-
rence into the generated composite events, and to include uncertainty on the values of
attributes.

All the statistical computing required to consider and propagate the uncertainty in
event attributes have been implemented on top of the math and statistical toolkit of
the boost libraries [10].

As a final remark, we note that we had also to modify the Rule Manager compo-
nent, which is responsible for receiving new TESLA rules and for creating all the data
structures required to process them. This component underwent two (minor) updates:
on the one hand it has been extended to consider the additional information in rules
that result from introducing uncertainty (e.g., the threshold of probability required for
producing composite events); on the other hand, it has been modified to deliver newly
deployed rules to the BN Translator.

5.2 Implementing uncertainty in rules

To implement the uncertainty in rules, we exploited the Netica API [33] for represent-
ing and evaluating BNs. More precisely, we used it to build three components: the BN
Translator, which translates new TESLA rules into BNs; theBN Editor, which
enables the modification of BNs; the BN Evaluator, which uses BNs to evaluate
the probability of occurrence of composite events.

The BN Evaluator provides the result of its computation to the Generator,
which uses it while generating the composite event notifications (integrating it with
the results obtained from the processing of events and their uncertainty).

The BN Editor consists of a front-end, which enables graphical editing of BNs,
directly connected with the BN Evaluator, which acts as a back-end, performing
the evaluation step every time a BN is modified.

Notice that our components use a representation of BNs that is enriched to store
the nature of each node, which can denote a primitive event, a composite event, or an
additional factor provided by domain experts. As explained at the end of Sect. 4.2, this
information is used by theBN Evaluator to calculate the the occurrence probability
of composite events.

5.3 Discussing CEP2U implementation

In Sect. 4 we claimed the simplicity of CEP2U at the language level. This section
illustrated the effort required to implement CEP2U in an existing processing engine.

Despite several components had to be modified, the changes introduced were typ-
ically small and concentrated in some specific functions (e.g., in the function for
evaluating the value of aggregates, or for testing negations), while the general flow of
execution remained unchanged.

This is possible because our model of uncertainty is almost orthogonal with respect
to the processing algorithm that evaluates CEP rules. Indeed, the introduction of uncer-
tainty in events simply transforms Boolean satisfaction of constraints into a probability
of satisfaction, while uncertainty in rules is mostly managed outside the normal flow
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of CEP processing, delegating to BNs (at rule design time) large part of the computa-
tion (excluding the straightforward step—called “propagation” in Sect. 4.2.2—which
consists of a simple multiplication).

6 Evaluation

As discussed in Sect. 2, performance is a key requirement for CEP engines: in many
scenarios it is of primary importance to provide low delay processing to detect and
notify critical situations as promptly as possible. Consequently, a good model for
uncertainty should have a limited impact on the performance of the CEP engine.

Because of this, a large part of this section is devoted to study the impact of CEP2U
on performance, by considering our implementation in T-Rex and measuring the over-
head on event processing when uncertainty is managed. During our evaluation, we
separately consider the uncertainty related to events and the uncertainty related to
rules. As far as performance is concerned, the former is more critical, since it requires
additional computation at run-time, during event processing. Conversely, most of the
processing related with uncertainty in rules happens at design time, when the BN
associated to each rule is evaluated, the only computation occurring at run-time being
a multiplication (see Sect. 4.2.2).

Beside performance, our evaluation also aims at understanding the added value that
a CEP user gets in receiving information about uncertainty. To this end, we measure
the accuracy of CEP2U in correctly identifying the occurrence of composite events.

6.1 Uncertainty in events

All the tests described below were performed on a 2.8 GHz AMD Phenom II PC,
with 6 cores and 8 GB of DDR3 RAM, running 64 bit Linux. We use a local client to
generate events at a constant rate and to collect results. This way, the interaction with
the CEP engine is realized entirely through local method invocations, which eliminates
the impact of the communication layer on the results we collected and allows to focus
on the raw performance of the engine. T-Rex is configured to take advantage of all
available CPU cores, i.e., 5 out of 6, being 1 core used by the local client.

During our tests, we measure the average time required by T-Rex for processing
a single input event e. In particular, we measure the interval from the point in time
when e starts to be actively processed (i.e., when it exits the queue of incoming events
in Fig. 5) to the instant when all the composite events that result from e are ready to
enter the Subscription Manager. Given a specific workload, this metric enables us to
compute the maximum input rate that T-Rex can handle. For example, with an average
processing time of 1 ms, we could theoretically process 1,000 events per second.
However, since 1ms is only an average measure, specific events may take longer:
in presence of a finite input queue, this means that the engine can start dropping
events before this theoretical rate.7 For this reason, all our tests also measure the 99th
percentile of the processing time.

7 A detailed analysis on the impact of the input queue on performance is outside the scope of this paper,
and can be found in [15].
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We execute each test 10 times, computing and plotting the 95 % confidence interval
of each measure we collect.

The lack of standard benchmarking is a well known problem in the domain of event
processing. Despite some scenarios have been defines (e.g., Fast Flower Delivery
citepetzion-book), they are not well suited for a general assessment of CEP engines.
This is mainly due to the heterogeneity of the solutions proposed. This problem is
exacerbated in the case of uncertainty.

Because of this, in this section we decided to follow the structure of Sect. 4, and we
defined several workloads to isolate the contribution of uncertainty over the processing
of each abstract operator, i.e., selection, combination, negation, and aggregation. This
solution based on microbenchmarking enables us to consider all the parameters that
could impact on the performance and accuracy of CEP2U.

6.1.1 Selection

As we have seen, selection is the first, fundamental step performed by the CEP engine
to isolate the primitive events relevant for each rule. To evaluate the performance of
selection, we deployed 1,000 rules, all having the following structure:

define CompEv_i()
from PrimEv_i(x-5 < value < x+5)

we considered 10 different types of primitive events, PrimEv_1, . . ., PrimEv_10,
each of them including avalue attribute assuming values from 1 to 100. We deployed
100 different rules for each primitive event type, each one including a different con-
straint on value (i.e., a different value of x).

Afterward, we generated 10,000 primitive events, selecting their type and value uni-
formly. We measured the performance of the engine while changing the percentage
of primitive events whose value has an associated uncertainty, the remaining per-
centage of events being certain. The uncertainty of attributes (i.e., their measurement
error ε) was modeled using Gaussian distributions.

Intuitively, this is a challenging workload, since it presents a (relatively) large
number of rules and only a small number of event types. Indeed, T-Rex exploits the
type of incoming events to efficiently distinguish between the rules that those events
may potentially trigger and the rules that are not affected: a reduced number of event
types negatively impacts the effectiveness of this approach, increasing the number of
rules to consider and consequently the number of attribute-constraint comparisons to
perform. Since the evaluation of a constraint against an attribute is influenced by the
presence of uncertainty, the workload we adopt emphasizes impact of uncertainty on
selection.

Figure 6 shows the results we measured. First of all, we notice that T-Rex, even
in presence of uncertainty, exhibits a low processing delay, below 0.6 ms with 1,000
rules deployed on the engine. Second, we observe that the processing time increases
linearly with the percentage of uncertain attributes but this growth is slow and the
overall impact is limited.

As a final note, we observe how the presence of uncertain attributes quickly
increases the 99th percentile of the processing time, which remains almost con-
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Fig. 6 Selection: processing
delay
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stant when the percentage of events affected by uncertainty grows. This can be easily
explained by noticing that only the events whose attributes have an associated uncer-
tainty take longer to be processed.

6.1.2 Combination

As a second step, we evaluated the performance of our CEP2U implementation
using the following rule, derived from our TVS scenario, which combines two primitive
events:

define TVS_Malfun_i()
from LowOxygen_i(km=$a) and

last Temp_i($a-10 < km < $a+10 and value>x)
within 5 min. from LowOxygen_i

To stress the engine, each test deploys 1,000 different rules with the same structure
of the rule above but considering 10 different composite events (TVS_Malfun_1,
defined from Temp_1 and LowOxygen_1, . . ., TVS_Malfun_10, defined from
Temp_10 and LowOxygen_10) and asking for a different minimum temperature
(from 1 to 100). The value of the temperature of incomingTemp_i events is uniformly
distributed between 1 and 100, while all events share the same km to maximize the
probability of using events.

Given the impact of the selection policy on performance, we performed every test
twice, once using the last-within operator (as shown in the rule above) and one
using the each-within operator. In both cases, we tested three different workloads,
generating respectively 10, 50, and 90 % of LowOxygen_i events (the remaining
events are Temp_i).

The presence of a higher number of event types w.r.t. the previous experiment (10
for LowOxygen_i and 10 Temp_i) explains the lower overhead induced by the
presence of uncertainty in events. When the single selection policy is adopted (see the
left column of Fig. 7), the average processing time is even lower than the one measured
in the previous scenario.
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Fig. 7 Combination: processing delay using the last-within (left) and each-within (right) operators. a 10 %
of LowOxygen_i events, b 50 % of LowOxygen_i events, c 90 % of LowOxygen_i events

The average processing time decreases with the percentage of Temp_i events.
Indeed, they simply need to be stored, while combination is performed on the arrival
of a LowOxygen_i.

However, a high percentage ofTemp_i increases the 99th percentile of the process-
ing time. In this setting, a large number of Temp_i events is generated and stored.
This leads to a more complex processing when (infrequent) LowOxygen_i events
enter the engine, triggering the evaluation of the combination constraint.

When considering a single selection policy, the engine needs to find only one
Temp_i event to combine with every incoming LowOxygen_i. As soon as it finds
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one, it can safely stop processing. This is not possible in presence of a multiple selec-
tion policy (see the right column of Fig. 7), when all the Temp_i events need to be
considered.

On the one hand, this implies higher processing times. On the other hand, the pres-
ence of a high number of Temp_i events becomes even more relevant. As the figure
shows, both the average and the 99th percentile of the processing time significantly
drop when lowering the percentage of Temp_i.

What is most important however, is that the impact of uncertainty in evaluating the
combination operator is limited: in all the tests we performed, both when considering
the average processing time and when considering the 99th percentile, the maximum
overhead we measured was below 30 %.

6.1.3 Negation

To evaluate the impact of uncertainty in presence of negation we deployed 1,000 rules
having the following structure:

define TVS_Malfun_i()
from Temp_i(km=$a and value>x) and

not TrafficJam_i($a-10 < km < $a+10)
within 5 min. from Temp_i

As in the previous scenario, we considered 10 different composite events
(TVS_Malfun_1, . . ., TVS_Malfun_10) and 100 different values for x, from 1 to
100. Both km and value attributes are uniformly distributed in the range 1–100. As
in the previous case, we evaluate the engine with three different workloads, generat-
ing respectively 10, 50, and 90 % of TrafficJam_i events (the remaining being
Temp_i).

Figure 8 shows the results we measured. They are similar to those obtained in evalu-
ating composition with thelast-within operator. Indeed, negation is implemented
as a special form of composition under a single selection semantics; indeed the engine
performs similar processing steps: it compares the values of km in different events and
generates a singleTVS_Malfun_i notification when no matchingTrafficJam_i
event is found.

In this setting, the presence of uncertainty has a minimal impact on the performance
of the engine. Although the engine needs to compare every TrafficJam_i event
received in the last 5 min upon detecting a Temp_i event this operation does not seri-
ously affect the performance: the average processing time increases by about 0.03 ms
when moving from 0 to 100 % of uncertain attributes, with a total overhead of less
then 20 %.

6.1.4 Aggregation

To evaluate the overhead of uncertainty when computing aggregates we deployed
1,000 rules having the following structure:

define TVS_Malfun_i()
from LowOxygen_i() and x < $t=Avg(Temp_i().value

within 5 min. from LowOxygen_i)
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Fig. 8 Negation: processing delay. a 10 % ofTrafficJam_i events, b 50 % ofTrafficJam_i events,
c 90 % of TrafficJam_i events

As in the previous scenarios, we built these rules by moving i in the range 1–10 and
x in the range 1–100. Moreover, we considered three different workloads, generating
respectively 10, 50, and 90 % of TrafficJam_i events.

Figure 9 shows the results we measured. In this case the overhead is greater than
before, but it still acceptable. The maximum overhead we measured when moving
from 0 to 100 % of uncertain attributes was below 75 %, with an average processing
time that remains always under 0.7 ms in all the scenarios we tested.

A final note regards the 99th percentile of the processing time. As Fig. 9 shows, it
decreases as the percentage of TrafficJam_i events increases. Indeed, the CDP
processing algorithm postpones the processing of aggregates until a valid sequence is
found (in our case, until a TrafficJam_i event enters the engine). Consequently,
a low number of TrafficJam_i implies infrequent aggregate evaluation; events
of type Temp_i are simply accumulated, and contribute in lowering the average
processing time. However, when a TrafficJam_i events arrives, the computation
of aggregates starts and must consider a large number of Temp_i events (all those
accumulated up to that point), which results in a high processing time that impacts the
99th percentile.
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Fig. 9 Aggregation: processing delay. a 10 % of TrafficJam_i events, b 50 % of TrafficJam_i
events, c 90 % of TrafficJam_i events

6.1.5 Memory overhead

As most existing CEP engines, to achieve good performance, T-Rex executes the
processing of events entirely in main memory. Because of this, memory overhead
represents a key criterion to evaluate our uncertainty model and implementation.

To analyze memory consumption, we focused on one of the scenarios discussed
above, namely composition, and we measured the occupancy of memory in the two
extreme cases in which (i) no attributes are uncertain and (ii) all the attributes are
uncertain. More in particular, we repeated the experiments shown in Fig. 7a, which
proved to be the most expensive in terms of processing time. We considered both a
single selection scenario (using the last-within operator for event composition)
and a multiple selection scenario (using the each-within operator).

In both cases, the maximum memory consumption we measured was below 15 MB.
We can conclude that memory does not represent a bottleneck for the processing
algorithm of T-Rex.

Most significantly, the overhead introduced by uncertainty management was negli-
gible, always below 1 % in all the tests we performed. Again, this is due to the specific
architecture of T-Rex, which stores all incoming events only once and shares them
across rules. Because of this, the more complex representation of attributes required
to manage uncertainty does not significantly impact on the overall memory usage.
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Fig. 10 Evaluation framework to test the accuracy of CEP2U

6.2 Accuracy

So far, our evaluation only targeted the overhead introduced by uncertainty manage-
ment, i.e., its cost. Hereafter, we investigate the benefits of using uncertainty, i.e., the
added value that a CEP user gets in receiving composite events that include uncertainty
annotations.

This is measured through the evaluation framework shown in Fig. 10. It starts
by generating a random history of the primitive events that occur in the real world,
i.e., those that include the true values of attributes, without any measurement error
or uncertainty in data. These events are used to compute the actual occurrences of
composite events as generated by a given Rule R. These are the composite events that
happen in the real world and they represent our oracle. To evaluate the efficacy of
CEP2U against this oracle, we introduce random measurement errors in the values of
the original primitive events, according to the characteristics of our simulated sensors:
these are the events we expect entering the CEP engine.

At this point, we use both a fully deterministic CEP engine (T-Rex) and our imple-
mentation of CEP2U to detect composite events starting from these primitive events.
T-Rex only considers the actual values carried by events’ attributes, while CEP2U
also knows and uses the pdfs of the measurement errors they bring. T-Rex produces a
set of composite events without any indication about uncertainty, while CEP2U also
produces the probability of occurrence of each composite event. To compare the two
sets of results, we introduce a threshold for CEP2U and filter out all the composite
events whose probability of occurrence is lower than the threshold. Then, we study
the accuracy of CEP2U while changing such a threshold. In particular, to calculate the
accuracy of our CEP engines (i.e., T-Rex and CEP2U) we refer to the results coming
from the oracle, i.e., the true composite events, denoting:

TP the number of true positives, i.e., the number of composite events that are detected
both by the oracle and by the CEP engine under examination;
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TN the number of true negatives, i.e., the number of composite events that are neither
detected by the oracle nor by the CEP engine;

FP the number of false positives, i.e., the number of composite events that are detected
by the engine but not by the oracle;

FN the number of false negatives, i.e., the number of composite events that actually
occurred (according to the oracle) but were not detected by the engine.

Using these definitions, the accuracy of each of the two engines under examination
can be computed as follows:

Accuracy = T P + T N

T P + F P + T N + F N

Intuitively, an accuracy of 1 means that the engine works perfectly (there are neither
false positives FP nor false negatives FN). Conversely, the accuracy decreases as more
errors are generated. In the following, we analyze and compare the accuracy of T-Rex
and CEP2U using three different workloads:

– Selection involves one rule that predicates on a single primitive event using a
selection constraint;

– Combination involves one rule that predicates on two primitive event using a com-
bination constraint;

– Hierarchy involves two rules. Each rule predicates on one event using a selection
constraint. The output of the first rule is used as an input for the second rule, thus
building a hierarchy of events.

In all our tests we consider the measurement errors (i.e., the sensors) to have a
normal distribution N (0, 1). For the selection scenario, we also consider the case of a
uniform distribution U (−1, 1).

Figure 11 shows the results we measured. The column on the left shows the accu-
racy for both T-Rex and CEP2U, while the column on the right shows the Receiver
Operating Characteristic (ROC) curve for CEP2U and how it compares with the T-Rex
accuracy. The ROC curve shows the relation between the rate of false positives (FPR)
and the rate of true positives (TPR) while changing the threshold. Intuitively, an engine
that chooses at random (random guessing about the occurrence or non occurrence of a
composite event) would lie on the diagonal of the plot. A perfect engine would always
lie in the upper left corner. The ROC curve shows how a human expert can tune the
threshold of acceptance to balance between recall (i.e., minimize the number of false
negatives) and precision (i.e., minimize the number of false positives).

In all the scenarios we tested, CEP2U provides a level of accuracy higher than 0.8.
Such value reaches its maximum with a threshold of 0.5, when CEP2U behaves as the
fully deterministic T-Rex engine. However, CEP2U offers a much higher degree of
flexibility: indeed, users receive composite events annotated with their probability of
occurrence and are free to decide when to accept and when to discard them, i.e., users
can set their own threshold of acceptance. This is useful in all those scenarios in which
the cost of a false positive and the cost of a false negative are not equal: for example,
in a nuclear power plant, it is certainly worth considering warning events even if they
carry a low probability of occurrence. This is something that a deterministic engine
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Fig. 11 Accuracy and ROC graphs for different kinds of rules. a Selection (Gaussian Error), b selection
(Uniform Error), c combination, d hierarchy
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does not provide, always balancing the cost of false positives and that of false negatives
and ignoring the composite events that implicitly have a low probability of occurrence.

Looking at the right column of Fig. 11 we also observe that CEP2U offers a good
balance between precision and recall while changing the threshold of acceptance.

Two additional considerations emerge from the results in Fig. 11. First, as expected,
the distribution of imprecision in data has a significant impact on accuracy: this is
clearly visible when comparing a normally distributed error (Fig. 11a) and a uniformly
distributed error (Fig. 11b). Second, in evaluating the approach of CEP2U in dealing
with hierarchies of events (Fig. 11d), we may observe that the choice of considering
all composite events that re-enter the processing engine as having a probability of 1,
CEP2U tend to favorite false positives against false negatives. Because of this, the
graph in Fig. 11d, left becomes slightly asymmetric. Nevertheless, the level of accu-
racy remains higher that 0.8, even when considering a very low threshold. While our
approach for dealing with hierarchies of events was mainly motivated by performance
reasons, it still proved to provide high accuracy, as also proved by the ROC graph in
Fig. 11d.

6.3 Uncertainty in rules

This section measures the time required to evaluate the BN associated to a rule. As
we mentioned in Sect. 4.2.2, this step occurs entirely at rule design time.8

In particular, we considered Rule R1, we let CEP2U create the corresponding BN,
and we enriched it by adding new nodes. We measured the evaluation time while
changing the number of additional nodes introduced in the BN. We repeat each exper-
iment 1,000 times with different randomly generated probability tables for the nodes.
We compute the average value and its 99th confidence interval.

Figure 12 shows the results we obtained: even when considering a large number of
additional nodes—i.e., of external factors contributing to the probability of occurrence
of the composite event—the evaluation of the BN only takes less than 0.5 ms. More-
over, this value is even lower when considering a reduced number of nodes, which we
expect to be a common case in most applications.

We can conclude that the amount of processing required to evaluate the uncertainty
of rules is negligible: after every rule update, updating the probability of the composite
event is performed in sub-millisecond time.

6.4 Discussing CEP2U performance

Our relatively long experience in evaluating CEP systems [15,16] convinced us of the
difficulty of finding general answers, due to the huge number of parameters that may
impact performance. To address this issue, in this section we evaluated the processing

8 Notice that to capture uncertainty in rules, after evaluating BNs at rule design time, we have to propagate
the calculated value to the composite events; a step that happens at run-time but with no measurable impact
on performance.
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Fig. 12 Time to evaluate an
enriched BN
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overhead coming from uncertainty, by separately considering the various operators
provided by CEP languages. For each of them, we focused on a few scenarios chosen
to minimize the effects of T-Rex specific optimization (e.g., early pruning of con-
straint evaluation by exploiting event types) and to maximize the amount of processing
required to support uncertainty.

Even considering this challenging scenarios, the maximum overhead we measured
when introducing uncertainty was relatively low: in all the tests we performed the
overall processing time increases by less than 50 %, the only exception being the
simple selection scenario.

During our tests, we assumed the measurement error to be normally distributed. This
is a reasonable assumption in most application fields. Moreover, normal distributions
are often adopted as an approximation when providing an analytic distribution is
impossible or computationally expensive.

By separating uncertainty in events from uncertainty of rules, CEP2U enables the
computation of the latter at design time, when a new rule is deployed or modified.
Moreover, by exploiting a separate BN for each rule, it reduces the processing effort
required to evaluate the impact of external factors on the triggering probability of a
rule. As shown in our tests, even when the model used to represent a rule takes into
account a large number of factors, the evaluation of rule uncertainty using a BN can
be performed in sub-ms time.

Furthermore, despite CEP2U demands for a more complex representation of events
and attributes, this does not significantly impact on memory consumption.

Finally, CEP2U combines good performance with a high level expressiveness and
accuracy. By annotating composite events with their probability of occurrence, it
enables CEP users to flexibly select which event are relevant and which can be ignored,
choosing the balance between false positives and false negatives that better fit the
application domain.

In summary we can conclude that the key choices we made in designing CEP2U
resulted in a model of uncertainty for CEP that is expressive and effective but also
efficient.
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7 Related work

This section reviews related work. First of all, we present CEP systems, focusing on
the rule definition languages they adopt and on the processing algorithms they provide.
This aims at showing the general applicability of CEP2U. Second, we discuss existing
models and solutions to deal with uncertainty in CEP.

7.1 Complex Event Processing

The last few years have seen an increasing interest around Complex Event Processing,
with several CEP systems being proposed both from academia and industry [21,28].
The interested reader can find a detailed study of the field in [17], where we analyze
and compare in great detail more than 35 systems. Despite all existing solutions have
been designed to accomplish the same goal, i.e., to timely process large amount of
flowing data, they present different data models and rule definition languages, as well
as processing algorithms and system architectures.

7.1.1 Data models and rule definition languages

The data model determines the way each system models and interprets incoming
information: as mentioned in Sect. 2, the database community gave birth to Data
Stream Management Systems (DSMSs) [8] to process generic information streams. On
the other hand, the community working on event-based systems focused on a form
of data—event notifications—with a very specific semantics, in which the time (of
occurrence) plays a central role [32].

In practice, the data model a system adopts significantly affects the structure of
the rule definition language it uses. DSMSs usually rely on languages derived from
SQL, which specify how incoming data have to be transformed, i.e., selected, joined
together, and modified, to produce one or more output streams. Processing happens
in three steps [6]: first, Stream-to-Relation (S2R) operators (also known as windows)
select a portion of a stream to implicitly create traditional database tables. The actual
computation occurs on these tables, using Relation-to-Relation (R2R) operators—
mostly standard SQL operators. Finally, Relation-to-Stream (R2S) operators generate
new streams from tables, after data manipulation. Despite several extensions have
been proposed [20,34,42], they all rely on the general processing schema described
above.

At the opposite side of the spectrum are languages that were explicitly designed to
capture composite events from primitive ones [21]. They interpret messages flowing
into the system as notifications of events occurred in the observed world at a specific
time, and they define how composite events result from primitive ones. The TESLA
language we used to exemplify our model of uncertainty belongs to this second class.
TESLA represents a good test case for CEP2U because of its expressiveness. Indeed,
languages belonging to this second class often trade simplicity and performance for
expressiveness: for example, some languages force sequences to capture only adja-
cent events [11]; negations are rarely supported [11,27] or they cannot be expressed
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through timing constraints [2]; other widespread limitations are the lack of a full-
fledged iteration operator (Kleene+ [23]), to capture a priory unbounded repetitions
of events, and the lack of processing capabilities for computing aggregates. Finally,
none of these languages allows to define the selection and consumption policies rule
by rule, as TESLA does.

The languages that present more similarities with TESLA are the language for
complex event detection presented in [35], Sase+ [2,23], Amit [1], and Etalis [4,5].

Finally, there are commercial systems [34,36,43] that try to combine the two afore-
mentioned approaches, offering hybrid languages that allow both SQL-like processing
and pattern detection in a single framework.

As we already mentioned in Sect. 2, CEP2U is agnostic w.r.t. the peculiarities of
the rule language adopted. As far as the uncertainty in events is concerned, CEP2U
supports selection of single events, combination of multiple events according to the
attributes they carry, negation, arbitrary computation over the content of events, and
propagation of the results of computation to the composite events generated. These
operators cover all the processing capabilities of both the languages based on rela-
tional operators and the languages based on patterns. In the first case, selection and
combination of events is performed through the select and join operators defined in
the relational algebra. In the second case they are defined through pattern matching,
using logic operators (like conjunctions and disjunctions) often complemented with
timing constraints, as in the *-within TESLA operators. Both kinds of languages
allow some form of computation using the values stored in incoming events; finally,
both kinds of languages generate new events as a result of their processing.

Moreover, CEP2U considers the uncertainty of rules outside the rule definition
language, using Bayesian Networks to model the causal relations that bind together
primitive and composite events, this way it straightforwardly applies to both classes
of languages.

7.1.2 Processing algorithms

The language used to specify rules significantly influences the processing algorithms
adopted and their performance. DSMSs usually translate the set of deployed rules into
a query plan composed of primitive operators (e.g., selection, projection, join) that
transform the input streams into one or more output streams.

Systems that offer native support for pattern detection often implement algorithms
based on automata [2,11,20,27,35], where the processing is performed incrementally,
as new primitive events enter the engine. We adopted a similar approach in our first
implementation of T-Rex [15]. The CDP algorithm adopted in this paper takes a
different approach: it stores primitive events and delays the processing as much as
possible. In [16] we show the advantages, in terms of processing delay and throughput,
of CDP over automata-based algorithms; moreover, we show how CDP can be easily
parallelized to take advantage of multi-core hardware.

As our implementation in T-Rex demonstrates, adapting an existing CEP engine
to support CEP2U is relatively easy. On the one hand, the uncertainty of rules is
completely delegated to Bayesian Networks: this only requires a new module for
translating rules into the corresponding BN; all the tools used for editing and evaluating
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BNs can be re-used without any modification. On the other hand, dealing with the
uncertainty in events only requires a modification of the functions used to evaluate
constraints and combine uncertain data. These changes are language and algorithm-
specific but, as we show in this paper considering TESLA and CDP, they involve
relatively simple modifications to the engine.

As a final note, we observe that in some specific cases, the changes mentioned above
could impact ad-hoc data structures and algorithms that cannot be easily adapted to
fit uncertain data. We provided an example of this situation in Sect. 5, when dis-
cussing the need of completely re-writing the T-Rex Static Index component.
The performance overhead of these changes may vary from system to system.

7.2 Models and solutions for uncertainty

Despite uncertainty handling has been recognized as one of the most critical and
relevant aspects in the area of CEP [7,17], it still remains an open issue. Only a few
solutions have been proposed, and most of them are tailored to a specific application
domain.

To the best of our knowledge, the first model proposed for dealing with uncertainty
in CEP is described in [46]. This model has been extended in [47], where the authors
introduce a general framework for CEP in presence of uncertainty. It captures the
sources of uncertainty we consider in this paper—i.e., the uncertainty in events and
the uncertainty in rules—and adopts Bayesian Networks to model both of them. Dif-
ferently from our approach, it creates a single BN, including all the possible events of
interest; such a BN is continuously updated at run-time, as new primitive events are
observed.

Since the BN is used to capture the uncertainty in events, it is significantly more
complex than those generated by CEP2U: indeed, its probability tables must include
all possible attribute values. Moreover, the BN cannot be modified to model external
factors that are not captured by rules. As far as performance is concerned, the proposed
methodology requires a (partial) reconstruction of the BN every time a new primitive
event e is detected. The complexity of such reconstruction is exponential in the number
of nodes influenced by the arrival of e. This significantly impacts processing time: the
system described in [47] produces a maximum throughput of less than 1,000 events/s,
decreasing to hundreds, or even tens of events in many scenarios.

Further details about the framework are presented in [48]. An extended evaluation
of the proposed approach confirms the performance results described in [47].

A similar approach is presented in [37]. The authors put a great emphasis on the
processing algorithms proposed and on their performance. More in particular, they
focus on a reduced set of operators—a subset of the rule language offered by Cayuga
[11]—and propose the integration of probabilistic evaluation into an automata-based
processing algorithm. Interestingly, the authors not only focus on real time processing,
but also address stored data and propose pre-processing and analysis techniques to
speed up queries over probabilistic data. In comparison, CEP2U can be applied to
more expressive languages, while introducing low overheads at run-time. Moreover,
CEP2U enables finer grained modeling of uncertainty in rules through BNs.
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In [19], the authors present a model to capture and propagate the uncertainty of
primitive events in Data Steam Management Systems (DSMSs). Similarly to our
approach, uncertainty in events is modeled and processed using the probability theory.
Differently from CEP2U, this solution is not capable of modeling uncertainty in rules.
Moreover, the proposed model has not been implemented in a running system, making
it impossible to evaluate its performance and overhead.

A tutorial has been presented in the DEBS (Distributed Event Based Systems)
2012 conference, entirely dedicated to event processing under uncertainty [7]. The
tutorial points out the need for uncertainty handling in event processing and proposes
a classification of the possible sources of uncertainty that is similar to the one we
adopt in this paper. Moreover, the authors acknowledge the need for modeling and
propagation of uncertainty, and propose probability theory as a possible mathematical
foundation to accomplish these tasks.

Markov Logic Networks (MLNs) [38] represent an effective formalism to deal
with uncertainty. Briefly, MLNs incorporate both hard logical statements expressed
as first order logic formulae as well as a probabilistic reasoning engine in a unifying
mathematical framework. More precisely, a MLN is a first order knowledge base in
which uncertainty is modelled by weights attached to each first order logic formula.
The knowledge base is then used as a template for constructing a Markov network from
which probabilistic inference is computed. Being based on first order logic, MLNs are
extremely expressive and, from an abstract viewpoint, they could be used to reason
under uncertainty in the scenarios described in this paper. Indeed, the event patterns of
interest of a CEP application could be encoded in first order logic and existing MLN
reasoners may be used for event processing under uncertainty.

However, in practice, two crucial aspects make this choice impractical for real-
world CEP applications and justify instead the adoption of CEP2U.

First, encoding event patterns in first order logic is a difficult, time consuming and
tedious task. Domain experts may not have the appropriate background to effectively
accomplish this task which is, per se, already difficult for engineers with expertise in
logical formalisms. CEP2U builds instead on top of the rule-based paradigm of exist-
ing CEP engines and preserves the same high level declarative philosophy explicitly
conceived to capture complex event patterns. More specifically, it does not require any
particular prior engineering knowledge from domain experts. This may seem a naïve
advantage but, in our opinion, it makes the difference from a theoretical approach to
a solution that can be easily applied in the field.

Secondly, reasoning under uncertainty with MLNs is an NP-complete problem [38].
It requires a computational effort that is incompatible with the throughput constraints
imposed by typical CEP application domains, which require to handle up to thousands
of events per second with hundreds of rules deployed into the engine. Differently
from MLNs, CEP2U targets at preserving the high level of performance typically
offered by existing CEP engines, augmenting at the same time their expressiveness to
support uncertainty. As anticipated in Sect. 1, simplicity as well as efficiency are two
aspects that drove the inception and design of CEP2U since they reflects two crucial
requirements of real-world CEP applications.

Despite the limitations discussed above, MLNs represent a valid tool to reason under
uncertainty that has been successfully used in specific domains characterized by differ-
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ent requirements with respect to CEP applications. For the sake of completeness, we
briefly exemplify hereafter some existing works based on MLNs. The community of
visual event and activity recognition proposed several solutions for event detection and
recognition. Among these existing works it’s worth to mention the work by Tran et al.
[44] that addresses the problem of visual event recognition in visual surveillance. In
their approach the domain knowledge is represented using first order logic statements
in which both negation and disjunction are allowed, while uncertainty of primitive
event detection is represented using detection probabilities. Logical statements and
probabilities are combined into a single framework using MLNs. Analogously, the
works by Kembhavi et al. [26] and Morariu et al. [31] discuss two frameworks for
activity recognition in structured scenarios based on MLNs. Another relevant existing
approach for activity recognition is described in [24]. In this work the authors propose
to use MLNs as a statistical relational framework for activity recognition in ambi-
ent assisted living environments. Finally it’s worth to mention the work by Biswas
[9], which introduces instead a first-order probabilistic model that combines multi-
ple cues to classify human activities from video data that relies on dynamic MLNs
[39].

8 Conclusions

In this paper, we presented CEP2U (Complex Event Processing under Uncertainty), a
novel model for dealing with uncertainty in CEP that provides a valuable combination
of expressiveness, efficiency, and ease of use.

We applied CEP2U to TESLA, showing how it seamlessly supports and integrates
with the typical operators offered by a modern CEP rule language. It is our claim
that our approach significantly reduces the complexity of the uncertainty manage-
ment problem, by allowing engineers and domain experts to easily and separately
capture the uncertainty coming from incoming event notifications and that inherent in
rules.

Our experience in implementing CEP2U on top of T-Rex shows the limited effort
required to integrate CEP2U with an existing CEP engine, while the detailed per-
formance analysis of CEP2U we provided in this paper, shows how it introduces a
reduced overhead: less than 50 % in all tests we run.

Future work includes investigating further sources of uncertainty and the applica-
tion to a real case study. Furthermore, we plan to consider learning mechanisms to
automatically generate rules from historical data analysis [30]. This could also help
domain experts in determining some critical parameters related to uncertainty (e.g.,
tune the minimum probability for considering events based on past occurrences).

To conclude, we believe that uncertainty managements constitutes a critical yet
necessary component in most event processing applications. We hope that CEP2U
could represent a starting point to promote further investigations in this area.

Acknowledgments This research has been funded by the European Commission, Programme IDEAS-
ERC, Project 227977-SMScom and Programme FP7-PEOPLE-2011-IEF, Project 302648-RunMore and by
the Dutch national program COMMIT.

123



Introducing uncertainty in complex event processing 143

References

1. Adi A, Etzion O (2004) Amit—the situation manager. VLDB J 13(2):177–203. doi:10.1007/
s00778-003-0108-y

2. Agrawal J, Diao Y, Gyllstrom D, Immerman N (2008) Efficient pattern matching over event streams.
In: SIGMOD, pp 147–160. ACM, New York. doi:10.1145/1376616.1376634

3. Aguilera MK, Strom RE, Sturman DC, Astley M, Chandra TD (1999) Matching events in a content-
based subscription system. In: Proceedings of the eighteenth annual ACM symposium on principles
of distributed computing, PODC ’99. ACM, New York, pp 53–61. doi:10.1145/301308.301326

4. Anicic D, Fodor P, Rudolph S, Stuhmer R, Stojanovic N, Studer R (2010) A rule-based language for
complex event processing and reasoning. In: Hitzler P, Lukasiewicz T (eds) Web reasoning and rule
systems. Lecture notes in computer science, vol 6333. Springer, Berlin, pp 42–57

5. Anicic D, Fodor P, Rudolph S, Stuhmer R, Stojanovic N, Studer R (2011) Etalis: rule-based reasoning
in event processing. In: Helmer S, Poulovassilis A, Xhafa F (eds) Reasoning in event-based distributed
systems. Studies in computational intelligence, vol 347. Springer, Berlin, pp 99–124

6. Arasu A, Babu S, Widom J (2006) The CQL continuous query language: semantic foundations and
query execution. VLDB J 15(2):121–142

7. Artikis A, Etzion O, Feldman Z, Fournier F (2012) Event processing under uncertainty. In: Proceed-
ings of the 6th ACM international conference on distributed event-based systems, DEBS ’12, Berlin,
Germany. ACM, New York, pp 32–43. http://doi.acm.org/10.1145/2335484.2335488

8. Babcock B, Babu S, Datar M, Motwani R, Widom J (2002) Models and issues in data stream systems.
In: PODS. ACM, New York, pp 1–16

9. Biswas R, Thrun S, Fujimura K (2007) Recognizing activities with multiple cues. In: Workshop on
human motion, pp 255–270

10. BOOST: BOOST C++ Libraries: Math Toolkit (2012). http://www.boost.org/doc/libs/1_49_0/libs/
math/doc/sf_and_dist/html/

11. Brenna L, Demers A, Gehrke J, Hong M, Ossher J, Panda B, Riedewald M, Thatte M, White W (2007)
Cayuga: a high-performance event processing engine. In: SIGMOD. ACM, New York, pp 1100–1102

12. Broda K, Clark K, Miller R, Russo A (2009) SAGE: a logical agent-based environment monitoring
and control system. In: Tscheligi M, Ruyter B, Markopoulus P, Wichert R, Mirlacher T, Meschterjakov
A, Reitberger W (eds) Ambient intelligence, Lecture Notes in Computer Science, vol 5859. Springer,
Berlin, Heidelberg, pp 112–117. http://dx.doi.org/10.1007/978-3-642-05408-2_14

13. Chakravarthy S, Krishnaprasad V, Anwar E, Kim SK (1994) Composite events for active databases:
semantics, contexts and detection. In: Proceedings of the 20th international conference on very large
data bases, VLDB ’94. Morgan Kaufmann Publishers Inc., San Francisco, pp 606–617

14. Cugola G, Margara A (2010) Tesla: a formally defined event specification language. In: DEBS, pp
50–61

15. Cugola G, Margara A (2012) Complex event processing with T-Rex. J Syst Softw 85(8):1709–1728.
doi:10.1016/j.jss.2012.03.056

16. Cugola G, Margara A (2012) Low latency complex event processing on parallel hardware. J Parallel
Distrib Comput 72(2):205–218. doi:10.1016/j.jpdc.2011.11.002

17. Cugola G, Margara A (2012) Processing flows of information: from data stream to complex event
processing. ACM Comput Surv 44(3):15:1–15:62. doi:10.1145/2187671.2187677

18. Demers AJ, Gehrke J, Hong M, Riedewald M, White WM (2006) Towards expressive publish/subscribe
systems. In: EDBT, pp 627–644

19. Diao Y, Li B, Liu A, Peng L, Sutton C, Tran TTL, Zink M (2009 Capturing data uncertainty in high-
volume stream processing. In: CIDR 2009, fourth biennial conference on innovative data systems
research, Asilomar, CA, USA, 4–7 January 2009. Online proceedings

20. Esper (2012). http://esper.codehaus.org/
21. Etzion O, Niblett P (2010) Event processing in action. Manning Publications Co., Greenwich
22. Event zero (2012). http://www.eventzero.com/solutions/environment.aspx
23. Gyllstrom D, Agrawal J, Diao Y, Immerman N (2008) On supporting Kleene closure over event streams.

In: ICDE, pp 1391–1393
24. Helaoui R, Niepert M, Stuckenschmidt H (2011) Recognizing interleaved and concurrent activities: a

statistical-relational approach. In: PerCom, pp 1–9
25. Jensen F (1996) An introduction to Bayesian networks, vol 36. UCL Press, London

123

http://dx.doi.org/10.1007/s00778-003-0108-y
http://dx.doi.org/10.1007/s00778-003-0108-y
http://dx.doi.org/10.1145/1376616.1376634
http://dx.doi.org/10.1145/301308.301326
http://doi.acm.org/10.1145/2335484.2335488
http://www.boost.org/doc/libs/1_49_0/libs/math/doc/sf_and_dist/html/
http://www.boost.org/doc/libs/1_49_0/libs/math/doc/sf_and_dist/html/
http://dx.doi.org/10.1007/978-3-642-05408-2_14
http://dx.doi.org/10.1016/j.jss.2012.03.056
http://dx.doi.org/10.1016/j.jpdc.2011.11.002
http://dx.doi.org/10.1145/2187671.2187677
http://esper.codehaus.org/
http://www.eventzero.com/solutions/environment.aspx


144 G. Cugola et al.

26. Kembhavi A, Yeh T, Davis LS (2010) Why did the person cross the road (there)? Scene understanding
using probabilistic logic models and common sense reasoning. ECCV 2:693–706

27. Li G, Jacobsen HA (2005) Composite subscriptions in content-based publish/subscribe systems. In:
Middleware. Springer-Verlag New York Inc, New York, pp 249–269

28. Luckham DC (2001) The power of events: an introduction to complex event processing in distributed
enterprise systems. Addison-Wesley Longman Publishing Co., Inc., Boston

29. Margara A (2012) Combining expressiveness and efficiency in a complex event processing middleware.
PhD thesis, Politecnico di Milano

30. Margara A, Cugola G, Tamburrelli G (2013) Towards automated rule learning for complex event
processing. Technical Report

31. Morariu VI, Davis LS (2011) Multi-agent event recognition in structured scenarios. In: CVPR, pp
3289–3296

32. Mühl G, Fiege L, Pietzuch P (2006) Distributed event-based systems. Springer-Verlag New York, Inc.,
Secaucus

33. Netica: Netica API (2012). http://www.norsys.com/netica_api.html
34. Oracle CEP (2011). http://www.oracle.com/technologies/soa/complex-event-processing.html
35. Pietzuch PR, Shand B, Bacon J (2003) A framework for event composition in distributed systems. In:

Proceedings of the ACM/IFIP/USENIX 2003 international conference on middleware. Middleware
’03. Springer-Verlag New York, Inc., New York, pp 62–82

36. Progress-Apama (2011) http://web.progress.com/it-need/complex-event-processing.html. Visited
Nov 2011

37. Ré C, Letchner J, Balazinksa M, Suciu D (2008) Event queries on correlated probabilistic streams. In:
Proceedings of the 2008 ACM SIGMOD international conference on management of data, SIGMOD
’08. ACM, New York, pp 715–728. doi:10.1145/1376616.1376688

38. Richardson M, Domingos P (2006) Markov logic networks. Mach Learn 62(1–2):107–136
39. Sanghai S, Domingos P, Weld D (2005) Learning models of relational stochastic processes. In: Machine

learning: ECML 2005. Springer, Berlin, pp 715–723
40. Schultz-Møller NP, Migliavacca M, Pietzuch PR(2009) Distributed complex event processing with

query rewriting. In: DEBS, pp 4:1–4:12
41. Srivastava U, Widom J (2004) Flexible time management in data stream systems. In: PODS ’04. ACM,

New York, pp 263–274. doi:10.1145/1055558.1055596
42. Streambase (2011). http://www.streambase.com/
43. Tibco: Tibco BusinessEvents. http://www.tibco.com/software/complex-event-processing/

businessevents/defaul
44. Tran SD, Davis LS (2008) Event modeling and recognition using Markov logic networks. ECCV

2:610–623
45. Wang F, Liu P (2005) Temporal management of RFID data. In: VLDB. VLDB endowment, pp 1128–

1139
46. Wasserkrug S, Gal A, Etzion O (2005) A model for reasoning with uncertain rules in event composition

systems. In: Proceedings of the 21st annual conference on uncertainty in artificial intelligence, pp 599–
606

47. Wasserkrug S, Gal A, Etzion O, Turchin Y Complex event processing over uncertain data. In: Pro-
ceedings of the second international conference on distributed event-based systems, DEBS ’08. ACM,
New York, pp 253–264 (2008). doi:10.1145/1385989.1386022

48. Wasserkrug S, Gal A, Etzion O, Turchin Y (2012) Efficient processing of uncertain events in rule-based
systems. IEEE Trans Knowl Data Eng 24(1):45–58. doi:10.1109/TKDE.2010.204

123

http://www.norsys.com/netica_api.html
http://www.oracle.com/technologies/soa/complex-event-processing.html
http://web.progress.com/it-need/complex-event-processing.html
http://dx.doi.org/10.1145/1376616.1376688
http://dx.doi.org/10.1145/1055558.1055596
http://www.streambase.com/
http://www.tibco.com/software/complex-event-processing/businessevents/defaul
http://www.tibco.com/software/complex-event-processing/businessevents/defaul
http://dx.doi.org/10.1145/1385989.1386022
http://dx.doi.org/10.1109/TKDE.2010.204

	Introducing uncertainty in complex event processing: model, implementation, and validation
	Abstract
	1 Introduction
	2 Background
	2.1 Complex event processing
	2.2 A concrete example
	2.3 TESLA in a nutshell
	2.3.1 TESLA event and rule model
	2.3.2 TESLA by examples


	3 Problem statement
	4 Model of uncertainty
	4.1 Uncertainty in events
	4.1.1 Modeling uncertainty in events
	4.1.2 Propagating uncertainty in events

	4.2 Uncertainty in rules
	4.2.1 Bayesian networks
	4.2.2 Modeling uncertainty in rules through Bayesian networks

	4.3 Discussing CEP2U design

	5 Implementation
	5.1 Implementing uncertainty in events
	5.2 Implementing uncertainty in rules
	5.3 Discussing CEP2U implementation

	6 Evaluation
	6.1 Uncertainty in events
	6.1.1 Selection
	6.1.2 Combination
	6.1.3 Negation
	6.1.4 Aggregation
	6.1.5 Memory overhead

	6.2 Accuracy
	6.3 Uncertainty in rules
	6.4 Discussing CEP2U performance

	7 Related work
	7.1 Complex Event Processing
	7.1.1 Data models and rule definition languages
	7.1.2 Processing algorithms

	7.2 Models and solutions for uncertainty

	8 Conclusions
	Acknowledgments
	References


