arXiv:1509.00773v1 [cs.DC] 2 Sep 2015

A Big Data Analyzer for Large Trace Logs

Alkida Balliu!, Dennis Olivetti!, Ozalp Babaoglu?,
Moreno Marzolla? and Alina Sirbu?

1. Gran Sasso Science Institute (GSSI), L’Aquila, Ttaly
2. Department of Computer Science and Engineering,
University of Bologna, Italy

Abstract

Current generation of Internet-based services are typically hosted on
large data centers that take the form of warehouse-size structures hous-
ing tens of thousands of servers. Continued availability of a modern data
center is the result of a complex orchestration among many internal and
external actors including computing hardware, multiple layers of intricate
software, networking and storage devices, electrical power and cooling
plants. During the course of their operation, many of these components
produce large amounts of data in the form of event and error logs that
are essential not only for identifying and resolving problems but also for
improving data center efficiency and management. Most of these activi-
ties would benefit significantly from data analytics techniques to exploit
hidden statistical patterns and correlations that may be present in the
data. The sheer volume of data to be analyzed makes uncovering these
correlations and patterns a challenging task. This paper presents BiDAI
a prototype Java tool for log-data analysis that incorporates several Big
Data technologies in order to simplify the task of extracting information
from data traces produced by large clusters and server farms. BiDAI
provides the user with several analysis languages (SQL, R and Hadoop
MapReduce) and storage backends (HDFS and SQLite) that can be freely
mixed and matched so that a custom tool for a specific task can be easily
constructed. BiDAl has a modular architecture so that it can be extended
with other backends and analysis languages in the future. In this paper
we present the design of BiDAl and describe our experience using it to
analyze publicly-available traces from Google data clusters, with the goal
of building a realistic model of a complex data center.

1 Introduction

Large data centers are the engines of the Internet that run a vast majority of
modern Internet-based services such as cloud computing, social networking, on-
line storage and media-sharing services. A modern data center contains tens of

thousands of servers and other components (e.g., networking equipment, power
distribution, air conditioning) that may interact in subtle and unintended ways,
making management of the global infrastructure a nontrivial task. Failures are
extremely costly both for data center operators and their customers, since the
services provided by these huge infrastructures have become vital to society in
general. In this light, monitoring and managing large data centers to keep them
running correctly and continuously become critical tasks.

The amount of log data produced by modern data centers is growing steadily,
making log management itself technically challenging. For instance, a 2010
Facebook study reports 60 Terabytes of log data being produced by its data
centers each day [31]. For live monitoring of its systems and analyzing their log
data, Facebook has developed a dedicated software tool called Scuba [2] that
uses a large in-memory database running on hundreds of servers with 144GB of
RAM each. This infrastructure needs to be upgraded every few weeks to keep up
with the increasing computational power and storage requirements that Scuba
generates.

Making sense of these huge data streams is a task that continues to rely
heavily on human judgement, and is therefore error-prone, time-consuming and
potentially inefficient. Log analysis falls within the class of Big Data appli-
cations: the data sets are so large that conventional storage and analysis tech-
niques are not appropriate to process them. There is a real need to develop novel
tools and techniques for analyzing logs, possibly incorporating data analytics to
uncover hidden patterns and correlations that can help system administrators
avoid critical states, or to identify the root cause of failures or performance
problems. The “holy grail” of system management is to render data centers
fully autonomic; ideally, the system should be capable of analyzing its state and
use this information to identify performance or reliability problems and correct
them or alert system managers directing them to the root causes of the prob-
lem. Even better, the system should be capable of anticipating situations that
may lead to performance problems or failures, allowing for proactive counter-
measures to be put in place in order to steer the system away from undesirable
states towards desired operational states. These challenging goals are still far
from being realized [27].

Numerous studies have analyzed trace data from a variety of sources for
different purposes (see the related work in Section , but typically without
relying on an integrated software framework developed specifically for log anal-
ysis [7, 21], 24]. Reasons for this are several fold: first, the amount, content and
structure of logs are often system- and application-specific, requiring ad-hoc so-
lutions that are difficult to port to other contexts. Furthermore, log trace data
originating from commercial services are highly sensitive and need to be kept
strictly confidential. All these facts lead to fragmentation of analysis frame-
works and difficulty in porting them to traces from other sources. One isolated
example of analysis framework is the Failure Trace Archive Toolkit [19], limited
however to failure traces. Lack of a more general framework for log data analysis
results in time being wasted “reinventing the wheel” — developing software for
parsing, interpreting and analyzing the data, repeatedly for each new trace [19].

As a first step towards realizing the above goals, we present BiDAl (Big Data
Analyzer), a prototype software tool implementing a general framework for sta-
tistical analysis of very large trace data sets. BiDAI is built around two main
components: a storage backend and an analysis framework for data processing
and reduction. Currently, BiDAl supports HDFS and SQlite as storage back-
ends, and SQL, R, and Hadoop MapReduce as analysis frameworks. However,
BiDAI is extensible so that additional backends and analysis frameworks can
be easily added, and multiple types can coexist and be used at the same time.
After describing the architecture of BiDAI, we illustrate how it has been used
to analyze publicly-available Google cluster trace data [36] in order to extract
parameters of a cluster model which we have implemented. Both the BiDAI
prototype and the model are publicly available through a GNU General Public
License (GPL) [3].

The contributions of this work are several fold. First, we present BiDAl and
describe its architecture incorporating several Big Data technologies that facil-
itate efficient processing of large datasets for data analytics. Then, we describe
an application scenario where we use BiDAl to extract workload parameters
from Google cluster traces. We introduce a model of the Google cluster which
allows for simulation of the Google system. Depending on the input to the
model, several types of simulations can be performed. Using the exact work-
load from the Google trace as input, our model is able to faithfully reproduce
many of the behaviors that are observed in the traces. By providing the model
with distributions of the various parameters that are obtained using BiDAIl more
general workloads can also be simulated; in this scenario, simulation results show
that our model is able to approximate average behavior, although variability is
lower than in the real counterpart.

This paper is organized as follows. In Section [2| we provide a high level
overview of the framework followed by a detailed description of its components.
In Section [3| we apply the framework to characterize the workload from a public
Google cluster trace, and use this information to build a model of the Google
cluster and perform simulations. In Section [d] we discuss related work, and
conclude with new directions for future research in Section [Bl

2 The Big Data Analyzer (BiDAI) prototype

2.1 General overview

The typical BiDAl workflow consists of three steps: instantiation of a storage
backend (or opening an existing one), data selection and aggregation, and data
analysis; Figure [I| shows the overall data flow within BiDAI.

For storage creation, BiDAl is designed to import CSV files (Comma Sepa-
rated Values, the typical format for trace data) into an SQLite database or to a
Hadoop File System (HDFS) storage, depending on the user?s preference; HDFS
is the preferred choice for handling large amounts of data using the Hadoop
framework. Except for the CSV format, no other restrictions on the data type

-_. Execute RSQLite

SQLite Convert

!

m Import ‘ ‘ Transfer ‘

> HDFS Convert

Figure 1: Data flow in BiDAIl. Raw data in CSV format is imported into the
selected storage backend, and can be selected or aggregated into new tables
using SQL queries. Commands using R or MapReduce can then be applied
both to the original imported data and to the derived tables. Data can be
automatically and transparently moved between the storage backends.

i

i

exist, so the platform can be easily used for data from various sources, as long
as they can be viewed as CSV tables. Even though the storages currently imple-
mented are based on the the concept of tables (stored in a relational database
by SQLite and CSV files by Hadoop), other storage types can be supported by
BiDAI Indeed, Hadoop supports HBase, a non-relational database that works
with <key,value> pairs. Since Hadoop is already supported by BiDAI, a new
storage that works on this type of non-relational databases can be easily added.

Selections and aggregations can be performed through queries expressed us-
ing a subset of SQL, for example to create new tables or to filter existing data.
SQL queries are automatically translated into the query language supported by
the underlying storage system (RSQLite or RHadoop). At the moment, the
supported statements in the SQL subset are SELECT, FROM, WHERE and
GROUP BY. Queries executed on the SQL storage do not require any process-
ing, since the backend (SQlite) already supports a larger subset of SQL. For the
Hadoop backend, GROUP BY queries are mapped to MapReduce operations.
The Map function implements the GROUP BY part of the query, while the
Reduce function deals with the WHERE and SELECT clauses.

BiDAI can perform statistical data analysis using both R [23] and Hadoop
MapReduce [29, 9] by offering a set of predefined commands. Commands imple-
mented in R are typically applied to the SQLite storage, while those in MapRe-
duce to the Hadoop storage. However, the system allows mixed execution of
both types of commands regardless of the storage used, being able to switch
between backends (by exporting data) transparent to the user. For instance,

=<Java Class>>
(& Controller
==Java Class>> =<Java Class>> =<Jlava Class>> ==Java Class>>

(9 AnalysisWindow | | (3 ManageSourcesWindow (9 LoadWindow| | (3 ManageTablesWindow

A L
<<Java Class>>
(¥ GenericStorage

AN

<<Java Class>> <<Java Class>>
(& HadoopStorage | | (9 SqliteStorage

Figure 2: UML diagram of BiDAI classes. This shows the modular structure
where the storage is separated from the user interface, facilitating addition of
new types of storage backends.

after a MapReduce command, it is possible to analyze the outcome using com-
mands implemented in R; in this case, the software automatically exports the
result obtained from the MapReduce step, and imports it to the SQLite storage
where the analysis can continue using commands implemented in R. This is
particularly useful for handling large datasets, since the volume of data can be
reduced by applying a first processing step with Hadoop/MapReduce, and then
using R to complete the analysis on the resulting (smaller) dataset. The draw-
back is that the same data may end up being duplicated into different storage
types so, depending on the size of the dataset, additional storage space will be
consumed. However, this does not generate consistency issues, since log data
does not change once it is recorded.

2.2 Design

BiDAIl is a modular application designed for extensibility and ease of use. It
is written in Java, to facilitate portability across different Operating Systems,
and uses a Graphical User Interface (GUI) based on the standard Model-View-
Controller (MVC) architectural pattern [I3]. The View provides a Swing GUI,
the Model manages different types of storage backends, and the Controller han-
dles the interaction between the two. Figure [2[outlines the architecture using
the UML class diagram.

The Controller class connects the GUI with the other components of the soft-
ware. The Controller implements the Singleton pattern, with the one instance
accessible from any part of the code. The interface to the different storage back-

Tables: Table preview:

Machine Events @ /home/me/Desktop/Storages/Google Storage @ SQL| A [<
Machine_Downtime @ storage @ 5

2
FE]
<1 1] | 25

Commands: Selected commands: Parameters: Temp result: Scripts:

export aggregate @ fhome/me] [1

r utils filter @ /home/me/Deskt 336
ecdf @ /home/me/Deskt| Lo11

spline @ 1032
exponential_distribuf | @7
aggregate @ fhomelr
ffilter @ /home/me/Des
get column @ /home/s
lognormal_distributi

sk_ram
_downtime
machine_events_cpu

spline_e cdf @ /homel| 1 .
ecdf @ /home/me/Des ecdf([1]]) e

st ® thome/m o7 I []
spline function expol

Current Table: o /_/

Temp result Cancel

LT

Current parameter:]

[| g
Current command: s

pnalfilename="temp. png’)
plot(ecdf i) /
dev.off(:

Figure 3: Screenshot of the BiDAI analysis console. In the upper-left corner,
we see the list of available tables in the current storage backend (SQLite in this
case), and the list of available commands (implemented in R). The results of
running the selected command (ecdf) on the selected table (Machine_Downtime)
are shown in the plot at the bottom. The command implementation can be
edited in the lower-left panel. New commands can be saved, with a list of
existing custom commands displayed in the “Scripts” panel to the right.

ends is given by the GenericStorage class, that has to be further specialized by
any concrete backend developed. In our case, the two existing concrete storage
backends are represented by the SqliteStorage class to support SQLite, and the
HadoopStorage class, to support HDFS. Neither the Controller nor the GUI el-
ements communicate directly with the concrete storage backends, but only with
the abstract class GenericStorage. This simplifies the implementation of new
backends without the need to change the Controller or GUI implementations.
The user can inspect and modify the data storage using a subset of SQL;
the SqliteStorage and HadoopStorage classes use the open source SQL parser
Akiban to convert the queries inserted by users into SQL trees that are further
mapped to the native language (RSQLite or RHadoop) using the Visitor pattern.
The HadoopStorage uses also a Bashexecuter that allows to load files on the
HDFS using bash shell commands. A new storage class can be implemented
by providing a suitable specialization of the GenericStorage class, including the
mapping of the SQL tree to specific commands understood by the backend.
Although the SQL parser supports the full SQL language, the developer

’ BiDAl command Description

get_column Selects a column.

apply-1Col Applies the desired R function to each element of a
column.

aggregate Takes as input a column to group by; among all rows

selects the ones that satisfies the specified condition;
the result obtained is specified from the R function
given to the third parameter.

difference_between_rows Calculates the differences between consecutive rows.

filter Filters the data after the specified condition.
exponential_distribution Plots the fit of the exponential distribution to the
data.

lognormal _distribution ~ Plots the fit of the lognormal distribution to the data.

polynomial regression Plots the fit of the n-grade polynomial regression to
the data in the specified column.

ecdf Plots the cumulative distribution function of the
data in the specified column.
spline Divides the data in the specified column in n intervals

and for each range plots spline functions. Also allows
to show a part of the plot or all of it.

log_histogram Plots the histogram of the data in the specified col-
umn, using a logarithmic y-axis.

Table 1: A partial list of BiDAl commands implemented in R

must define a mapping of the SQL tree into the language supported by the
underlying storage; this often limits the number of SQL statements that can be
supported due to the difficulty of realizing such a mapping.

2.3 Using R with BiDAl

BiDAI provides a list of predefined commands, implemented in R, that can be
selected by the user from a graphical interface (see Figure |3 for a screenshot
and Table [1| for a partial list of the available commands). When a command
is selected, an input box appears asking the user to provide the parameters
needed by that specific command. Additionally, a text box (bottom-left corner
of Figure [3)) allows the user to modify on the fly the R code to be executed.

All commands are defined in an external text file. New operations can there-
fore be added quite easily by simply including them in the file.

2.4 Using Hadoop/MapReduce with BiDAI

BiDAIl allows computations to be distributed across many machines through
the Hadoop/MapReduce abstractions. The user can access any of the builtin
commands implemented in RHadoop, or create new ones. Usually, the Map-

per and Reducer are implemented in Java, generating files that need to be
compiled and then executed. However, BiDAI abstracts from this approach
by using the RHadoop library which handles MapReduce job submission and
permits to interact with Hadoop’s file system HDFS using R. This allows for
reuse of the BiDAIl R engine for the Hadoop backend. Once the dataset of in-
terest has been chosen, the user can execute the Map and Reduce commands
implemented in RHadoop or create new ones. Again, the commands and corre-
sponding RHadoop code are saved in an external text file, using the same format
described above, so the creation of new commands does not require any modi-
fication to BiDAI itself. At the moment, one Map command is implemented in
BiDAl , which groups the data by the values of a column. A Reduce command
is also available, which counts the elements of each group. Other commands
can be added by the user, similar to those implemented in R.

3 Case study

The development of BiDAI was motivated by the need to process large data from
cluster traces, such as those publicly released by Google [36]. Our goal was to
extract workload parameters from the traces in order to instantiate a model
of the compute cluster capable of reproducing the most important features ob-
served in the real data. The model, then, could be used to perform “what-if
analyses” by simulating different scenarios where the workload parameters are
different, or several types of faults are injected into the system.

In this section we first present the structure of the model, then describe the
use of BiDAI for analyzing the Google traces and extracting parameters for the
model.

3.1 Modeling the Google compute cluster

We built a model of the Google compute cluster corresponding to that from
which the traces were obtained. According to available information, the Google
cluster is basically a large batch system where computational tasks of different
types are submitted and executed on a large server pool. Each job may describe
constraints for its execution (e.g., a minimum amount of available RAM on the
execution host); a scheduler is responsible for extracting jobs from the waiting
queue, and dispatching them to a suitable execution host. As can be expected on
a large infrastructure, jobs may fail and can be resubmitted; moreover, execution
hosts may fail as well and be temporarily removed from the pool, or new hosts
can be added. The Google trace contains a list of timestamped events such
as job arrival, job completion, activation of a new host and so on; additional
(anonymized) information on job requirements is also provided.

The model, shown in Figure[d] consists of several active and passive interact-
ing entities. The passive entities (i.e., those that do not exchange any message
with other entities) are Jobs and Tasks. The active entities are those that
send and receive messages: Machine, Machine Arrival, Job Arrival, Scheduler

_—

Machine Arrival Scheduler

Jobl task task task task ..

Job2 task task task task ..

Job Arrival

A

job job job job ~

:

VTN
Fadaa0s

Figure 4: Simple model of a Google compute cluster. This includes active
entities that exchange messages among each other (Machine Arrival, Job Arrival,
Scheduler, Network and Machine), and passive entities that are silent (Jobs and
Tasks). The arrows show the flow of information.

Machines

and Network. The model was implemented using C++ and Omnet++ [32], a
discrete-event simulation tool.

A Task represents a process in execution, or ready to be executed. Each
task is characterized by its Id, the information regarding the requested and used
resources (CPU and RAM), its priority, duration, termination cause and other
information regarding the execution constraints. Note that the total duration
of a task, the termination cause and the effective use of resources are not used
to take decisions (for example on which machine to execute a task). This choice
is necessary in order to simulate a real scenario, where one does not know in
advance the length, exit code and resource usage of a task.

A Job is identified by a unique ID, and can terminate either because all of
its tasks complete execution, or because it is aborted by the submitting user.
Note that, according to the functioning of the Google cluster, tasks from the
same job do not necessarily have to be executed at the same time. The Job
Arrival entity generates events that signal new jobs being submitted. At each
event, a Job entity is created and sent to the scheduler.

The Machine entity represents an execution node in the compute cluster.
Each machine is characterized by an Id and its maximum amount of free re-

sources. Machine Arrival is the entity in charge of managing all machines, and
generates events related to addition or removal of machines to the cluster, as
well as update events (when the maximal resources of the machine are changed).
In all of these cases, the Machine entity is notified of these changes. At regular
intervals, each Machine will notify the Scheduler about the free resources owned.
Free resources are computed as the difference between the total resources and
those used by all tasks running on that machine. The resources used by each task
are considered to be equal to the requested amount for the first 5 minutes, then
equal to the average used amount extracted from the traces. This strategy was
adopted after careful analysis of the traces, without knowing any details about
the system producing the traces (Borg). Recent publication of Borg details [33]
confirms that our scheduling strategy is very similar to the real system. In the
Google cluster, the requested resources are initially reserved (just like in our
case), and at five minute intervals the reservation is adjusted based on the real
usage and a safety margin through a so-called resource reclamation mechanism.

The Scheduler implements a simple job scheduling mechanism. Each time
a job is created by the Job Arrival entity, the scheduler inserts its tasks in
the ready queue. For each task, the scheduler examines which execution nodes
(if any) match the task constraints; the task is eventually sent to a suitable
execution node. Due to the fact that the Scheduler does not know in real time
the exact amount of free resources for all machines, it may happen that it sends
a task to a machine that can not host it. In this case, the machine selects a task
to interrupt (evict) and sends it back to the scheduler. Similar to the scheduling
policies implemented by the Google cluster, we allow a task with higher priority
to evict a running task with lower priority. The evicted task will be added back
to the ready queue.

When the machine starts the execution of a task, it generates a future event:
the termination event, based on the duration generated/read from the input
data. The system does not differentiate between tasks that terminate normally
or because they are killed or they fail; the only distinction is for evicted tasks, as
explained previously. When the termination event will be handled, the scheduler
will be notified by a message. Note that the duration is used only to generate
the event, it is not used to make decisions. This is necessary in order to simulate
a scenario in which the execution time of a task is not known a priori. In case
the task is evicted, this event is deleted and will be recreated when the task will
be restarted.

Finally, the Network entity is responsible for exchanging messages between
the other active entities. In this way, it is possible to use a single gate to
communicate with every other entity. Messages include notifications of new
jobs arriving, tasks being submitted to a machine, machines reporting their
status to the scheduler, etc. Each message holds 2 different IDs: the sender
and the receiver, and the network will be responsible to correctly route the
messages by interfacing with the Omnet framework. This scenario reflects the
real configuration of Google datacenter where there is a common shared network
and the storage area is uniformly accessible from each machine. It was not
possible to give a limit to the bandwidth while the latency of the channels

10

is considered to be null. This does not affect the simulation since in Google
clusters, the internal network does not seem to be a bottleneck. However it is
possible to extend the Network entity in order to implement a latency and a
maximal bandwidth between channels.

The Google traces contain information about both exogenous and endoge-
nous events. Exogenous events are those originating outside the system, such
as jobs and machines arrivals or job characteristics; endogenous events are those
originating inside the system, such as jobs starting/finishing execution, failure
events and similar.

In order to instantiate the model and perform simulations, several parame-
ters concerning endogenous and exogenous events have to be provided as input.
The implementation provides two input options:

o Synthetic-trace-driven simulation: in this mode, the simulator is provided
with distributions of the various job characteristics and event probabili-
ties and inter-arrival times. For instance, one can specify distributions for
number of tasks per job, required and used resources, priorities, and oth-
ers. During simulation, these distributions are used by the Job Arrival and
Machine Arrival entities to generate new Job entities and machine events,
obtaining in this way a synthetic trace. Distributions can be specified in
two ways. One is by providing CDFs extracted from real traces. We will
demonstrate this case in Section [3.2] when we will extract distributions
from the Google trace using BiDAl and we will perform simulations. The
second option is to specify in a configuration file known distributions for
the parameters. For instance, one can use a Gaussian distribution for re-
source utilization. Synthetic-trace-driven simulation is useful for exploring
the behavior of the Google cluster under arbitrary conditions, e.g., under
heavy load or massive failures, that may not occur in the traces; this is
an example of “what-if analysis”.

e Real-trace-driven simulation: in this mode, information regarding jobs
and machine arrivals is contained in a file that is provided at the begin-
ning of the simulation. This includes all properties of each incoming job
as described by a trace, and the exact times when machines are added,
removed or updated. The data is used by the Job Arrival and Machine
Arrival entities to reproduce exactly the same workload during simulation.
Trace-driven simulation is used to validate the model, since we expect the
output of the simulation runs to match the Google cluster behavior ob-
served in the traces. In Section we show results from simulation using
the Google traces.

3.2 Synthetic-trace-driven simulation

To generate realistic synthetic traces, we used BiDAI to extract distributions
from the Google data to characterize the workload of the cluster and other
relevant endogenous events. It is worth observing that the traces consist of

11

1e+06
1e+05
|

1e+04
1e+04
I

Nr. of tasks
Nr. of jobs
1e+03

1e+02
I

1e+02

1e+01
1

1e+00

T T T T T
0.00 0.05 010 0.15 020 025 1 10 100 1000 10000

RAM (requested per task) Nr. of tasks

(a) RAM requested by tasks. Values are nor- (b) Number of tasks per job
malized by the maximum RAM available on
a single node in the Google cluster.

Figure 5: Examples of distributions obtained with BiDAI. These do not appear
to follow any known distribution.

many large CSV files containing records about job and task events, resources
used by tasks, task constraints, and so on. There are more than 2000 files
with over 1.3 billion records describing the workload and machine attributes for
12,453 cluster nodes, occupying about 40GB in compressed form.

In the following we first describe the distribution obtained, then we show
simulation results.

Workload Characterization of the Google Cluster

We extracted the arrival time distribution of each job, the distribution of
the number of tasks per job, and the distributions of execution times of different
types of tasks (e.g., jobs that successfully completed execution, jobs that are
killed by the users, and so on). These distributions are used by the model to
generate jobs into the system. Additionally, we analyzed the distribution of
machines downtime and of the time instants when servers are added/removed
from the pool.

Some of the results obtained with BiDAl are shown in the following figures
(these are the actual plots that were produced by BiDAl). Figure |5alshows the
the amount of RAM requested by tasks, while Figure [5b] shows the distribution
of number of tasks per job.

To generate the graph in Figure[5D] we first extracted the relevant informa-
tion from the trace files. Job and task IDs were required, therefore we gener-
ated a new table, called job_task_id, from the task_events.csv files released by
Google [36]. The query generation is automated by BiDAl which allows for
simple selection of columns using the GUI. Since the DISTINCT clause is not
yet implemented in BiDAl, we added it manually in the generated query. The
final query used was:

12

SELECT DISTINCT V3 AS V1,V4 AS V2 FROM task_events

Here V3 is the job_id column while V4 represents the task_id. On the re-
sulting job_task_id table, we execute another query to estimate how many tasks
each job has, generating a new table called tasks_per_job:

SELECT V1 AS V1, COUNT(V2) AS V2 FROM job_task_id GROUP BY V1

Three BiDAIl commands were used on the tasks_per_job table to generate
the graph. The first extracts the second column (job id), the second filters out
some uninteresting data and the third plots the result. The BiDAl commands
used are shown in Table 2

’ Command \ Parameter type \ Parameter value ‘
get_column column number 2
filter condition t[[1]]<11000.

log_histogram | column number, log step, log axis | 1, 0.06, xy

Table 2: Commands used to generate Figure

The analysis was performed on a 2.7 GHz i7 quad core processor with 16GB
of RAM and a hard drive with simultaneous read/write speed of 60MB/s. For
the example above, importing the data was the most time consuming step,
requiring 11 minutes to load 17GB of data into the SQLite storage (the load
time is determined for the most part by the disk speed). However, this step
is required only once. The first SQL query took about 4 minutes to complete,
while the second query and the BiDAl commands were almost instantaneous.

In Figure |§| we fit the time between consecutive machine update events (i.e.,
events that indicate that a machine has changed its list of resources) with
an exponential distribution. We use four standard plots for the goodness of
fit: the probability density distribution, the cumulative distribution, the Q-Q
(Quantile-Quantile) plot, and P-P (Probability-Probability) plot [14]. The P-P
plot displays the values of the cumulative distribution function (CDF) of the
data (empirical probabilities) versus the CDF of the fitted exponential distribu-
tion (theoretical probabilities). Specifically, for each value i of the inter-event
time, the z-axis shows the percentage of values in the theoretical exponential
distribution that fall below ¢ while the y-axis shows the percentage of points in
the data that fall below ¢. If the two values are equal, i.e. the entire plot follows
the diagonal, then the fit between the data and theoretical distributions is good.
The Q-Q plot, on the other hand, displays the quantiles of the data (empirical
quantiles) versus those in the fitted exponential distribution (theoretical quan-
tiles). Again, perfect fit means the Q-Q plot follows the diagonal, i.e. quantiles
coincide. All plots show that the observed data is in good agreement with the
fitted distribution.

Cumulative distribution functions have also been computed from the data
and fitted with sequences of splines, in those cases where the density functions
were too noisy to be fitted with a known distribution. For instance, Figure [T4]

13

Empirical and theoretical dens. Q-Q plot

o
]
S] o
[=} S
— wn
%]
8 2
o I c
2 o g 38
7] _ T O
o sz @
fa g £ |
S a
° i 8
— o
o —
8 o 4
= T T T T 1 T T T T T T T
0 1000 3000 5000 0 500 1500 2500
Data Theoretical quantiles
Empirical and theoretical CDFs P-P plot
o o
a7 a7
o | g «
3
© © ©
w o € o7
& <
O < | = <
o o o
=
N N
S 5§ o
o _| <
e T T T T T T e A T T T T T
0 1000 3000 5000 0.0 0.2 0.4 0.6 0.8 1.0
Data Theoretical probabilities

Figure 6: Machine update inter-event times, fitted with an exponential distri-
bution. The left panels show the density and cumulative distribution functions,
with the lines representing exponential fitting and the bars/circles showing real
data. The right panels show goodness of fit in Q-Q and P-P plots (straight lines
show perfect fit).

14

) 7 N Mgﬁ
o
o
w | i‘l
7 «‘
zal ¢ z s
= o | = i
r=] 7 = I
I o = | J
3 9 8 g
< < q
=3 = f
| [
| 39 ¢
s 4
i 4
¥
| |
s e o4
e T T T T L . - :
0.0 01 02 03 04 05 0 2000 4000 6000 8000
Amount of CPU Time (s)
(a) CPU task requirements (b) Machine downtime

Figure 7: Examples of CDF's fitted by sequences of splines, obtained with BiDAI.
The circles represent the data, while the lines show the fitted splines. The CDFs
are employed to produce synthetic traces to be used as input to our model.

shows the distribution of CPU required by tasks while Figure [7b]shows machine
downtime, both generated with BiDAI. Several other distributions were gener-
ated in a similar way to enable simulation of the Google cluster: RAM required
by tasks; Task priority; Duration of tasks that end normally; Duration of killed
tasks; Tasks per job; Job inter-arrival time; Machine failure inter-arrival time;
Machine CPU and RAM.

Once distributions were generated, integration in the model was straightfor-
ward since BiDAI is able to generate C code related to the different distributions
found. In our study, the distributions, hence the C code related to them, rep-
resent empirical CDF's.

We extracted several other parameters with BiDAI to be used by the model:
the probability of submitting tasks with different constraints; the probability
that a machine satisfies a constraint; the amount of initial tasks running; the
probability of submitting long running tasks (executing from the beginning until
the end of the simulation); the amount of RAM available on the machines; the
probability that a task terminates normally or is killed.

Jobs constraints were simplified in the synthetic traces compared to real
data. For this purpose, we analyzed the traces and studied the influence of
the constraints. We calculated the percentage of tasks with constraints and the
mean satisfiability s., of each constraint ¢; as the average fraction of machines
that satisfy ¢;. To simulate the constraint system and assign the same mean
satisfiability to each constraint, each machine is associated a numerical value x in
an interval I = [a, b]. Each constraint ¢; is assigned a subinterval I, = [¢,d] C I
so that 4=¢ = Se;- A machine satisfies a constraint ¢; if € I.,. In this way,

b—a
each constraint is satisfied with the same probability detected from the traces.

15

0.35 ————— 0.18——
[Data 0.16}
0.301 B Simulation|[| 5 14|
2025 o012l
5 020 1010l
2 0.15f 10.08f
= 0.10}] 8'82’
0.05f ‘ 1 0._02,

00 .

0.
10° 10' 10° 10® 10°
Tasks waiting

Tasks running

0.12 : 0.14 :

0.10} 10.12}]
2 0.08] |o0.100]
= 0.08} .
B 0.06] 1
x 0.06}]
& 0.04} 1 0.0l |

0.02} 1 0.021 |

0.00 0.00

102 10* 10° 10° 10! 10° 10°
Tasks finished Tasks evicted

Figure 8: Distribution of number of tasks in different categories for each 450s
time window, for the synthetic-trace-driven simulation compared to the real
data. The y-axis shows the fraction of time windows with the corresponding
number of tasks running, waiting, finished or evicted. Average behavior is simi-
lar between simulation and data for all categories except tasks evicted. However,
variability is larger in the data for all cases.

16

Simulation results using synthetic workload The parameters and distri-
butions described above have been used to instantiate the model. We performed
ten simulation runs and the results were analyzed in terms of number of running
and completed tasks, the length of the ready queue and the number of evicted
processes. The distribution of these values, compared to the original data, are
shown in Figure Table (3] reports the difference between the means of the
distributions (real vs. simulated).

The number of tasks in execution, the length of the ready queue and finished
tasks are on average similar to the real traces, indicating that the parameters
used are fairly good approximations of the real data. However the distributions
of these quantities produced by the simulator have a lower variability than those
observed in the real data. This is probably due to the fact that resource usage
for tasks is averaged over the entire length of the task, rather than being variable
in time, as in the real system.

In terms of the number of evicted tasks, differences among average behaviors
are much larger. The model tends to evict twice as many tasks as the real
system. The mean of the simulation output still falls within a standard deviation
from the mean of the real data; however, the simulation never generates low
numbers of evicted jobs as are observed in the traces. This can be due, again,
to the fact that the simulator is fed with average values for the resource usage
and other parameters. Indeed, the same problem is observed, to a smaller
extent, also in the real-trace-driven simulation described in the next section.
Indeed, resource usage is averaged in real-trace-driven simulation as well.

The number of submitted tasks needs a separate discussion. This metric
is different from the other ones because the number of submitted tasks is de-
rived directly from the input distribution, and therefore does not depend on the
model; in other words, this is derived from an input parameter, rather than the
simulation output, so it shows how well BiDAI is capable of producing accurate
synthetic traces. The number of submitted tasks depends on the distributions
of the job inter-arrival time and of the number of tasks per job.

Figure [9] compares the distribution of the number of submitted tasks as
seen during simulation and on the real data. The two distributions are very
similar; the synthetic trace shows slightly lower variability than the real data,
which partly explains why the simulation output has lower variability as well
compared to the real data (see Figure .

The results indicate that some fine tuning of the model is necessary to get

Running Ready Finished Evicted Submitted
tasks tasks tasks tasks tasks
Difference 7% 4% 29% 105% 4%

Table 3: Differences between means of the distributions from Figure[8l For most
measures, averages are very similar. Larger differences are observed for finished
and evicted tasks, with our system evicting more and finishing less jobs in each
time window, compared to the real system.

17

0.10

T T
I Data
0.08}{/E= Simulation

0.06}

0.04f

Probability

0.02f

102 10° 10* 10° 10°

Tasks submitted

0.00
10° 10!

Figure 9: Distribution of number of submitted tasks for the synthetic workload
(Simulation), compared to the real workload (Data). The synthetic workload
shows less variation than the real workload.

more accurate results. First, the input distributions should better reflect the
real data, especially for the arrival rate of tasks. To obtain wider distributions
of the number of tasks in the different states, resource usage should be allowed
to change over time (as happens in the real data). Furthermore, other system
parameters, such as the resource usage limit, should be studied in more detail
to get better fits.

3.3 Real-trace-driven simulation

In the real-trace-driven simulation we provide the simulation model with the
real workload extracted from the traces. The purpose is to validate the model
by comparing the simulation results with the real system behavior inferred from
the traces.

The Google trace have been collected on a running system; therefore, some
jobs were already in the queue, and others were being executed at the beginning
of the trace. To properly account for these jobs, we bootstrap the simulation
by inserting all the tasks already in execution at the beginning of the trace
into the ready queue. These jobs are processed by the scheduler and assigned
to machines. At the same time, new Job and Machine events are generated,
according to the trace itself. It takes several minutes of wallclock time for the
simulation to stabilize and reach a configuration similar to the system state at
the beginning of the trace. This phase represents the initial transient and has
been removed from the results. The model takes as input the events of the first
40 hours of the original traces, with the first 5 hours considered as part of the
initial transient phase.

Running our simulation, we observed that all jobs were scheduled very
quickly, with no evicted tasks. However, the Google trace contains many task

18

evictions. The description of the Google data indicates that some machine re-
sources are reserved by the scheduler for itself and for the operating system, so
not all resources are available to tasks [26]. This reserved amount is however
not specified. We can account for the unknown reserved resources by decreasing
the amount of resources available to tasks within the model. We decided to
decrease the amount of available memory to a fraction f,, of the total. After
several simulations for fine tuning, the value f,, = 0.489 produced the best fit
to the data. The accuracy of our simulation is highly sensitive to this param-
eter and small variations result in large differences. For instance, for values
slightly different from 0.489, the number of jobs evicted during simulation is
very different from the real traces. The value obtained for f,, may seem rather
large, since it is unlikely that the scheduler reserves half the memory for itself.
However, this accounts also for the slight difference in allocating resources in
our model compared to the real system. In our case, we reserve exactly the used
resources, while the Google cluster, within its resource reclamation mechanism
described in Section [3.1] uses a safety margin which is not specified. Our chosen
value f,, = 0.489 includes both the unknown resource reclamation margins and
operating system reservation.

To assess the accuracy of the simulation results we perform a transient anal-
ysis, comparing the output of the simulator with the real data from the traces.
Specifically, four metrics were considered: number of running tasks (Figure,
number of completed tasks (Figure , number of waiting tasks (ready queue
size, Figure [10c|) and number of evicted tasks (Figure . Comparison of the
real and simulated values can bring important evidence whether the model is
able to reproduce the behavior of the real Google cluster.

All plots show the time series extracted from the trace data (green lines)
and those produced by our model (red lines), with the additional application
of exponential smoothing (to both) to reduce fluctuations. The figures show a
very good agreement between the simulation results and the actual data from
the traces. This means that the model provides a good approximation of the
Google cluster.

Evaluation criterion Running| Completed Waiting] Evicted
tasks tasks tasks tasks

Mean value obtained from the sim- | 134476 | 3671.3 15400.6| 3671.32
ulation
Mean value shown in the real traces | 136152 | 3654.6 15893.9] 2895.76
Maximum error (absolute value) 4622 1974 9318 2639

Maximum error (in percentage | 3.40% 56.00% 59.00% | 92%

w.r.t. the mean value)
Mean error (absolute value) 1858 246 1944 755
Mean error (in percentage w.r.t. the | 0.01% 7.00% 12.20% | 26%
mean value)

Table 4: Statistics of four evaluation criteria at intervals of 450 seconds.

19

300000

250000

200000

150000

100000

50000

50000

40000

30000

20000

10000

#Tasks Running (Real) ——
#Tasks Running (Simulation)

10 15 20 25 30 35 40
Time(H)

(a) Number of running tasks

#Tasks in Ready Queue (Real) ——
#Tasks in Ready Queue (Simulation)

10 15 20 25 30 35 40
Time(H)

(c) Number of tasks waiting

16000

14000

12000

10000

8000

6000

4000

2000

25000

20000

15000

10000

5000

#Tasks Successfully completed (Real) ——
#Tasks Successfully completed (Simulation)

5 10 15 20 25 30 35 40

Time(H)

(b) Number of tasks completed

#Tasks Evicted (Real) ——
#Tasks Evicted (Simulation)

5 10 15 20 25 30 35 40

Time(H)
(d) Number of tasks evicted

Figure 10: Simulation and real data for four different metrics. All show good
agreement between the behavior of our model and that of the real system.

20

We executed ten simulation runs; due to the fact that the model is deter-
ministic (the only variation is in the choice of the machine where to execute
a certain process), there are small differences across the runs. We report in
Table [4 several statistics regarding the running, completed, waiting and evicted
tasks. These results are collected at intervals of 450 seconds.

4 Related work

With the public availability of the two cluster traces [36] generated by the Borg
system at Google [33], numerous analyses of different aspects of the data have
been reported. These provide general statistics about the workload and node
state for such clusters [21, 24 25] and identify high levels of heterogeneity
and dynamicity of the system, especially in comparison to grid workloads [10].
Heterogeneity at user level — large variations between workload submitted by
the different users — is also observed [I]. Prediction is attempted for job [15]
and machine [30] failures and also for host load [II]. However, no unified tool
for studying the different traces were introduced. BiDAI is one of the first
such tools facilitating Big Data analysis of trace data, which underlines similar
properties of the public Google traces as the previous studies. Other traces have
been analyzed in the past [20] [8 [7], but again without a general-purpose tool
available for further study.

BiDAI can be very useful in generating synthetic trace data. In general
synthesizing traces involves two phases: characterizing the process by analyz-
ing historical data and generation of new data. The aforementioned Google
traces and log data from other sources have been successfully used for workload
characterization. In terms of resource usage, classes of jobs and their preva-
lence can be used to characterize workloads and generate new ones [22] [34], or
real usage patterns can be replaced by the average utilization [37]. Placement
constraints have also been synthesized using clustering for characterization [2§].
Our tool enables workload and cloud structure characterization through fitting
of distributions that can be further used for trace synthesis. The analysis is not
restricted to one particular aspect, but the flexibility of our tool allows the the
user to decide what phenomenon to characterize and then simulate.

Traces (either synthetic or the exact events) can be used for validation of
various workload management algorithms. The Google trace has been used
recently in [I7] to evaluate consolidation strategies, in [4, [5] to validate over-
committing (overbooking), in [38] to perform provisioning for heterogeneous
systems and in [I2] to investigate checkpointing algorithms. Again, data anal-
ysis is performed individually by the research groups and no specific tool was
published. BiDAI is very suitable for extending these analyses to synthetic
traces, to evaluate algorithms beyond the exact timeline of the Google dataset.

Recently, the Failure Trace Archive (FTA) has published a toolkit for analy-
sis of failure trace data [19]. This toolkit is implemented in Matlab and enables
analysis of traces from the FTA repository, which consists of about 20 public
traces. It is, to our knowledge, the only other tool for large scale trace data

21

analysis. However, the analysis is only possible if traces are stored in the FTA
format in a relational database, and is only available for traces containing failure
information. BiDA[on the other hand provides two different storage options,
including HDF'S, with transfer among them transparent to the user, and is avail-
able for any trace data, regardless of what process it describes. Additionally,
usage of FTA on new data requires publication of the data in their repository,
while BiDAI can be used also for sensitive data that cannot be made public.

Although public tools for analysis of general trace data are scarce, several
large corporations reported to have built in-house custom applications for anal-
ysis of logs. These are, in general, used for live monitoring of the system, and
analyze in real time large amounts of data to provide visualization that help
operators make administrative decisions. While Facebook use Scuba [2], men-
tioned before, Microsoft have developed the Autopilot system [I§], which helps
with the administration of their clusters. Autopilot has a component (Cockpit)
that analyzes logs and provides real time statistics to operators. An example
from Google is CPI2 [39] which monitors Cycles per Instruction (CPI) for run-
ning tasks to determine job performance interference; this helps in deciding task
migration or throttling to maintain high performance of production jobs. All
these tools are, however, not open, apply only to data of the corresponding com-
pany and sometimes require very large computational resources (e.g., Scuba).
Our aim in this paper is to provide an open research tool that can be used also
by smaller research groups that have more limited resources.

In terms of simulation, numerous modeling tools for computer systems have
been introduced, ranging from queuing models to agent-based and other sta-
tistical models. The systems modeled range from clusters to grids, and more
recently, to clouds and data centers [40]. CloudSim is a recent discrete event
simulator that allows simulation of virtualized environments [6]. More special-
ized simulators such as MRPerf have been designed for MapReduce environ-
ments [35]. In general, these simulators are used to analyze the behavior of dif-
ferent workload processing algorithms (e.g., schedulers) and different networking
infrastructures. A comprehensive model is GDCSim (Green Data Centre Simu-
lator), a very detailed simulator that takes into account computing equipment
and its layout, data center physical structure (such as raised floors), resource
management and cooling strategies [16]. However the level of detail limits scal-
ability of the system. Our simulator is more similar to the former examples and
allows for large scale simulations of workload management (experiments with

12k nodes).

5 Conclusions

In this paper we presented BiDAI, a framework that facilitates use of Big Data
tools and techniques for analyzing large cluster traces. We discussed a case study
where we successfully applied BiDA!l to analyze Google trace data in order to
derive workload parameters required by an event-based model of the cluster.
Based on a modular architecture, BiDAl currently supports two storage back-

22

ends based on SQlite and Hadoop, while other backends can be easily added. It
uses a subset of SQL as a common query language that is automatically trans-
lated to the appropriate commands supported by each backend. Additionally,
data analysis using R and Hadoop MapReduce is possible.

Analysis of the Google trace data consisted of extracting distributions of sev-
eral relevant quantities, such as number of tasks per job, resource consumption
by tasks, etc. These parameters were easily computed using our tool, show-
ing how this facilitates Big Data analysis even to users less familiar with R or
Hadoop.

The model was analyzed under two scenarios. In the first scenario we per-
formed a real-trace-driven simulation, where the input data were taken directly
from the real traces. The results produced by the simulation in this scenario
are in good agreement with the real data. The fidelity was obtained by fine
tuning the model in terms of available resources, which accounts for unknown
policies in the real cluster. Our analysis showed that reducing available memory
to 48.9% produces a good estimate of the actual data. In the second scenario
we used BiDAI to produce synthetic inputs by fitting the real data to derive
their distribution. In this scenario the average values of the output parameters
are in good agreement with the average values observed in the traces; however,
the general shape of the output distributions are quite different. These differ-
ences could be due to over-simplifications of the model, such as the fact that
only average values for resource consumption are used, or that the task arrival
process is not modeled accurately. Improvements of the accuracy of the model
will be the subject of future work.

At the moment, BiDAI can be used for pre-processing and initial data ex-
ploration; however, in the future we plan to add new commands to support
machine learning tools for predicting abnormal behavior from log data. This
could provide new steps towards achieving self-* properties for large scale com-
puting infrastructures in the spirit of Autonomic Computing.

In its current implementation, BiDAI is useful for batch analysis of histor-
ical log data, which is important for modeling and initial training of machine
learning algorithms. However, live log data analysis is also of interest, so we
are investigating the addition of an interface to streaming data sources to our
platform. Future work also includes implementation of other storage systems,
especially to include non-relational models. Improvement of the GUI and gen-
eral user experience will also be pursued.

References

[1] Abdul-Rahman, O.A., Aida, K.: Towards understanding the usage behav-
ior of google cloud users: the mice and elephants phenomenon. In: Cloud
Computing Technology and Science (CloudCom), 2014 IEEE 6th Interna-
tional Conference on, pp. 272-277. IEEE (2014)

23

2]

[10]

[11]

Abraham, L., Allen, J., Barykin, O.: Scuba: diving into data at facebook.
Proceedings of the VLDB Endowment 6(11), 1057-1067 (2013). URL http:
//dl.acm.org/citation.cfm?id=2536231

Balliu, A., Olivetti, D., Babaoglu, O., Marzolla, M., Sirbu, A.: Bidal source
code (2014). URL http://cs.unibo.it/~sirbu/bidal.zip

Breitgand, D., Dubitzky, Z., Epstein, A., Feder, O., Glikson, A., Shapira,
I., Toffetti, G.: An adaptive utilization accelerator for virtualized environ-
ments. In: Cloud Engineering (IC2E), 2014 IEEE International Conference
on, pp. 165-174. IEEE (2014)

Caglar, F., Gokhale, A.: ioverbook: Intelligent resource-overbooking to
support soft real-time applications in the cloud. In: Cloud Computing
(CLOUD), 2014 IEEE 7th International Conference on, pp. 538-545. IEEE
(2014)

Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, A.F.C., Buyya, R.:
CloudSim : a toolkit for modeling and simulation of cloud computing en-
vironments and evaluation of resource provisioning algorithms. Software -
Practice and Experience 41(August 2010), 23-50 (2011). DOI 10.1002/spe

Chen, Y., Alspaugh, S., Katz, R.H.: Design Insights for MapReduce from
Diverse Production Workloads. Technical Report, University of California
Berkeley UCB/EECS-2 (2012)

Chen, Y., Ganapathi, A., Griffith, R., Katz, R.: The Case for Evaluat-
ing MapReduce Performance Using Workload Suites. 2011 IEEE 19th
Annual International Symposium on Modelling, Analysis, and Simula-
tion of Computer and Telecommunication Systems pp. 390-399 (2011).
DOT 10.1109/MASCOTS.2011.12. URL http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=6005383

Dean, J., Ghemawat, S.: Mapreduce: A flexible data processing tool.
Communications of the ACM 53(1), 72-77 (2010). DOI 10.1145/1629175.
1629198. URL http://doi.acm.org/10.1145/1629175.1629198

Di, S., Kondo, D., Cirne, W.: Characterization and Comparison of Google
Cloud Load versus Grids. In: International Conference on Cluster Com-
puting (IEEE CLUSTER), pp. 230-238 (2012)

Di, S., Kondo, D., Cirne, W.: Host load prediction in a google compute
cloud with a bayesian model. In: Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage and Analysis,
p. 21. IEEE Computer Society Press (2012)

Di, S., Robert, Y., Vivien, F., Kondo, D., Wang, C.L., Cappello, F.: Opti-
mization of cloud task processing with checkpoint-restart mechanism. In:
High Performance Computing, Networking, Storage and Analysis (SC),
2013 International Conference for, pp. 1-12. IEEE (2013)

24

http://dl.acm.org/citation.cfm?id=2536231
http://dl.acm.org/citation.cfm?id=2536231
http://cs.unibo.it/~sirbu/bidal.zip
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6005383
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6005383
http://doi.acm.org/10.1145/1629175.1629198

[13]

[14]

[15]

[16]

[17]

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements
of reusable object-oriented software. Pearson Education (1994)

Gibbons, J.D.; Chakraborti, S.: Nonparametric statistical inference.
Springer (2011)

Guan, Q., Fu, S.: Adaptive anomaly identification by exploring metric sub-
space in cloud computing infrastructures. In: Reliable Distributed Systems
(SRDS), 2013 IEEE 32nd International Symposium on, pp. 205-214. IEEE
(2013)

Gupta, S.K.S., Gilbert, R.R., Banerjee, A., Abbasi, Z., Mukherjee, T.,
Varsamopoulos, G.: GDCSim : A Tool for Analyzing Green Data Center
Design and Resource Management Techniques. In: International Green
Computing Conference and Workshops (IGCC), pp. 1-8 (2011)

Iglesias, J.O., Murphy, L., De Cauwer, M., Mehta, D., O’Sullivan, B.:
A methodology for online consolidation of tasks through more accurate
resource estimations. In: Utility and Cloud Computing (UCC), 2014
IEEE/ACM T7th International Conference on, pp. 89-98. IEEE (2014)

Isard, M.: Autopilot: automatic data center management. ACM SIGOPS
Operating Systems Review 41(2), 60-67 (2007). URL http://dl.acm.
org/citation.cfm?id=1243426

Javadi, B., Kondo, D., Iosup, A., Epema, D.: The Failure Trace Archive:
Enabling the comparison of failure measurements and models of dis-
tributed systems. Journal of Parallel and Distributed Computing 73(8)
(2013). URL http://www.sciencedirect.com/science/article/pii/
S0743731513000634

Kavulya, S., Tan, J., Gandhi, R., Narasimhan, P.: An Analysis of Traces
from a Production MapReduce Cluster. In: 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, December (2010)

Liu, Z., Cho, S.: Characterizing Machines and Workloads on a Google
Cluster. In: 8th International Workshop on Scheduling and Resource Man-
agement for Parallel and Distributed Systems (SRMPDS) (2012)

Mishra, A.K., Hellerstein, J.L., Cirne, W., Das, C.R.: Towards Character-
izing Cloud Backend Workloads : Insights from Google Compute Clusters.
Sigmetrics performance evaluation review 37(4), 34-41 (2010)

R Development Core Team: R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna, Austria
(2008). URL http://www.R-project.org

Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Hetero-
geneity and Dynamicity of Clouds at Scale : Google Trace Analysis. In:
ACM Symposium on Cloud Computing (SoCC) (2012)

25

http://dl.acm.org/citation.cfm?id=1243426
http://dl.acm.org/citation.cfm?id=1243426
http://www.sciencedirect.com/science/article/pii/S0743731513000634
http://www.sciencedirect.com/science/article/pii/S0743731513000634
http://www.R-project.org

[25]

[26]

[27]

[28]

Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: To-
wards understanding heterogeneous clouds at scale : Google trace analy-
sis. Carnegie Mellon University Technical Reports ISTC-CC-TR/(12-101)
(2012)

Reiss, C., Wilkes, J., Hellerstein, J.L.: Google cluster-usage traces: for-
mat+ schema, 2011

Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction
methods. ACM Computing Surveys (CSUR) 42(3), 1-68 (2010). URL
http://dl.acm.org/citation.cfm?id=1670680

Sharma, B., Chudnovsky, V., Hellerstein, J.L., Rifaat, R., Das, C.R.: Mod-
eling and Synthesizing Task Placement Constraints in Google Compute
Clusters. In: 2nd ACM Symposium on Cloud Computing (SoCC), pp.
3:1-3:14 (2011)

Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed
file system. In: Mass Storage Systems and Technologies (MSST), 2010
IEEE 26th Symposium on, pp. 1-10 (2010). DOT 10.1109/MSST.2010.
5496972

Sirbu, A., Babaoglu, O.: Towards data-driven autonomics in data centers.
In: IEEE International Conference on Cloud and Autonomic Computing
(ICCAC). IEEE (2015)

Thusoo, A., Shao, Z., Anthony, S., Borthakur, D., Jain, N., Sen Sarma,
J., Murthy, R., Liu, H.: Data warehousing and analytics infrastructure at
facebook. Proceedings of the 2010 international conference on Management
of data - SIGMOD ’10 p. 1013 (2010). DOI 10.1145/1807167.1807278. URL
http://portal.acm.org/citation.cfm?doid=1807167.1807278

Varga, A., et al.: The omnet++ discrete event simulation system. In:
Proceedings of the European simulation multiconference (ESM2001), vol. 9,
p. 65. sn (2001)

Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D., Tune, E., Wilkes,
J.: Large-scale cluster management at google with borg. In: Proceedings of
the Tenth European Conference on Computer Systems, p. 18. ACM (2015)

Wang, G., Butt, A.R., Monti, H., Gupta, K.: Towards Synthesizing Real-
istic Workload Traces for Studying the Hadoop Ecosystem. In: 19th IEEE
Annual International Symposium on Modelling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), pp. 400-408
(2011)

Wang, G., Butt, A.R., Pandey, P., Gupta, K.: A Simulation Approach
to Evaluating Design Decisions in MapReduce Setups. In: IEEE Interna-
tional Symposium on Modeling, Analysis & Simulation of Computer and
Telecommunication Systems, 2009. MASCOTS’09., pp. 1-11 (2009)

26

http://dl.acm.org/citation.cfm?id=1670680
http://portal.acm.org/citation.cfm?doid=1807167.1807278

[36]

Wilkes, J.: More Google cluster data. Google research blog
(2011). Posted at http://googleresearch.blogspot.com/2011/11/
more-google-cluster-data.html.

Zhang, Q., Hellerstein, J.L., Boutaba, R.: Characterizing Task Usage
Shapes in Google’s Compute Clusters. In: Proceedings of the 5th Inter-
national Workshop on Large Scale Distributed Systems and Middleware
(2011)

Zhang, Q., Zhani, M.F., Boutaba, R., Hellerstein, J.L.: Dynamic
heterogeneity-aware resource provisioning in the cloud. Cloud Computing,
IEEE Transactions on 2(1), 14-28 (2014)

Zhang, X., Tune, E., Hagmann, R., Jnagal, R., Gokhale, V., Wilkes, J.:
CPI 2 : CPU performance isolation for shared compute clusters. In: Pro-
ceedings of the 8th ACM European Conference on Computer Systems, pp.
379-391. ACM (2013)

Zhao, W., Peng, Y., Xie, F., Dai, Z.: Modeling and Simulation of Cloud
Computing : A Review. In: IEEE Asia Pacific Cloud Computing Congress,
pp. 20-24 (2012)

27

http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html
http://googleresearch.blogspot.com/2011/11/more-google-cluster-data.html

	1 Introduction
	2 The Big Data Analyzer (BiDAl) prototype
	2.1 General overview
	2.2 Design
	2.3 Using R with BiDAl
	2.4 Using Hadoop/MapReduce with BiDAl

	3 Case study
	3.1 Modeling the Google compute cluster
	3.2 Synthetic-trace-driven simulation
	3.3 Real-trace-driven simulation

	4 Related work
	5 Conclusions

