Skip to main content
Log in

A systematic review and comparative analysis of cross-document coreference resolution methods and tools

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Information extraction (IE) is the task of automatically extracting structured information from unstructured/semi-structured machine-readable documents. Among various IE tasks, extracting actionable intelligence from an ever-increasing amount of data depends critically upon cross-document coreference resolution (CDCR) - the task of identifying entity mentions across information sources that refer to the same underlying entity. CDCR is the basis of knowledge acquisition and is at the heart of Web search, recommendations, and analytics. Real time processing of CDCR processes is very important and have various applications in discovering must-know information in real-time for clients in finance, public sector, news, and crisis management. Being an emerging area of research and practice, the reported literature on CDCR challenges and solutions is growing fast but is scattered due to the large space, various applications, and large datasets of the order of peta-/tera-bytes. In order to fill this gap, we provide a systematic review of the state of the art of challenges and solutions for a CDCR process. We identify a set of quality attributes, that have been frequently reported in the context of CDCR processes, to be used as a guide to identify important and outstanding issues for further investigations. Finally, we assess existing tools and techniques for CDCR subtasks and provide guidance on selection of tools and algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.research.ibm.com/deepqa/.

  2. http://www.arc.gov.au/era/.

  3. https://code.google.com/p/boilerpipe/.

  4. In this example, the annotations have been done using so-called ENAMEX (a user defined element in the XML schema) tags that were developed for the Message Understanding Conference in the 1990s.

  5. Agglomerative algorithms begin with each element and merge them in successively larger clusters.

  6. Divisive algorithms begin with the whole set and proceed to divide it into successively smaller clusters.

  7. An outlier is an observation point that is distant from other observations.

  8. http://catalog.ldc.upenn.edu/LDC2012T21.

  9. http://nlp.stanford.edu/.

  10. http://opennlp.apache.org/.

  11. http://alias-i.com/lingpipe/.

  12. http://sites.google.com/site/massiciara/.

  13. http://afner.sourceforge.net/afner.html.

  14. http://www.alchemyapi.com/.

  15. http://secondstring.sourceforge.net.

  16. http://sourceforge.net/projects/simmetrics/.

  17. http://www.google.com/insidesearch/features/search/knowledge.html.

References

  1. McCallum A (2005) Information extraction: distilling structured data from unstructured text. ACM Queue 3(9):48–57

    Article  Google Scholar 

  2. Crouch R, van den Berg MH, Salvetti F, Thione GL, Ahn D (2014) Coreference resolution in an ambiguity-sensitive natural language processing system. Google Patent 8,712,758

  3. Bagga A, Baldwin B (1998) Entity-based cross-document coreferencing using the vector space model. In: COLING-ACL, pp 79-85

  4. Dutta S, Weikum G (2015) Cross-document co-reference resolution using sample-based clustering with knowledge enrichment. Trans Assoc Comput Linguist 3:15–28

    Google Scholar 

  5. Mayfield J et al (2009) Cross-document coreference resolution: a key technology for learning by reading. In: AAAI’09, pp 65-70

  6. Vincent Ng, Cardie C (2002) Improving machine learning approaches to coreference resolution. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp 104-111

  7. Wellner B et al (2004) An integrated, conditional model of information extraction and coreference with application to citation matching. In: UAI’04, pp 593-601. AUAI Press

  8. Singhal A (2012) Introducing the knowledge graph: things, not strings. Official Google Blog

  9. Elsayed T, Lin JJ, Oard DW (2008) Pairwise document similarity in large collections with mapreduce. In: ACL (short papers), pp 265-268

  10. Kolb L, Thor A, Rahm E (2012) Dedoop: efficient deduplication with hadoop. Proc VLDB Endow 5(12):1878–1881

    Article  Google Scholar 

  11. Pantel P, Crestan E, Borkovsky A, Popescu AM, Vyas V (2009) Web-scale distributional similarity and entity set expansion. In: EMNLP, pp 938-947

  12. Sarmento L, Kehlenbeck A, Oliveira EC, Ungar LH (2009) An approach to web-scale named-entity disambiguation. In: MLDM, pp 689-703

  13. Singh S, Subramanya A, Pereira FCN, McCallum A (2011) Large-scale cross-document coreference using distributed inference and hierarchical models. In: ACL, pp 793-803

  14. Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun. ACM 51(1):107–113

    Article  Google Scholar 

  15. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I (2010) Spark: cluster computing with working sets. In: USENIX’10, pp 10-10

  16. Barnawi A, Batarfi O, Beheshti SMR, Elshawi R, Nouri R, Sakr S (2014) On characterizing the performance of distributed graph computation platforms. In: TPCTC

  17. Keele S (2007) Guidelines for performing systematic literature reviews in software engineering. Technical report, Technical report, EBSE Technical Report EBSE-2007-01

  18. Cornolti M, Ferragina P, Ciaramita M (2013) A framework for benchmarking entity-annotation systems. In: WWW’13, pp 249-260

  19. Bollacker KD, Evans C, Paritosh P, Sturge T, Taylor J (2008) Freebase: a collaboratively created graph database for structuring human knowledge. In: SIGMOD Conference, pp 1247-1250

  20. Suchanek FM, Kasneci G, Weikum G (2007) Yago: a core of semantic knowledge. In: WWW, pp 697-706

  21. Ah-Pine J, Jacquet G (2009) Clique-based clustering for improving named entity recognition systems. In: EACL, pp 51-59

  22. Attardi G, Rossi SD, Simi M (2010) Tanl-1: coreference resolution by parse analysis and similarity clustering. In: SemEval’10, pp 108-111

  23. Bengtson E, Roth D (2008) Understanding the value of features for coreference resolution. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP ’08, pp 294-303

  24. Bryl V, Giuliano C, Serafini L, Tymoshenko K (2010) Using background knowledge to support coreference resolution. In: ECAI, pp 759-764

  25. Chen C, Ng V (2012) Combining the best of two worlds: a hybrid approach to multilingual coreference resolution. EMNLP-CoNLL, p 56

  26. Chen H-H, Ding Y-W, Tsai S-C (1998) Named entity extraction for information retrieval. Comput Process Orient Lang 12(1):75–85

    Google Scholar 

  27. Elsner M, Charniak E, Johnson M (2009) Structured generative models for unsupervised named-entity clustering. In: HLT-NAACL, pp 164-172

  28. Luo X (2005) On coreference resolution performance metrics. In: HLT’05, pp 25-32

  29. Màrquez L, Recasens M, Sapena E (2013) Coreference resolution: an empirical study based on semeval-2010 shared task 1. Lang Resour Eval 47(3):661–694

    Article  Google Scholar 

  30. Luisa B, Christian G, Emanuele P (2008) Creating a gold standard for person crossdocument coreference resolution in italian news. In: The Workshop Programme, p 19

  31. Bizer C, Heath T, Berners-Lee T (2009) Linked data—the story so far. Int J Semant Web Inf Syst 5(3):1–22

    Article  Google Scholar 

  32. Daumé III H, Marcu D (2005) A large-scale exploration of effective global features for a joint entity detection and tracking model. In: HLTNLP’05, pp 97-104

  33. Green S, Andrews N, Gormley MR, Dredze M, Manning CD (2012) Entity clustering across languages. In: HLT-NAACL, pp 60-69

  34. Köpcke H, Thor A, Rahm E (2010) Learning-based approaches for matching web data entities. IEEE Internet Comput 14(4):23–31

    Article  Google Scholar 

  35. Ni Y, Zhang L, Qiu Z, Wang C (2010) Enhancing the open-domain classification of named entity using linked open data. Int Semantic Web Conf 1:566–581

    Google Scholar 

  36. Niu C, Li W, Srihari RK (2004) Weakly supervised learning for cross-document person name disambiguation supported by information extraction. In: ACL’04, USA

  37. Singh S, Wick ML, McCallum A (2010) Distantly labeling data for large scale cross-document coreference. CoRR. arXiv:1005.4298

  38. Sleeman j, Finin T (2013) Entity type recognition for heterogeneous semantic graphs. In: Semantics for Big Data, AAAI Technical Report FS-13-04

  39. Wang J, Li G, Feng J (2011) Fast-join: an efficient method for fuzzy token matching based string similarity join. In: ICDE, pp 458-469

  40. Wick ML, Culotta A, Rohanimanesh K, McCallum A (2009) An entity based model for coreference resolution. In: SDM, pp 365-376

  41. Zheng J, Vilnis L, Singh S, Choi J, McCallum A (2013) Dynamic knowledge-base alignment for coreference resolution. In: CoNLL’13, pp 153-162

  42. Ando RK, Zhang T (2005) A high-performance semi-supervised learning method for text chunking. In: Proceedings of the 43rd annual meeting on association for computational linguistics, pp 1-9

  43. Bagga A, Baldwin B (1998) Algorithms for scoring coreference chains. Int Conf Lang Resour Eval Workshop Linguist Coreference 1:563–566

    Google Scholar 

  44. Black W, Rinaldi F, Mowatt D (1998) Facile: description of the ne system used for muc-7. In: Proceedings of Message Uunderstanding Conference (MUC)-7

  45. Chen Y, Martin J (2007) Towards robust unsupervised personal name disambiguation. In: EMNLP-CoNLL, pp 190-198

  46. Fleischman M, Hovy E (2004) Multi-document person name resolution. In: ACL, pp 66-82

  47. Giles CB, Wren JD (2008) Large-scale directional relationship extraction and resolution. BMC Bioinform 9(S-9)

  48. Gooi CH, Allan J (2004) Cross-document coreference on a large scale corpus. In: HLT-NAACL, pp 9-16

  49. Hall PA, Dowling GR (1980) Approximate string matching. ACM Comput Surv 12(4):381–402

    Article  MathSciNet  Google Scholar 

  50. Holmes DO, McCabe MC (2002) Improving precision and recall for soundex retrieval. In: ITCC, pp 22-27

  51. Kambhatla N (2004) Combining lexical, syntactic, and semantic features with maximum entropy models for extracting relations. In: ACL’04, ACLdemo ’04

  52. Karaboga D, Ozturk C (2011) A novel clustering approach: artificial bee colony (abc) algorithm. Appl Soft Comput 11(1):652–657

    Article  Google Scholar 

  53. Luo X, Ittycheriah A, Jing H, Kambhatla N, Roukos S (2004) A mention-synchronous coreference resolution algorithm based on the bell tree. In: ACL, pp 135-142

  54. Vincent Ng (2010) Supervised noun phrase coreference research: the first fifteen years. In: ACL

  55. Randell L (1993) An assessment of name matching algorithms. Technical reports 550, Department of Computer Science, University of Newcastle upon Tyne

  56. Rao D, McNamee P, Dredze M (2010) Streaming cross document entity coreference resolution. In: COLING (Posters), pp 1050-1058

  57. Ravichandran D, Pantel P, Hovy EH (2005) Randomized algorithms and nlp: using locality sensitive hash functions for high speed noun clustering. In: ACL

  58. Sarawagi S, Kirpal A (2004) Efficient set joins on similarity predicates. In: SIGMOD Conference, pp 743-754

  59. Tsuruoka Y et al (2005) Developing a robust part-of-speech tagger for biomedical text. In: Panhellenic Conference on Informatics, pp 382-392

  60. Vilain M, Burger J, Aberdeen J, Connolly D, Hirschman L (1995) A model-theoretic coreference scoring scheme. In: MUC6’95, pp 45-52. USA

  61. Wick M, Singh S, McCallum A (2012) A discriminative hierarchical model for fast coreference at large scale. In: ACL’12, pp 379-388

  62. Anderberg MR (1973) Cluster analysis for applications. Academic Press, New York

    MATH  Google Scholar 

  63. Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives ZG (2007) Dbpedia: a nucleus for a web of open data. In: ISWC/ASWC, pp 722-735

  64. Benjelloun O, Garcia-Molina H, Menestrina D, Qi S, Whang SE, Widom J (2009) Swoosh: a generic approach to entity resolution. VLDB J 18(1):255-276

  65. Day D, Hitzeman J, Wick ML, Crouch K, Poesio M (2008) A corpus for cross-document co-reference. In: LREC

  66. Elfeky MG, Elmagarmid AK, Verykios VS (2002) Tailor: a record linkage toolbox. In: Data Engineering. Proceedings 18th International Conference on. IEEE, pp 17-28

  67. Finkel JR, Grenager T, Manning C (2005) Incorporating non-local information into information extraction systems by gibbs sampling. In: ACL’05, pp 363-370

  68. Hachey B, Grover C, Tobin R (2012) Datasets for generic relation extraction. Nat Lang Eng 18(1):21–59

    Article  Google Scholar 

  69. Lee H, Peirsman Y, Chang , Chambers N, Surdeanu M, Jurafsky D (2011) Stanford’s multi-pass sieve coreference resolution system at the conll-2011 shared task. In: CONLL’11

  70. Miller GA (1995) Wordnet: a lexical database for english. Commun ACM 38(11):39–41

    Article  Google Scholar 

  71. Miller GA, Fellbaum C (2007) Wordnet then and now. Lang Resour Eval 41(2):209–214

    Article  Google Scholar 

  72. Nastase V, Strube M, Boerschinger B, Zirn C, Elghafari A (2010) A very large scale multi-lingual concept network. In: LREC, Wikinet

  73. Philips L (2000) The double-metaphone search algorithm. C/C++ User’s J 18(6):38-43

  74. Ponzetto SP, Strube M (2007) Deriving a large-scale taxonomy from wikipedia. In: AAAI, pp 1440-1445

  75. Singh S et al (2012) Wikilinks: a large-scale cross-document coreference corpus labeled via links to Wikipedia. Technical Report UM-CS-2012-015. University of Massachusetts, Amherst

  76. Spitkovsky VI, Chang AX (2012) A cross-lingual dictionary for english wikipedia concepts. In: LREC, pp 3168-3175

  77. Nadeau D, Sekine S (2007) A survey of named entity recognition and classification. Lingvisticae Investigationes 30(1):3–26

    Article  Google Scholar 

  78. Sekine S, Ranchhod E (2009) Named entities: recognition, classification and use, vol 19. John Benjamins Publishing Company, The Netherlands

  79. Skut W, Brants T (1998) Chunk tagger–statistical recognition of noun phrases. CoRR. arXiv:9807007 [cmp-lg]

  80. Witten IH, Frank E (1999) Data mining: practical machine learning tools and techniques with Java Implementations. Morgan Kaufmann, USA

  81. Weikum G, Hoffart J, Nakashole N, Spaniol M, Suchanek F, Yosef M (2012) Big data methods for computational linguistics. IEEE Data Eng Bull 35(3):46–64

    Google Scholar 

  82. Riddle WE (1984) The magic number eighteen plus or minus three: a study of software technology maturation. ACM SIGSOFT Softw Eng Note 9(2):21–37

    Article  MathSciNet  Google Scholar 

  83. Cruzes DS, Dyba T (2011) Recommended steps for thematic synthesis in software engineering. In: Empirical Software Engineering and Measurement (ESEM), pp 275-284. IEEE

  84. Marrero M, Sanchez-Cuadrado S, Morato J, Andreadakis Y (2009) Evaluation of named entity extraction systems. Adv Comput Linguistics 41:47–58

    Google Scholar 

  85. Mousavi H, Kerr D, Iseli M, Zaniolo C (2014) Mining semantic structures from syntactic structures in free text documents. In: ICSC’14, pp 84-91. IEEE

  86. Rahman A, Ng V (2011) Coreference resolution with world knowledge. In: ACL, pp 814-824

  87. SMR Beheshti, Motahari Nezhad HR, Benatallah B (2012) Temporal provenance model (tpm): model and query language. CoRR. arXiv:1211.5009

  88. Tasdemir K, Merényi E (2011) A validity index for prototype-based clustering of data sets with complex cluster structures. IEEE Trans 41(4):1039–1053

    Google Scholar 

  89. Estivill-Castro V, Houle ME (2001)Robust distance-based clustering with applications to spatial data mining. Algorithmica 30(2):216-242

  90. Vincent Ng (2008) Unsupervised models for coreference resolution. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, pp 640-649

  91. Olston C, Reed B, Srivastava U, Kumar R, Tomkins A (2008) Pig latin: a not-so-foreign language for data processing. In: SIGMOD’08. ACM, pp 1099-1110

  92. Frakes WB, Baeza-Yates R (eds) (1992) Information retrieval: data structures and algorithms. Prentice-Hall Inc, Upper Saddle River

    Google Scholar 

  93. Nist Ac (2008) Extraction automatic content: Evaluation plan (ace08). In: Proceedings of the ACE, pp 1-3

  94. McNamee P, Dang H (2009) Overview of the TAC 2009 knowledge base population track. In: Proc. Text Analysis Conference (TAC) Workshop

  95. Salton G, McGill M (1984) Introduction to Modern Information Retrieval. McGraw-Hill Book Company, New York

  96. US NIST (2003) The ace 2003 evaluation plan. US National Institute for Standards and Technology (NIST), pp 2003-2008

  97. Ciaramita M, Altun Y (2006) Broad-coverage sense disambiguation and information extraction with a supersense sequence tagger. In: EMNLP, pp 594-602

  98. Van Zaanen M, Mollá D et al (2007) A named entity recogniser for question answering. Pacific Association for Computational Linguistics

  99. Beheshti SMR et al (2013) Big data and cross-document coreference resolution: current state and future opportunities. CoRR. arXiv:1311.3987

Download references

Acknowledgments

We Acknowledge the Data to Decisions CRC (D2D CRC), the Cooperative Research Centres Programme and the Defence Systems Innovation Centre (DSIC) for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed-Mehdi-Reza Beheshti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beheshti, SMR., Benatallah, B., Venugopal, S. et al. A systematic review and comparative analysis of cross-document coreference resolution methods and tools. Computing 99, 313–349 (2017). https://doi.org/10.1007/s00607-016-0490-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-016-0490-0

Keywords

Mathematics Subject Classification

Navigation