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ide to the atmosphere, and this contribution is expected to increase in the fol-
lowing years. This has encouraged the development of techniques to reduce the
energy consumption and the environmental footprint of data centers. Whereas
some of these techniques have succeeded to reduce the energy consumption of
the hardware equipment of data centers (including IT, cooling, and power sup-
ply systems), we claim that sustainable data centers will be only possible if
the problem is faced by means of a holistic approach that includes not only the
aforementioned techniques but also intelligent and unifying solutions that en-
able a synergistic and energy-aware management of data centers. In this paper,
we propose a comprehensive strategy to reduce the carbon footprint of data
centers that uses the energy as a driver of their management procedures. In
addition, we present a holistic management architecture for sustainable data
centers that implements the aforementioned strategy, and we propose design
guidelines to accomplish each step of the proposed strategy, referring to related
achievements and enumerating the main challenges that must be still solved.
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1 Introduction

Energy used by data centers worldwide increased by about 56% from 2005 to
2010, accounting for 1.5% of total energy use in 2010 according to Koomey’s
study [47]. Greenpeace [5] estimates that data centers energy use can grow
up to 1012 billion kWh by 2020, which is a 3x increment regarding their
energy consumption in 2007. The cost of this enormous amount of energy has
turned into the primary cost driver for data centers. In particular, Belady [17]
estimates that the annual amortized energy costs in a data center for a single
server exceeded the cost of the server itself in 2008, and that the combined
cost of the cooling infrastructure and energy would be 75% of the cost in 2014,
while the IT equipment would be only 25%. That is a significant shift from the
20% – 80% ratio of the early 90s. In addition to the energy cost burden, the
energy consumption of the data centers contributes also to the climate change
by increasing the CO2 emissions to the atmosphere. In particular, The Climate
Group [3] states that worldwide data centers emitted 116 million metric tons
of CO2 (MtCO2) in 2007, slightly more than the entire country of Nigeria, and
claims that this figure could increase to 259 MtCO2 by 2020, even considering
the recent advances in virtualization, cooling, and power supply that are being
introduced in data centers.

For these reasons, there has been recently a great interest in the develop-
ment of techniques to reduce the energy consumption and the environmental
footprint of data centers. They range from proposals to enhance specific as-
pects of data centers design and operation (for instance, usage of low-power
components, energy-aware resource management, and free-cooling solutions)
to overall strategies to achieve sustainable data centers, as proposed by Google
[43] and HP [14]. This position paper follows the line of those latter approaches
and proposes a comprehensive strategy to reduce the carbon footprint of data
centers, by using the energy as a driver of the management procedures of the
data center. In addition, we present a holistic management architecture for
sustainable data centers that implements the aforementioned strategy.

Given the scenario described in the previous paragraphs, we claim that
sustainable data centers will be only possible if the problem is faced by means
of a holistic approach that includes not only solutions to reduce the energy
consumption of the hardware equipment of data centers (including IT, cooling,
and power supply systems) but also intelligent and unifying solutions that
enable a synergistic and energy-aware management of the hardware equipment
and the software infrastructure. In particular, we envision the following steps
to come up with a strategy that can enable sustainable data centers:

1. Enable awareness of energy impact and carbon footprint.
2. Increase the energy efficiency of the IT equipment.
3. Increase the energy efficiency of the cooling and power supply subsystems.
4. Increase the use of renewable energy.
5. Exploit opportunities in the energy markets.
6. Customize this energy strategy to the data center reality.
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In the following sections, we present the management architecture to imple-
ment such strategy and we describe in detail the several steps of our strategy
and their interaction. For each step, we propose design guidelines to accom-
plish that step, we present related achievements and cite relevant works, and
we enumerate the main challenges that must be still solved and the areas that
need further research.

2 Architecture

Figure 1 presents an architecture for managing sustainable data centers that
implements the proposed strategy. The management subsystem is led by the
energy-aware manager and comprises several configurable controllers to man-
age the various subsystems in the data center. As described in Section 8, the
controlling capabilities of the data center determine what management con-
trollers are required. In addition, the energy-aware manager is in charge of
customizing the management strategy to fulfill the objectives and constraints
during operation of the whole data center and configuring and coordinating
the management controllers accordingly.

The monitoring & metrics and modeling & prediction components are re-
sponsible for the energy and carbon awareness of the data center. As described
in Section 3, the former monitors the operation of the data center and calcu-
lates relevant metrics that provide an indication of its sustainability. The latter
uses this monitored information to build models that capture the system be-
havior and uses them to forecast that behavior in the future.

The IT equipment controller manages the IT equipment as described in
Section 4, deciding about the energetic status and the operating frequency of
the physical hosts in the data center, as well as the configuration parameters
of the networking elements (i.e. routers, switches, ...).

The workload shaping & task scheduling component is responsible for the
execution of the IT workload in the data center. As described in Sections 4
and 6, it decides about what tasks are accepted for execution, when such tasks
will be executed, and their placement in the physical hosts of the data center.

The remote controller selects the most appropriate data center where to
deploy a workload when remote execution in the ecosystem is expected to
provide a better outcome regarding energy efficiency or carbon footprint, as
described in Sections 4.3 and 6.

The cooling controller configures the cooling subsystem over different op-
erating points to maintain a target temperature while reducing the power
consumption, as described in Section 5.

The power supply controller manages the power supply subsystem as de-
scribed in Section 6, deciding for each time interval the amount of energy to
be generated on-site, the amount of energy to be taken from the power grid,
and the amount of energy to be stored for later use, and also how to distribute
the available energy among the rest of subsystems of the data center.
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Fig. 1 Architecture for the management of sustainable data centers

3 Energy and Carbon Awareness

Energy and carbon awareness refers to the ability of data centers to measure
their energy consumption and carbon footprint. It is a fundamental capability
because “consumers and businesses can’t manage what they can’t measure”,
as stated by The Climate Group [3].

3.1 Metrics

First, we must define what to measure. Usually, data centers account for met-
rics that provide an indication of their sustainability degree, and to this end,
they measure parameters such as greenhouse gas emissions, power consump-
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tion, temperatures, humidity, etc. [72]. For instance, a common metric is the
Power Usage Effectiveness (PUE) [6], which is the ratio of the total amount
of energy used by a data center (including the power supply and cooling sub-
systems in addition to the IT equipment) to the energy delivered to the IT
equipment. A similar rationale is used to calculate the Carbon Usage Effec-
tiveness (CUE) [4], but using the total CO2 emissions caused by the total
amount of energy used by a data center in the numerator.

PUE is useful as an indicator on how efficiently the data center uses the
energy in the long-term (in fact, it is generally reported from annual infor-
mation aggregates), but it does not capture well the dynamic nature of the
energy usage in data centers. PUE Scalability [6] has been suggested to show
how well a data center total energy consumption scales with dynamic changes
in its IT equipment loads. Furthermore, PUE is not intended to assess how
energy is being used to generate efficiently the useful work of the data center.
Data Center energy Productivity (DCeP) [2] has been suggested to quantify
the useful work output that a data center provides in relation to the amount
of energy expended to produce it. This metric allows the continuous monitor-
ing of the work product as a function of energy consumed during data center
operation, but it can be sometimes difficult to implement, since the useful
work in a data center can take many forms. This hardens also the comparison
of the productivity of different data centers by using this metric. In addi-
tion, some authors claim that metrics such as DCeP can favor algorithms that
achieve high sustained performance, which are also power hungry algorithms,
and propose an alternative metric (so-called FTTSE), which prioritizes the
total energy reduction and the minimization of time to solution [16].

There is an ongoing effort trying to harmonize the metrics to be used to
measure data centers energy and ecological efficiency. Whereas some consen-
sus has been achieved regarding the metrics [8], their adoption as drivers of
the energy management strategies of data centers is still in the initial stages.
An important challenge for the standardization of this kind of metrics comes
up because of the different actors involved in the data center operation (i.e.
owners, administrators, users), who have different requirements regarding the
information they want to obtain and about the granularity of such information
(per function, per service, per host, per rack, or the whole data center) [72].

3.2 Measurements vs. models

Second, we must define how to measure. The total amount of energy used by a
data center can be monitored with Metered Power Distributions Units (PDU),
which provide the ability to measure power usage of a system at the socket.
Modern IT equipment also allows to measure power usage at the server by
means of the Intelligent Platform Management Interface (IPMI) [39]. Some
servers can even report the power consumed by some individual components
(CPU, RAM, etc.) if the server comes equipped with the appropriate sensors.
Alternatively, Intel Sandy Bridge processors include an onboard energy and
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power metering capability for processor packages and DRAM so-called Run-
ning Average Power Limit (RAPL), which estimates energy usage by using
hardware performance counters and a software power model [40].

The amount of carbon emissions must be determined for the actual mix of
energy delivered to the data center, including on-site and grid-based energy
sources, by using the carbon emission factor (kgCO2/kWh) associated to each
energy source [7]. Whereas it is easy to identify energy sources when energy
is generated on-site, when the energy consumed comes from the grid the data
center must rely on the information provided by the corresponding energy
supplier. Generally, they provide aggregate values for a given region.

The information about energy consumption and carbon footprint should be
integrated in the existing monitoring platforms of data centers (e.g., Ganglia
[1]), allowing in that way a seamless access to all the information that is
relevant to understand the data center behavior.

Power metering mechanisms described above provide real measures of the
energy consumption of individual hosts. However, they cannot account for the
energy consumption of individual virtual machines (VMs) or services running
on each host, which is required for instance to implement effective power-aware
scheduling policies. This can be accomplished by using power models, which
correlate the resource usage and the power consumption of individual VMs
based on monitored resource usage information [42,75]. Models also allow to
estimate the current power consumption of hosts and VMs when direct mea-
surement is not feasible (due to lack of scalability in large clusters, performance
overhead of measurements, and cost of devices [59]) and to forecast the power
consumption in the future (see Section 3.3).

Models are generated offline by collecting power measurements and re-
source usage indicators periodically while the system runs a special training
workload that includes micro-benchmarks that selectively stress each resource
at varying levels of utilization. Given the heterogeneity of applications run-
ning in current data centers [60], the training workload must be generic, since
including only a given kind of applications [41] will result in inaccurate esti-
mations for the rest, and able to capture the essentials of the power behavior
of the modeled host. To this end, power models must consider the impact on
energy consumption of several resources, including not only the processor (as
models for traditional HPC applications did in the past), but also the memory,
the disk, and the network. Those subsystems apart from the processor have
been reported to make up 40%-60% of the total power consumption depending
on the workload [21]. Similarly, power models must also support heterogeneous
virtualization hypervisors, as they have been reported to impact differently the
performance and energy consumption of the applications [68].

Only appropriate indicators to account for the usage of each resource must
be selected. The indicator must clearly represent the usage intensity of the
resource (i.e. if the usage increases, the value of the indicator should increase
correspondingly) and it must be unequivocally correlated with the energy con-
sumption incurred by that resource. For instance, the utilization is not the best
indicator of the processor usage regarding its correlation with energy consump-
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tion, because applications with the same utilization can have different proces-
sor energy consumption depending on what instructions they are executing
[42]. According to this, the utilization cannot be the unique determinant of
the processor power consumption, though it could be used to further refine a
model that considers, for instance, the number of operations executed.

The collected resource usage indicators are fitted to the power measure-
ments by using machine learning techniques [13], which include mainly tradi-
tional auto-regressive methods (e.g. linear regression) [59] but also more novel
methods such as artificial neural networks [27]. Those are very powerful tech-
niques to capture data correlations, but they might require driving the mining
process to achieve better accuracy and reduce the computational complexity.
According to this, the modeling methodology should systematically filter the
relevant indicators and include derivatives that capture better the existing re-
lations. Models have assumed often a linear relationship between the power
consumption and the resource usage. Linear models provided a reasonable ac-
curacy with low computational complexity in traditional platforms, but they
are weak in modern multicore platforms [58], where non-linear models provide
better accuracy, although they incur also higher computational complexity.

Power models must support heterogeneous platforms (e.g. low-power such
as Intel Atom vs. high-performance such as Intel Xeon), which are the norm
in current data centers [60], by incorporating a specific model for each type of
platform, as they can present very different energy consumption patterns [76].
One could think that this would lead to different models for each application-
platform pair, which would entail a noticeable effort to generate those models.
However, we can reduce the complexity incurred due to platform heterogeneity
by deriving approximate models of new platforms using the model of existing
platforms with the same architecture, thus avoiding the benchmarking of the
new platforms. Similarly, we can reduce the complexity incurred due to appli-
cation heterogeneity by using the platform model generated with the training
workload and, if needed, refining it online for each application (or group of
applications sharing common resource usage patterns) using captured data.

Finally, power models must consider the impact of co-locating several VMs
in the same resources. Sharing resources generates an interference between the
VMs, which induces some overhead [48]. This overhead has an obvious impact
on the performance of the VMs, but also on the energy consumption.

3.3 Forecasts

As power models correlate the resource usage and the power consumption,
if one can predict the resource usage of a host or a VM in the future, those
models could be then used to forecast the energy consumption of that host
or VM [52]. Resource usage predictions can be obtained using time series
analysis techniques [22]. Note that this approach supports predictions of the
energy consumption at different periods ahead, from short-term to long-term,
provided that the model is supplied with the corresponding resource usage
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predictions. Contrariwise, many other model-based predictors only allow for
very short-term forecasts, as they feed the model with current measurements
of resource usage instead of predictions.

It should be also helpful if power models can be used to forecast the en-
ergy consumption for potential actions. For instance, predicting the energy
consumption of the data center upon a VM deployment, VM migration, or
VM cancellation before the actual action takes place [64]. The system sched-
uler could use these forecasts to guide its resource management decisions.
Predicting the future resource usage is harder with this kind of forecasts be-
cause the effect of the potential action must be incorporated to the predicted
resource usage in the data center. The complexity increases considerably when
forecasting the energy impact of a combination of potential actions.

The amount of carbon emissions can be predicted from the expected energy
consumption and the carbon emission factor associated to each energy source,
using the same rationale described in Section 3.2. This requires predicting the
expected workload, but also the expected energy mix to be delivered to the
data center, as the energy mix will vary over time when using intermittent
energy sources such as solar and wind energy.

4 Energy Efficiency of the IT Equipment

Energy efficiency describes the ratio between the produced outcomes and the
energy used. Something is more energy efficient if it delivers more services
using the same amount of energy, or the same services using less energy. IT
equipment can be more energy efficient by means of energy-driven management
strategies that reduce its energy consumption and carbon footprint.

4.1 Energy-related actuators

Energy-driven management strategies require actuators that can modify the
behavior of the IT equipment regarding their energy footprint. For instance,
data centers can take profit of virtualization technology to consolidate work-
loads from different customers into a smaller number of physical hosts. This
allows turning off (or suspending) unused hosts (see ACPI C-states [66]) and
therefore reducing energy consumption. Data centers can apply also elasticity
of VMs regarding the use of resources to control the number of VMs in each
physical host. Moreover, they can use also Dynamic Voltage and Frequency
Scaling (DVFS) to adjust the voltage and/or frequency of the processors on
the fly (see ACPI P-states [66]) aiming to reduce power consumption (dynamic
power consumption changes linearly with frequency and in a quadratic manner
with voltage) or to reduce the amount of heat dissipated. Note that running
an application at lower frequency increases its execution time, which could
lead to higher energy consumption depending on the relationship between the
reduction of power consumption and the increase in the execution time for
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a given frequency reduction [30]. Smart management solutions that trade off
these variables to reduce the overall energy consumption are needed here.

4.2 Energy-driven management

Energy-awareness and energy-related actuators allow putting energy-driven
management strategies for the IT equipment into operation, as they can be
the basis for management algorithms that optimize their operation according
to energy-based objectives (e.g. maximize the energy productivity of the data
center). On one side, management algorithms can decide the placement of VMs
in the physical hosts of the data center, as well as the energetic status of those
hosts (on(P-state)/suspended(C-state)/off) [56]. Each VM must be allocated
with enough resources of each type to fulfill its demand. This complicates the
allocation problem as several dimensions have to be considered. The impact
of co-locating several VMs in the same physical host must be also considered
as this can degrade their performance due to interferences accessing the re-
sources [45]. As the energy consumption of the data center is correlated with
the number of active physical hosts, a common strategy to improve energy
efficiency is to consolidate all the VMs running in the data center in the min-
imum number of hosts (the necessary to fulfill the desired performance) while
suspending the rest of hosts [73]. These idle hosts could be turned on again if
they were needed when a peak load occurs. However, management algorithms
can achieve better results if, instead of the number of active hosts, they con-
sider the dynamic power consumption of the physical hosts (which depends on
their load) that would result from each configuration [19]. For that, they will
use the power models described in the previous section to forecast the energy
consumption of VMs and physical hosts according to their predicted resource
usage and the status of the infrastructure. In addition, DVFS and elasticity of
VMs can be used to adapt the computing capacity of the hosts and the VMs
to the intensity of the workloads they have to execute [65].

On the other side, management algorithms can decide the configuration pa-
rameters of the networking elements (i.e. routers, switches, ...), as well as their
energetic status, to optimize the energy needed to route messages within the
data center. This can have a noticeable impact, especially in big data centers,
which organize in complex hierarchical switching topologies. According to this,
common strategies to improve energy efficiency consist of adapting dynami-
cally the operating data transmission rate of communication links [20], finding
routes that minimize the total number of switches and turning off unused ones
[77], and exploiting low energy modes in physical hosts and networking devices
together in a single management algorithm [11].

The outcome of those optimization algorithms can be significant when
applied in heterogeneous environments [76]. On one side, data centers can have
heterogeneous platforms (e.g. low-power vs. high-performance), which have
very different energy consumption profiles. Low-power platforms offer reduced
power consumption in the idle state and mild increments with resource usage,
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but they provide also reduced performance. For this reason, heterogeneous
platforms present interesting trade-offs for the management algorithms, i.e. run
briefly in a high-performance high-power platform and suspend this platform
for longer vs. run for a longer time in a low-performance low-power platform
and only suspend the platform briefly.

On the other side, this platform heterogeneity fits very well with the het-
erogeneity of the applications running in today’s data centers, which include
interactive services, high performance computing jobs and big data applica-
tions. As these applications present very different resource usage patterns (and
consequently, different energy consumption profiles), they allow for several
placement options in the data center according to the required performance
by each application and the energy consumption incurred to provide that per-
formance [26]. Again, interesting trade-offs appear here, i.e. place all the ap-
plications of a given type in the platform where their energy productivity is
better but foster their interference because they are using the same kind of
resources vs. co-locate applications of different types in a given platform to
minimize interference even if their energy productivity is not optimal.

4.3 Data center ecosystems

The aforementioned management algorithms can contribute to the energy ef-
ficiency of data centers when considered in isolation. However, current data
centers normally work within ecosystems where they interact with other data
centers. For example, Cloud data centers can be organized in federations where
a given data center can lease capacity from other data centers to meet peaks
in demand or to outsource less critical workloads. Service owners can also use
multi-cloud scenarios to deploy their service across multiple data centers [31].

In such scenarios, energy-driven management strategies can also have a
noticeable impact. In this case, management algorithms will aim to optimize
the operation of data centers according to energy-based objectives by select-
ing the most appropriate data center where to deploy every workload (a.k.a.
Geographical Load Balancing (GLB)). For instance, GLB allows exploiting
data centers located in different time zones and energy price variability [50]
by enabling a follow-the-moon strategy [38], which deploys workloads in data
centers by following the night-time, when data centers may be in an off-peak
demand interval, the energy is cheaper, and lower outside temperature opens
the possibility to use free cooling. GLB also allows exploiting data centers
powered by renewable sources to reduce carbon emissions, as we will discuss
in Section 6. In addition, GLB can be integrated with energy buffering man-
agement in order to shave peak power draw from the grid [10].

Whereas data center ecosystems offer new opportunities for energy-driven
management, they also encompass new challenges that must be considered [44,
56,10], such as the distant geographic locations of data centers, which have
an impact in the migration of VMs (increasing the cost significantly (and the
consumed energy) and frequently causing service level degradations for the
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affected customers) and in the data exchange among VMs located in different
data centers (increasing the communication latency among them); the indepen-
dent administrative domains involved in the ecosystem, which have frequently
conflicting goals and do not generally disclose information about their energy
consumption and energy mix, thus increasing the need for third parties to
independently assess energy data of data centers and share this information
within the ecosystem; and the importance of the prediction accuracy of the
input data (e.g. workload, energy price, renewable energy), which depends on
the predictability of each data source and the prediction window length, and
can be a downgrading factor on the efficiency of the management algorithms.

4.4 Multi-objective optimization

Energy-related objectives are important for data centers administrators, but
they are also interested in other aspects, such as availability, reliability, profit,
and performance. For this reason, the management algorithms should optimize
the operation of data centers according to multiple objectives. This compli-
cates the optimization problem, especially when some objectives are mutually
exclusive and both cannot be maximized at the same time. For instance, con-
solidating VMs onto a small number of physical hosts and turning off idle
hosts is an effective way to reduce energy consumption, but this can cause
heat imbalances and create hot spots, which may impact cooling costs and
degrade host life and performance [74].

Multi-objective optimization problems can be solved via scalarization, that
is, converting the original problem with multiple objectives into a single-
objective optimization problem, for instance, by considering their impact on
the data center profit [34]. The problem can be also solved as a single-objective
problem when all but one of the objectives have a target value, as a constraint
can be placed on those objectives. When a target value can be identified for
all the objectives, the problem can be solved by means of goal-oriented adap-
tation, which is able to learn from monitored data the impact of repair actions
on the value of the goals and apply the most convenient action when any of
them deviates from its target value [70]. Another possibility for solving true
multi-objective problems consists of computing all or a representative set of
Pareto optimal solutions (those in which it is impossible to make any objective
better off without making at least another one worse off), which are usually
derived by means of evolutionary algorithms [74,32].

A similar issue arises when we consider not only the objectives of the data
center, but also the objectives of its clients. Hopefully, a data center should
fulfill the goals of its clients in addition to its own goals, but there could be
incompatibilities between the goals of the data center and its clients or among
the goals of the clients themselves. For instance, this occurs when data centers
offer distinct quality of service categories (gold, silver, etc.) to their customers
[71]. Again, trade-off solutions are required.
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4.5 Optimization problem solving

All the described optimization algorithms, whether they are single- or multi-
objective, must solve a packing problem [56]. A way to obtain optimal so-
lutions consists of formulating the problem in terms of some mathematical
program, for instance by using Integer Linear Programming, and using an
existing solver to calculate the solution [37]. However, packing problems are
known to be NP-hard. This means that brute-force methods to find the op-
timal solution become infeasible when the scenario starts to grow. According
to this, construction heuristics and local search methods are required to allow
good solutions (although maybe not optimal) to be decided in real time.

Given the similarity with the well-known bin-packing problem, simple bin-
packing heuristics (such as First Fit, Best Fit, First Fit Decreasing ...) have
been adapted to the VM allocation problem [63]. Nevertheless, the VM alloca-
tion problem is more complicated than bin packing [57]. This obliges to analyze
to what extent the bin-packing heuristics can be applied and what adaptations
are required. The main differences of the VM allocation problem refer to its
multi-dimensionality regarding the type of resources that determine the host
capacities and VM sizes, the costs incurred by VM migrations, the perfor-
mance degradation when a host is overloaded (or close to), the heterogeneity
of the hosts, the impact of the load of the host in its energy consumption, the
finite number of hosts in the data center which constraints the number of VMs
that can be allocated, and the volatility of the system regarding the number
of VMs to allocate and the number of available hosts [57].

5 Energy Efficiency of the Cooling and Power Supply Subsystems

The Climate Group states that in 2002 only about half of the energy used
by data centers powered the IT equipment, while the rest was needed to run
backup, uninterruptible power supplies and cooling systems [3]. Despite the
recent advances in cooling and power supply systems, The Climate Group
estimates that in 2020 the energy footprint of these systems will still account
for a 39% of the total footprint of data centers (about 101 MtCO2).

According to this, sustainable data centers must also aim to increase the
energy efficiency of the power and cooling systems, or in other words, aim to
reduce the PUE. This goal requires the usage of novel techniques to reduce the
energy consumption of these subsystems (such as free cooling, which consists
of using ambient air or water to cool data center space and equipment), but
also including these systems in a comprehensive energy-aware management
strategy that optimizes the IT equipment, as described in Section 4, while
reducing the energy consumption of the cooling and energy supply subsystems.

On one side, this can be accomplished by means of smarter algorithms
to manage the cooling subsystem, for instance, by adapting proactively the
amount of cooling to the expected workload [51]. If we envision a low utilization
in the data center in a near future, we can already throttle down the cooling
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subsystem, because less hosts will required and we will be able to suspend some
of them (or use DVFS), thus reducing the amount of dissipated heat and the
cooling needs. This differs from traditional reactive management approaches,
which are triggered when the temperature surpasses predefined thresholds,
and can result in delayed response to temperature changes. In addition, the
optimal threshold range to avoid component damage while at the same time
avoiding energy waste in unnecessary cooling is very hard to determine [51].

On the other side, the algorithms managing the IT workload can profile the
tasks according to their impact on the temperature and consider the resulting
temperature of the hosts as a criterion to decide the allocations. Again, a
lower resulting temperature allows the cooling subsystem to be throttled down,
further decreasing power consumption. For instance, the algorithms can apply
this idea to decide when tasks must be executed, and run cold tasks (i.e. those
with low impact on the processor temperature) after hot tasks to lower the
resulting temperature (the order of execution of the tasks has an impact on
the temperature) [25]. Similarly, they can also decide where tasks must be
executed, and place hot tasks in the hosts of the data center that are easier
to cool [24]. Naturally, both decisions on when and in which host to execute a
task can be taken together to minimize the resulting temperature [15].

The described approaches to optimize the cooling subsystem must be tightly
integrated with the optimization of the IT equipment. Isolated strategies to
reduce the energy consumption of the IT equipment tend to consolidate the
workload on fewer hosts and turn off the rest, which can cause heat imbalances
and create hot spots, thus increasing the cooling needs. Isolated strategies to
reduce the energy consumption of the cooling subsystem tend to spread the
workload over all the hosts, thus increasing the idle power consumption of the
IT equipment, as more hosts are turned on. A joint optimization that balances
the number of active hosts to trade off the power needed by the cooling sub-
system and the idle power needed by the IT equipment can reduce the total
power consumption of the data center [12]. As the cooling subsystem could
require some time to adapt changing conditions, joint approaches to optimize
the cooling subsystem and the IT equipment can configure the cooling sub-
system over different operating points to deal with long-term fluctuations and
use thermal-aware workload placement to deal with short-term ones [69].

There is also room for the optimization of the power supply subsystem,
especially when the data center can generate energy on-site (see Section 6).

6 Ecological Efficiency of the IT Equipment

Enhancements in energy efficiency, as described in previous sections, will con-
tribute to the reduction of the energy consumed by a data center to accomplish
a given amount of work. Although this is very important to reduce the carbon
footprint of data centers, it is not enough. As the workload demand over data
centers is expected to increase, their energy consumption will increase also,
even if energy efficiency measures are applied. In fact, some argue that energy
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efficiency could encourage further increments in the workload demand due to
lower energy costs (which is known as Jevons’ Paradox [18]). According to this,
sustainable data centers require not only to reduce their energy consumption
but also to use as much as possible energy sources that do not contribute to
carbon emissions, that is, renewable energy sources.

The use of renewable energy sources introduces new challenges into the
management of data centers. One of them appears when using intermittent
energy sources, that is, sources that are not always available, such as solar
and wind energy. In these scenarios, the management algorithms must adapt
the IT workload to the energy availability (i.e. workload shaping). On one side,
workload shaping can be accomplished by using techniques such as DVFS or
server power state tuning to adjust the power demand to the time-varying
renewable power budget [33]. On the other side, workload shaping can be also
based on task scheduling, for instance by postponing tasks when not enough
renewable energy is available to execute them, or by bringing forward tasks if
there is more renewable energy than needed [35].

Data center ecosystems offer more opportunities to increase the use of
renewable energy (and reduce the carbon footprint), as they comprise data
centers located in different geographical locations, and even in different time
zones, which results in different local weather conditions at some particular
time. This allows enabling a follow-the-renewables strategy [54], where work-
loads are deployed in data centers according to the availability of renewable
energy in their geographical locations [78], or to the expected carbon emissions,
which are calculated from the data center energy mix [23].

Co-location (data centers draw renewable energy directly from an exist-
ing nearby plant) and self-generation (data centers generate their own renew-
able energy) have been reported as the preferred methods (versus grid-centric
approaches) for data centers to exploit renewable energy [36], as they allow
decreasing the transmission and conversion losses (because the power is gen-
erated close to where it is consumed and DC power can be directly supplied
to the IT equipment instead of AC power) and avoid the grid-transmission
charges imposed by power utilities. Self-generation allows also the utilization
of the power plant waste heat to generate cooling for the data center [29].
These features make self-generation an appealing option to obtain cheaper
power than the grid once the important initial capital cost of installing the
needed infrastructure has been amortized.

Self-generation offers also additional management opportunities because
the management algorithms can control the power supply system. In particu-
lar, they can use a load following approach that adapts the amount of energy
generated to the expected workload [46]. As energy generation systems could
require some time to adapt the amount of energy they generate, load follow-
ing is not adequate to fit the energy demands of the IT workload when this
fluctuates in short time intervals. In these situations, load following can be
combined with workload shaping. The former defines the amount of energy to
be generated during the next (coarse) time period according to the estimated
workload demand, which is calculated from past information, and the latter
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works within that time period to adapt the IT workload to fit its deviations
to the available energy [53].

7 Exploit Opportunities in the Energy Markets

Even after applying the previous steps, data centers can still have some carbon
footprint. This can be further reduced by exploiting the opportunities that are
available in the current energy markets, provided that the required expenses to
reduce its carbon footprint by using these opportunities fit in the data center
business strategy. For instance, Renewable Energy Certificates (RECs) (a.k.a.
Renewable Energy Credits) [67] represent proof that one MWh of electricity
was generated from a renewable energy source. RECs are tradable commodities
in energy markets and they allow their owner to claim that the corresponding
portion of its overall energy consumption comes from renewable sources.

A data center can reduce its carbon footprint by purchasing RECs [28,61].
Similarly, a data center that generates renewable energy on-site can offer its
spare green energy in the market by issuing RECs, allowing other data centers
to offset their carbon impact [61]. Note that, in addition to the benefit of a
global reduction of the carbon impact, these strategies can offer also business
opportunities to the data centers to increase their profit.

8 Customization of the Energy Strategy

Energy management strategies should be flexible in the sense that they must be
easily customizable to each data center reality. On one side, they should adapt
to the energy management mechanisms that the data center has. For instance,
whether it can control the energy supply (because some energy is generated on-
site), the operation point of the cooling subsystem, or the energetic status of
the IT equipment. This requires a management architecture with independent
controllers for each subsystem that can be plugged in/out as necessary and
can work together to manage the data center.

On the other side, they should allow the definition of the objectives and
constraints during operation of the whole data center (or any of the appli-
cations running there) and they should be able to fulfill them. For instance,
ensuring a minimum performance (e.g. a minimum number of requests per sec-
ond for a Web server), a maximum amount of energy that can be consumed
(e.g. the amount of available green energy is limited), a maximum amount of
carbon that can be emitted (e.g. renewable energy credits are limited), a max-
imum amount of power that can be provided (e.g. there is a power budget), or
a maximum value for the operational costs (e.g. there is an economic budget).

The data center administrators define the high-level objectives and con-
straints according to the business interests of the provider. Those high-level
objectives are commonly referred as Business Level Objectives (BLO). The
Green Grid Data Center Maturity Model [9], which suggests best practices for
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energy efficient data centers, can be also used as reference to define constraints
[70]. The energy-aware manager configures the management controllers in or-
der to fulfill the BLOs. Some controllers support their configuration directly
by means of BLOs and can adapt their behavior to fulfill them under changing
conditions [55]. Other controllers are configured by means of low-level objec-
tives related to its own domain or adjustable low-level policies [62]. In this
case, the energy-aware manager must be able to translate the BLOs to low-
level terms that the management controllers can understand [49].

Management controllers operate independently and adhere to their speci-
fied local objectives by means of a self-adaptation loop. However, the impact
of their decisions goes beyond their own domain, and can affect the rest of
controllers. In fact, these decisions could be conflicting and their combined
effect could fail to fulfill the data center BLOs. According to this, the energy-
aware manager must implement a self-adaptive loop that monitors the system
status, evaluates the BLOs fulfillment under those conditions, and aligns the
configuration of the management controllers to ensure the fulfillment of the
BLOs [62]. The effect of different configurations over the BLOs can be learned
from available data using machine learning techniques [70].

9 Conclusions

In this paper, we have presented a comprehensive energy management strat-
egy for data centers that aim for sustainability and a holistic architecture
that implements such strategy. We claim that those data centers must first be
aware of their energy impact and carbon footprint by measuring appropriate
metrics and being able to forecast their value by using models. They must
also increase the energy efficiency of their IT equipment by optimizing the
placement of tasks in the data center physical hosts, as well as the energetic
status of those hosts, while exploiting the opportunities given by heteroge-
neous platforms and applications and by data center ecosystems. They must
increase the energy efficiency of the cooling and power supply subsystems by
integrating them in the energy strategy applied with the IT equipment. As
carbon footprint is directly impacted by the used energy sources, data centers
must increase also the use of renewable energy by generating it on-site and
optimizing its management depending on the available renewable energy, or by
purchasing carbon credits to avoid accounting their emissions as real carbon
impact. Finally, all the previous steps must fit in the frame of each data center
and have to be customized accordingly.
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