
ar
X

iv
:1

50
8.

03
23

6v
1

 [
cs

.D
C

]
 1

2
A

ug
 2

01
5

Scheduling Chained Multiprocessor Tasks onto Large Multiprocessor

System

T. K. Agrawal, R, Sharma, M. Ghose, A. Sahu

Department of Comp. Sc & Engg., IIT Guwahati,

Guwahati, Assam, India, PIN-781039. email:{tarun.k, r.sharma, g.manojit, asahu}@iitg.ernet.in

Abstract

In this paper, we proposed an effective approach for scheduling of multiprocessor unit time tasks with
chain precedence on to large multiprocessor system. The proposed longest chain maximum processor schedul-
ing algorithm is proved to be optimal for uniform chains and monotone (non-increasing/non-decreasing)
chains for both splitable and non-splitable multiprocessor unit time tasks chain. Scheduling arbitrary chains
of non-splitable multiprocessor unit time tasks is proved to be NP-complete problem. But scheduling arbi-
trary chains of splitable multiprocessor unit time tasks is still an open problem to be proved whether it is
NP-complete or can be solved in polynomial time. We have used three heuristics (a) maximum criticality
first, (b) longest chain maximum criticality first and (c) longest chain maximum processor first for scheduling
of arbitrary chains. Also compared performance of all three scheduling heuristics and found out that the
proposed longest chain maximum processor first performs better in most of the cases.

1 Introduction and Motivation

Modern computing system contains multiple cores which enable many applications or tasks to execute concur-
rently. Chip multiprocessor exploits the increasing device density in a single chip, so now a days we expects two
or three order number of cores on a chip. Also most of the applications by nature they are parallel and their
run time characteristics exhibit time varying phase behavior [1, 2]. Applications impose different performance
metric values in different phases. During a phase an application have same value of performance metrics. In
[3, 5], Banerjee et al. used instruction per cycle (IPC), instruction level parallelism (ILP) and L1 cache hits
to detect phases of applications execution time. As different phases of application have different parallelism
and memory access characteristics scheduling algorithm should consider this fact to improve the performance,
otherwise system will be underutilized. In this work, we have considered the parallelism characteristics of dif-
ferent phases of an application to schedule efficiently. Without loss of generality, we can consider an application
consist of a sequence of task or phase, where each task or phase exhibit different degree of parallelism. In this
text, we have used task and phase interchangeably. Tasks that require more than one processor at a time are
called multiprocessor tasks. Tasks requiring k processors at a time are called k-width tasks.
In this paper we are concerned about scheduling of N multi-phase applications (chain of multiprocessor tasks,

each of which have arbitrary number of phases or tasks) onto M processor system. Each phase or task has
two characteristics: one is execution time of phase and other is number of processors required for execution
of that phase. A phase of an application can be scheduled on any subset of processors of given size (given by
phase). So this kind of application can be represented as collection of multiprocessor task with chain precedence
constraints. Interchangeably we say this as chain of multiprocessor task throughout this paper. If execution
time of a multiprocessor task is 1 then we say it is a multiprocessor unit time task and for multiprocessor unit
time task we don’t use pre-exemption. A task is splitable multiprocessor unit time task with k-width, means
this task may be run in splitable in term of processor. Suppose a task require 1 unit time p processor then
this task may execute 1 unit on d processor in current time slot and remaining p − d unit in any other time
slots. If d is integer then task is unit splitable otherwise continuous splitable task. In this paper, we have tried
to link theoretical aspect of multiprocessor scheduling and efficient scheduling multi-phase application on to
multiprocessors to cope up with modern days execution environment scenario (parallel multi-phase application
on large multi-processor system).
Non-preemptive scheduling of N independent tasks (uni-processor task) on M ≥ 3 processors is NP-complete.

Similarly, the problem of multiprocessor tasks scheduling is NP-Hard for non-preemptive case and independent
tasks of arbitrary execution time [4]. If the execution time of each phase is restricted to unit time then the

1

http://arxiv.org/abs/1508.03236v1

t11P11 P12 t12 P13 t13 t14P14

P21 t21 P22 t22 P23 t23

P31 t31 P32 t32 P33 t33 P34 t34 P35 t35

P41 t41 P42 t42 P43 t43 P44 t44

T11 T12 T13 T14

Processor
Requirement

Processing
Time

C1

C2

C3

C4

(a) Arbitrary time

P11 P12 P13 P14

P21 P22 P23

P31 P32 P33 P34 P35

P41 P42 P43 P44

T11 T12 T13 T14

C1

C2

C3

C4

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1 1

(b) Unit time

Figure 1: Multiprocessor tasks with chain precedence

problem is polynomially solvable for arbitrary but fixed number of processor requirement case [4]. When
preemption is allowed we can solve independent tasks of arbitrary execution time with arbitrary number of
processors requirements in polynomial time [4]. Most of the cases, if we add precedence constraint between
tasks difficulty increases. Scheduling multiprocessor applications which have precedence constraint as directed
acyclic graphs is NP-Complete. Many heuristics are proposed to schedule them. We are considering precedence
constraint chain in this paper which is simplest precedence constraint. The problem scheduling multiprocessor
task with chain precedence is also strongly NP-Hard for than two processors and non pre-emptable tasks of
arbitrary execution time [4]. If execution time is restricted to unit for chained applications then also the problem
is strongly NP-Hard for three processors with arbitrary processors requirement of multiprocessor task [4].
In this paper we are considering three types of chains of multiprocessor unit time task. These are (a) uniform

chain, (b) monotonically increasing or decreasing chains and (c) arbitrary chains. We are considering two types
of multiprocessor tasks also. These are (a) splitable tasks, and (b) non-splitable tasks. Non-splitable task require
all required processors simultaneously at a time means k-width task can not be scheduled on < k processors
and splitable task can be processed by allocating partial number of processors at different times means k-width
task can be scheduled on processors less than k at a time and remaining can be given on next time. Our result
is stronger result as compared to Blazewicz et al. [10], where they consider scheduling of tasks requiring an
arbitrary number of processors between 1 and k, where k is fixed integer and unit time processing. Also we
have considered splitable and non-splitable version of the problem.
Rest of the paper is organized as follows: We have described the problem formulation and variation of problem

in Section 2. We have described previous work in Section 3. We have described our proposed algorithm for
scheduling of uniform chains of splitable and non-splitable multiprocessor unit time tasks in Section 4. Similarly,
we have described algorithm for scheduling of monotone chains of splitable and non-splitable multiprocessor unit
time tasks in Section 5. Section 6 describes about compared three heuristics to solve the problem of scheduling
arbitrary multiprocessor task chains and evaluates their performance on various scenarios for both splitable and
non-splitable task chains. Finally, we have concluded about paper and pointed future works in Section 7.

2 Problem Formulation

2.1 Scheduling of multiprocessor tasks on M processor system with chain con-

straint

A collection of N application C = C1,C2,....,CN has to be executed by M identical processors. Each application
or chain consists of ni phases or tasks where i ∈ [1, 2, ..N]. The processors requirement of task Tij is pij , where
Tij is jth phase or task of application Ci and it satisfies 1 < pij ≤ M . Execution time tij of each tasks Tij may
be arbitrary. Figure 1(a) shows an example of application system. In this example, we have 4 applications or
chains (C1, C2, C3 and C4). Application C1, C2, C3 and C4 have 4 phases, 3 phases, 5 phases and 4 phases
respectively. A task of an application can’t start execution before complete execution of its predecessor task of
the same application.
An optimization criterion of multiprocessor scheduling is minimizing makespan time Cmax. The makespan

is defined as the total length of the schedule i.e. when all tasks of all applications are finished i.e. Cmax =
max

0≤i≤N
{Fi} where Fi is the finishing time of ithchain or application.

The problem of scheduling of multiprocessors arbitrary time tasks with chains is NP-complete, so for simplicity

2

8 8 8 8

4 4

6 6 6 6

10 10 10

T11 T13 T14T12

C1

C2

C3

C4

(a) Uniform

8

10

T11 T13 T14T12

C1

C2

C3

C4

7 4 4

6 5

9 5 3 1

5 2

(b) Decreasing

T11 T13 T14T12

C1

C2

C3

C4

3 3 4 8

6 9

5 7 7 10

1 4 8

(c) Increasing

8 8

10

T11 T13 T14T12

C1

C2

C3

C4

3 4

6 4

5 7 11 2

1 5

(d) Arbitrary

Figure 2: Multiprocessor unit time tasks with chain precedence

we assume execution time of each tasks Tij equal to unit length i.e. tij = 1 where i = 1 to N and j = 1 to
ni, in this paper. We also assume that there is no communication delay between tasks of an application and
among the applications. In the paper, we have used n as total number of tasks (which is different from ni, the
number of phases of application Ci) and m or M as number of processor in the system.

2.2 Considered types of multiprocessor tasks

In this paper, we have assumed two types of tasks: (a) Non-splitable tasks i.e. task can only be processed when
all the required number of processor by task are allocated to task at a time and (b) splitable tasks i.e. task
can be processed by allocating all required number of processor in pieces at different time. Clearly, we can
categorize the multiprocessor unit time tasks with chain precedence into three following cases:

1. Uniform chains: All the tasks of a chain have same number of processors requirement and tasks of
different chains may have different processors requirement. Example of this kind of task system is shown
in Figure 2(a). For a given chain, all the task have same number of parallelism or processor requirement,
but this may be different for different chain.

2. Monotone chains: All the tasks of a chain have non-increasing (or non-decreasing) processor require-
ment. All the chains of task system are one type of chain either non-increasing or non-decreasing. Figure
2(b) and 2(c) shows non-increasing and non-decreasing monotone chains of multiprocessor tasks respec-
tively. Considered monotone task system does not contain mix of both non-increasing and non-decreasing
chain.

3. Arbitrary Chains: In this case, tasks of a chain have any arbitrary processors requirement in arbitrary
order as shown in Figure 2(d).

We have discussed scheduling approach of all three types of chains of multiprocessor tasks (uniform, monotone
and arbitrary) and also with both types of multiprocessor tasks (splitable and non-splitable). So it becomes in
total six different types of chain of multiprocessor task system. We know that lower bound (LB) of makespan
time of scheduling chains of multiprocessor task on multiprocessor can be calculated as [24]

LB = max
(

∑N

i=1

∑ni

j=1
pij

M
,max{ni}

)

(1)

where pij is processor requirement of jth task of ith application, N is number of chain, M is number of processor
and ni is number of phase/task of ith chain. Let us assume OPT is optimal makespan time produced by an
optimal algorithm. So makespan time of any arbitrary algorithm will be LB + Pwaste and it will satisfy the
following relation.

LB ≤ OPT ≤ LB + pwaste (2)

where pwaste is minimum average CPU time wastage. Average CPU time wastage is calculated as ratio of total
CPU time wastage and total number of processor (M). CPU time wastage at any time slot is the number of
number of free processor at that time unit. Wastage of CPU time happens because of these following reasons.

1. Some processors may be free at one time slot because the remaining processors are not sufficient for any
ready task (processor requirement of ready tasks is higher than the available free processors).

2. Some processors may be free if the total requirement of all ready tasks is less than the total available
processors at any one of the time slot.

3

Structure
Uniprocessor Tasks Unit time multiprocessor tasks
(Processing time) (Processor Requirement)

Unit Arbitrary Arbitrary Unit Arbitrary Arbitrary
(Non-pre (Preem- (Non-spl (Split
emptive) ptive) itable) able)

DAG NPC NPC NPC NPC NPC OPEN
Ullman[17] [17] [26] [26] Bz[4]

Tree O(n) NPC n logn O(n) NPC OPEN
Hu[4] [24] [9] Hu Bz[4]

Chain O(n) NPC n+m logn O(n) NPC OPEN
Hu [4] [26] [9] Hu[4] Bz[4]

Indepe- O(n) NPC O(n) O(n) NPC, NPC
ndent [26] Bz[10] Bz[10]

Figure 3: Complexity of scheduling problems on P processors without communication time between tasks

3 Previous Work

3.1 Scheduling task on multiprocessor

As described in Section 1, non-preemptive scheduling of independent tasks on m ≥ 3 processors is NP-complete.
Also, the problem of scheduling a finite set of tasks having some precedence constraint on finite set of multi-
processor with goal of minimizing makespan is NP-complete for most of the cases except for a few simplified
cases. Many heuristics with polynomial-time complexity have been suggested based on their assumptions about
the structure of the parallel program and the target parallel architecture [12]. These assumptions includes (a)
uniform task execution times, (b) zero inter-task communication times, (c) contention-free communication, (d)
full connectivity of parallel processors, and (e) availability of unlimited number of processors.
However these assumptions may not hold in real world for a number of reasons. Even after making above as-
sumptions, scheduling problem is NP-complete in these following cases [12] : (a) scheduling tasks with uniform
weights to an arbitrary number of processors and (b) scheduling tasks with weights equal to one or two units
to two processors.
As stated in [12] there are only three special cases for which there exist optimal polynomial time algorithms.

These cases are (a) scheduling tree-structured task graphs with uniform node weights on arbitrary number of
processors in linear time by Hu’s [15] highest level first heuristics, (b) scheduling arbitrary task graphs with
uniform node weights on two processors in quadratic time by Graham et. al. [14], (c) scheduling an interval
ordered task graph with uniform node weights to an arbitrary number of processors have been solved in linear
time by Papadimitriou et. al. [11]. However, even in these cases, communication among tasks of the parallel
program is assumed to take zero time. In [17], Ullman proved that DAG scheduling problems where considered
DAG’s nodes have unit weights and system has m processors are NP-complete. He also proved that DAG
scheduling problem where nodes have either one or two as a weight value and system has two processors is also
NP-complete. Figure 3.1, shows complexity of scheduling problems without communication time between tasks
in tabular form.

3.2 Scheduling multiprocessor task on multiprocessor

The problem of scheduling multiprocessor tasks on multiprocessor is even more harder. Blazewicz et al. [4],
proposed O(n logn) time algorithm for chained multiprocessor tasks where processor requirement is uniform
for each task in a chain, where n is number of task and m is number of processor. They proposed O(n log n)
algorithm for same type of applications with processor requirement in either increasing or decreasing fashion
in a chain but having only two types of tasks either requiring 1 processor or k processor. Gonzalez et al.
[9], proposed a polynomial time preemptive algorithm for scheduling trees in O(n logm) time in off-line mode.
Algorithm given by them solves forests of n tasks onto m identical processors by minimizing the number of
preemption in worst case. Blazewicz et al. [7], proposed scheduling algorithm for independent processor tasks.
They divided the tasks into two sets t− type sets and w − type sets. t-type tasks are those tasks which require
one arbitrary processor for execution and w-type are those which require two arbitrary processors. The non
preemptive version of scheduling t and w types tasks is NP-complete but in this preemptive version is given
which schedules t and w tasks in O(n logm) time. Blazewicz et al. [10] proposed linear time algorithm for
scheduling tasks requiring an arbitrary number of processors between 1 and k, where k is fixed integer and unit
time processing. If k is not fixed than problem is NP-complete. They considered both preemptive and non

4

Algorithm 1 Longest Chain Maximum Processor First (LCMPF)

Input: Set of N Application Chains and M Processors.

1: while All chains are not scheduled completely do

2: Sort chains in the non-increasing order of remaining unscheduled chain length.
3: while at least one processor is free do

4: if there are two or more chains of same unscheduled length then

5: Select next ready task Tij from that chain which has max. proc. req. (initial req.) in all chains of same length.
6: else Select next ready task Tij from chain with longest unscheduled length.
7: if Remaining processors m are more than pij of selected task Tij then

8: Schedule task Tij on Allocated Processors
9: else Schedule task Tij on remaining processors m and make this task as next ready task for current chain with proc. req.

equal to pij -m.

T11 T12 T13 T14

C1

C2

C3

C4

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1 1

 P1 P1 P1 P1

 P2 P2 P2

 P3 P3 P3 P3 P3

 P4 P4 P4 P4

(a) Uniform chains of multiprocessor unit time task

������
������
������
������
������

������
������
������
������
������

�
�
�
�
�

�
�
�
�
�

����

������
������
������
������
������
������

������
������
������
������
������
������

�
�
�
�
�
�

�
�
�
�
�
�

����

T11 T12 T13 T14

C1

C2

C3

C4

 1 1 1 1

 1 1 1

 1 1 1 1 1

 1 1 1 1

 8 8 8 8

 4 4 4

 6 6 6 6 6

 10 10 10 10

(b) Assuming some values: applications set at time
= 1

Figure 4: Example of uniform chains of multiprocessor unit time task

preemptive versions for two types of problem sets. One is if there are only two types of tasks in the set, one
requiring 1 processor and other requiring k processors then both non preemptive version and preemptive version
take O(n) time to schedule the tasks. Second is if tasks require arbitrary number of processors between 1 and k
then non preemptive version gives complexity O(mk−1.nk) and preemptive version gives complexity of O(nm).
Li et al. [13], proposed a task duplication based scheduling algorithm for fork-join task graph with complexity
of O(n2). Blazewicz et al. [8], proposed a scheduling algorithm for two-processors tasks on uniform 2-processor
system and schedule w and t types tasks in O(nm+ n logn) time.

4 Uniform Chains of Multiprocessor Unit Time Tasks

4.1 Splitable multiprocessor tasks

In this section, we propose an optimal algorithm longest chain maximum processor first (LCMPF) for the
minimization of makespan using simple rules. As shown in algorithm 1 it works on two criteria, first one is
length of chain and second is processor occupancy of task. The application which has longest chain means
maximum number of phases (application length) will first scheduled. If two or more applications or chains are
of same length then the application which have more number of processor requirement (initial requirement)
of task will be scheduled first. Figure 4(a) shows an example of uniform chain multiprocessor unit time task
system. Initial processor requirement of chain C1, C2, C3 and C4 is p1, p2, p3 and p4 respectively. Total number
of phases or tasks in C1, C2, C3 and C4 is 4, 3, 5 and 4 respectively.
Pseudocode for LCMPF is shown in Algorithm 1. In this example, assuming M = 16, p1 = 8, p2 = 4, p3 =

6 and p4 = 10, uniform chain task system of multiprocessor unit time tasks is shown in Figure 4(b). algorithm
works as follows: initially at time t = 0, chains in sorted order based on remaining unscheduled length are
C3, C1, C4 and C2 and number of free processors is 16. So task T31 will be scheduled first. Now, number of
remaining free processors is m = 16 − 6 = 10. Now, next longest chains are C1 and C4 but initial processor
requirement of C4 (i.e. p4 = 10) is greater than initial processor requirement of C1 (i.e. p1 = 8), so next task
to be scheduled will be T41. Now, number of remaining free processors is m = 10 − 10 = 0 so no task can be
scheduled next in this time slot. As there is no free processor so CPU time wastage in current time slot (t = 0)
is 0.
Time complexity of this can be analyzed as follows: Sorting chains requires O(N logN) time and finding chain

which requires maximum initial processors from longest chains of same length takes O(N) time. For one time
slot, scheduling will take time O(N + N logN) time, so total time complexity of scheduling task system by
LCMPF algorithm is Cmax.(N +N logN), where Cmax is constant.

5

8 8C1

C2 9

8 8C1

C2 8

8 8C1

C2 8
Best Case

Worst Case
8 8C1

C2

8C1

C2 9

8 8C1

C2 8

1

Time Slot 1

1

LCMPF A’

Figure 5: Best and worst case behavior of algorithm A
′

and LCMPF

Let us assume length of chain have an upper bound L. In this case, instead of sorting we can use L different
bins to put the application with length l to bin number l where highest bin is L, next highest bin is L− 1 and
so on. This will take O(N) time to put all the applications to bins. If we want all applications in each bin to be
in sorted order based on initial processor requirement, then process of inserting all applications to bins requires
O(N logN) time.
Every time slot, we need to take out some applications from the current highest bin (L

′

) and get inserted
to next highest bin (L

′

− 1). If we want applications in the bins in sorted order based on initial processor
requirement then it will take O(N) time. Let α be the number of applications get executed in a time slot, then
we need to do maximum α applications to be removed from current highest bin (L

′

) to next current highest bin
(L

′

− 1). So time complexity of this operation will be O(α+ β), where β is the number of applications already
in next current highest bin (L

′

− 1). Overall time complexity of algorithm will be O(N logN) +Cmax.(α+ β).

Theorem 4.1. Longest chain maximum processor first algorithm always gives optimal makespan time for uni-
form chains with splitable tasks.

Proof. We always try to use all the processors at all the time slots to make pwaste minimum. CPU time wastage
happens when the total number of processor requirement of all the ready tasks in a particular time slot is less
than M . Optimality of LCMPF is shown as result of proof of Lemma 4.2 and Lemma 4.3.

Lemma 4.2. Selecting tasks from long chain first will not increase the CPU wastage time in future time slot.

Proof. Selecting long chain task first reduces the chances of free processors in future time slots. Let there be
an algorithm A

′

which gives the optimal makespan time T
′

and our approach LCMPF is giving makespan time
T . As from equation (1) lower bound of makespan LB will be same in both algorithms. As A

′

is optimal, we
can say that

pwaste(A
′

) ≤ pwaste(LCMPF) (3)

where pwaste(A
′

) is average CPU time wastage of algorithm A
′

and pwaste(LCMPF) is average CPU time
wastage of algorithm LCMPF.
If our approach selects task from longest chain (let the length of chain is l) then the optimal algorithm A

′

select task from any chain of length l
′

where l
′

≤ l. This will happen each time and there will be 0 or more
number of tasks of an arbitrary application remaining at last. Assume that two tasks of only application are
remaining at last then the CPU wastage will increase because we can complete only one task at one time.
The figure 5 depict the worst case behavior. Assuming 16 processors, in best case LCMPF algorithm selects

T11 first and A
′

selects either T11 or T21 first. In both cases total CPU time wastage will be 16 − 8 = 8. In
worst case LCMPF selects T11 first so total CPU time wastage will be 16-(1+8) = 7 only but if A

′

selects T21

first then total CPU time wastage will be (16− 1) + (16− 8) = 15 + 8 = 23. So in last worst case there will be
situation in A

′

that two phases of an arbitrary application will remain unscheduled i.e.

pwaste(A
′

) ≥ pwaste(LCMPF) (4)

So by contradiction, we can say that selecting tasks from long chain first reduces the CPU time wastage.

Lemma 4.3. Selecting task from highest number of processors requiring (initial requirement) chain will not
increase the CPU time wastage of current time slot.

6

Algorithm 2 Longest Chain First (LCF)

Input: Set of N Application Chains and M Processors.

1: while All chains are not scheduled completely do

2: Sort chains in the non-increasing order of remaining unscheduled chain length.
3: while Processors are free and at least one chain in unvisited do

4: if only one unvisited chains of same unscheduled length then

5: Select ready task Tij from unvisited chain with longest unscheduled length.
6: else Select ready task Tij from any chain (or, FCFS basis).
7: if Remaining processors m are more than pijthen

8: Schedule task Tij on Allocated Processors
9: else Mark this chain as visited;
10: Mark all chains as unvisited. Tsch = Tsch + 1

Proof. Let there be an optimal algorithm A
′

which gives the optimal makespan time then it will choose the
task from the chain which requires initial processors at least one less than initial processors of task chosen by
our approach LCMPF. If A

′

is occupying less processors then obviously A
′

is giving more CPU time wastage
then LCMPF.

Our approach LCMPF gives minimum CPU time wastage so it gives optimal makespan time.

4.2 Non-splitable multiprocessor tasks

In this case, our application system consists of N uniform chains of non-splitable multiprocessor unit time
tasks. Non-splitable multiprocessor task means task can be processed only by giving all the required number
of processor as a whole at that time.
In the Algorithm 2, we are proposing an optimal algorithm for the minimization of make-span. This algorithm

is similar to Algorithm 1 except it does not use the second criteria (i.e. maximum processor occupancy). If we
use LCMPF then also makespan time will be same for uniform chains having non-splitable multiprocessor unit
time tasks but time complexity will increase because of second criteria. As soon as we found longest unvisited
chain we select the next ready task of that chain, no matter if there are other chains of same length with high
or less number of processor requirement.
To demonstrate the working of our scheduling approach, let us consider example of same set of applications

described in Subsection 4.1 and it is shown in Figure 4(a). Pseudo code for proposed longest chain first (LCF)
approach is shown in Algorithm 2. The algorithm works as follows: initially at time t = 0, chains in sorted
order based on remaining unscheduled length are C3, C1, C4 and C2 and number of free processors is 16. So
task T31 will first scheduled. Now, number of remaining free processors is m = 16 − 6 = 10 and next longest
unvisited chains are C1 and C4. We can schedule ready task from any chain but we will schedule according
to first come first served basis. It will not affect the makespan time, only scheduling order so next task to be
scheduled will be T11. Now, number of remaining free processors is m = 10 − 8 = 2. Next longest unvisited
chain is C4 but it has more processor requirement (i.e. p4 = 10) than remaining free processors (i.e. m = 2).
Same problem is with C2. Now, all the chains are visited so we can’t schedule any task in current time slot.
CPU time wastage in current time slot (t = 0) is 2.
If we assume maximum length of chain may be arbitrary, then complexity will be Cmax times the sorting time

that is Cmax.(N logN). But if length of chains are bounded by L then instead of sorting we can use L different
bins to put the application with length ′l′ to bin number ′l′ where highest bin is L, next highest bin is L − 1
and so on. This will take O(N) time to put all applications to bins.
Every time slot, we need to take out some applications from the current highest bin (L

′

) and get inserted to
next highest bin (L

′

− 1). Let α be the number of applications get executed in a time slot, then we need to do
maximum α applications to be removed from current highest bin (L

′

) to next current highest bin (L
′

− 1). So
time complexity of this operation will be α. Overall time complexity of algorithm will be O(N) + α.Cmax.

Theorem 4.4. Longest chain first algorithm always gives optimal makespan time for uniform chains with
non-splitable multiprocessor unit time tasks.

Proof. Let there be an optimal algorithm A
′

which gives schedule length Cmax = OPT . Suppose the optimal
algorithm produces a sequence of scheduled multiprocessor tasks at time slot ti, where t = 1 to Cmax. Suppose
there are N uniform chains of non-splitable multiprocessor tasks namely a−chain, b−chain, c−chain, d−chain
and etc. with processor requirement a, b, c, d and etc. as shown in Figure 6. The optimal algorithm produces a
output sequence of scheduled tasks for example 1(a, b), 2(a, c), 3(c, d, a), 4(a, d).........., where i(j, k, ..) represents

7

Cn x x x

T11 T13 T14T12

C1

C2

C3

a aa a

b b

c c c c

Figure 6: Uniform chains of non-splitable multiprocessor unit time tasks

a task from j, a task from k and so on are scheduled at time slot t = i. We can see from the scheduled sequence
that between a nearby pair, scheduled slot may be exchanged. For an example, 1(a, b) and 2(a, c) can be
exchanged without affecting the optimality and precedence constraint to 2(a, b) and 1(a, c). So in this way, we
can sort the scheduling sequence by A

′

to get the required scheduling sequence by LCF.

As optimal sequence can be converted to LCF sequence without changing Cmax, so our LCF is optimal. But
we can’t guarantee that LCF is the only algorithm which produces optimal result. There may be other algorithm
that may produce optimal result.

5 Monotone chains of multiprocessor unit time tasks

Non-increasing chains of multiprocessor unit time tasks can be scheduled optimally. Our proposed approaches
LCMPF (Algorithm 1) and LCF (Algorithm 2) will produce optimal makespan time for non-increasing chains
of splitable and non-splitable multiprocessor unit time tasks respectively. An example of non-increasing chains
of multiprocessor unit time tasks is shown in Figure 2(b). Optimality of LCMPF and LCF for non-increasing
chains of splitable and non-splitable multiprocessor unit time tasks respectively can be proved by Theorem 5.2
and Theorem 5.

Theorem 5.1. LCMPF algorithm schedules non-increasing chains of splitable multiprocessor unit time tasks
optimally.

Proof. As shown in Theorem 4.4, Pwaste by longest chain maximum processor first is minimum for uniform
chains of multiprocessor unit time tasks. As we are choosing maximum processor first if chain lengths are
same and this satisfy both uniform chains and non-increasing chains. So it is obvious that choosing maximum
processor task of a chain will choose the task with highest processor requirement of the chain which is the ready
task of the chain. As the subsequent tasks of chain require less number of processor then the Pwaste(LCMPF)
of current slot will be minimum and also maintains the Cmax to be optimal.

Theorem 5.2. LCF algorithm schedules non-increasing chains of non-splitable multiprocessor unit time tasks
optimally.

Proof. As shown in Lemma 4.2, scheduled sequence given by an optimal algorithm A
′

can be converted into
scheduled sequence given by LCF without affecting optimality of makespan in case of uniform chains. Same
can be done in case of non-increasing chain without affecting the optimality.

An example of non-decreasing chains of multiprocessor unit time tasks is shown in Figure 2(c). This type
of chain can also be scheduled for both types (splitable and non-spilitable) of task same as uniform chains.
LCMPF and LCF will give optimal make-span time for non-decreasing chains of splitable and non-splitable
multiprocessor tasks respectively. Optimality of LCMPF and LCF for non-decreasing chains of splitable and
non-splitable multiprocessor unit time tasks respectively can be proved by Theorem 5.3 and Theorem 5.4.

Theorem 5.3. LCMPF algorithm schedules non-decreasing chains of splitable multiprocessor unit time tasks
optimally.

Proof. Non-decreasing chains of multiprocessor unit time tasks can be formed by reversing the order of non-
increasing chain. Reversing the chain order does not increase the chain length and it can be scheduled optimally
by LCMPF. Non-decreasing chains are just opposite chains of non-increasing chains. Let the schedule order D
we get is a1, a2, a3 and a4 of non-decreasing chains. If we reverse the chains and schedule them as non-increasing

8

T11 T12 T13 T14

 8 10 6 7

 8 10 6 7 31 23 13 7

P11 P12 P13 P14

 P11 CV11 P11 CV12 P11 CV13 P11 CV14

Figure 7: Criticality of tasks of chain

chains then the order of tasks for scheduling we will get the opposite of D, and that is a4, a3, a2 and a1. As
schedule for non-increasing chains is optimal, we can say that schedule for non-decreasing is also optimal.

Theorem 5.4. LCF algorithm schedules non-decreasing chains of non-splitable multiprocessor unit time tasks
optimally.

Proof. As shown in Theorem 5.3, non-decreasing chain can be converted into non-increasing chains by reversing
order. LCF gives optimal solution for non-increasing chains so we can say schedule by LCF for non-decreasing
chains of non-splitable multiprocessor unit time tasks will also be optimal.

6 Arbitrary Chains of multiprocessor unit time tasks

6.1 Non-splitable tasks

In this we are considering system of application of non-splitable multiprocessor unit time tasks with arbitrary
number of processor requirement in each phase of a chain. Unlike the processor requirement of multiprocessor
task of uniform chains or monotone chains where are same or in non-increasing (or non-decreasing) order. Figure
2(d) shows an example of arbitrary chains of multiprocessor unit time tasks. As the tasks are multiprocessor
unit time tasks and non-splitable in terms of processor, this problem is proved to be a hard problem [4].
We have used three heuristics for this problem and compared the performance. The proposed heuristics are (a)

maximum criticality first (MCF), (b) longest chain maximum criticality first (LCMCF), and (c) longest chain
maximum processor first (LCMPF). Longest chain maximum processor first heuristic is described in Section
4.1.
As defined in [15], we level each multiprocessor task of chain with its criticality value, which is sum of processor

requirement of self and all of its successors. The criticality of task Tij is calculated as

CVij =

k=ni
∑

k=j

pik (5)

where CVij is the criticality of jth task of ith chain, pik is processor requirement of task Tik and ni is number
of phases or tasks of ith chain. Figure 7 shows calculated criticality value of tasks of a example chain and now
every task have one more parameter that is CVij .
Pseudocode for MCF heuristic is shown in Algorithm 3. Initially, it calculates the criticality value (using

equation 5) of tasks of all applications. In every scheduling step, it try to select subset of tasks from set of
ready tasks to schedule that gives the maximum criticality value with total number of processors in the subset
of ready tasks is less then M . If ready task of ith chain is Tir and its criticality value is CVir and processor
requirement is pir then we need to select a subset S from the ready tasks so that the following objective meets

max(
∑

Tir∈S

CVir) with
∑

Tir∈S

pir ≤ M (6)

This is similar to solving 0-1 knapsack problem.
Pseudo code for LCMCF is shown in Algorithm 4. It is similar to LCMPF except the difference between

second criteria of selection in choosing ready tasks. LCMPF chooses the ready task with maximum processor
while LCMCF chooses the task with maximum criticality.
Figure 8 shows the set of 5 arbitrary applications with non-splitable multiprocessor unit time tasks. Second

parameter in each task of each chain is the criticality of that task calculated by equation 5. Assuming 20

9

Algorithm 3 Maximum criticality first scheduling (MCF)

Input: Set of N Application or Chains and M Processors.
Output: Schedule for application’s tasks.

1: Calculate criticality for each task of each application.
2: Initialize ready queue with the first task of all applications
3: while All chains are not scheduled or ready queue is not empty do

4: Select subset from ready tasks that gives maximum criticality and which has total processor requirement less than or equal
to M.

5: Update ready queue with the ready tasks(i.e. whose previous tasks have been scheduled).

Algorithm 4 Longest Chain Maximum Criticality First (LCMCF)
Input: Set of N Application or Chains and M Processors.
Output: Schedule for application’s tasks.

1: Calculate criticality for each task of each application.
2: while All chains are not scheduled do

3: Sort chains in the decreasing order of remaining unscheduled chain length.
4: while Processors are free and at least one chain is unvisited do

5: if There are two or more unvisited chains of same length then

6: Select ready task Tij which has maximum criticality among all ready tasks of unvisited longest chains .
7: if There are two or more tasks of same criticality then

8: Select any task.
9: else

10: Select ready task Tij from longest and unvisited chain.
11: if Remaining processors m are more than pij then

12: Schedule task Tij on allocated Processors
13: else

14: Mark this chain as visited
15: Mark all chains as unvisited

processors, lower bound (LB) for the example task system will be ≃ 8. Scheduled outputs of all three proposed
heuristics for set of applications (Figure 8) are shown in Figure 6.1 in tabular form. For this set of applications,
all three heuristics give same makespan time Cmax = 9 and total CPU time wastage equals to 21 (and pwaste =
21/20 = 1.05 ≃ 1) but different set of tasks are scheduled in a time slot.
Among these three heuristics, no one gives best result for all the case. One heuristic may perform better as

compared to other two in some specific case (lower the Cmax value, better the result). As shown in Figure 10,
performance of LCMCF and LCMPF is better compare to MCF for application set 1 (shown in Figure 10(a)),
performance of MCF and LCMPF is better than LCMCF for applications set 2 (shown in figure 10(b)) and
performance of MCF and LCMCF is better than LCMPF for application set 3 (shown in Figure 10(c)).
Figures 11a and 11b show the performance of MCF, LCMCF and LCMPF scheduling of 100 and 1000 ap-

plications respectively with different number of phases on 64 processor system. Figures 11c and 11d show the
performance of same scheduling approaches of same application set on 512 processors. We observed that:

1. For a fixed number of processors, when number of applications increase, the difference between LB and
makespan time decreases i.e. efficiency in time increases.

2. For fixed number of processors and applications, when upper limit of number of phases an application can
have increase efficiency in time increases for all three heuristics.

3. Avgerage ratio of Cmax and LB will always be better in LCMPF.

Again Figure 12 shows the performance of MCF, LCMCF and LCMPF scheduling of application system

3 374

10 37 12 27 15 15

664 1012 2211 33

66 5 113 14

777 17109 268 3441

6 34 6 28 7 22 8 15

Figure 8: Chain of non-splitable multiprocessor tasks with criticality values

10

Time MCF output LCMCF output LCMPF output
At time t = 0 T11, T31, T41 T31, T41, T51 T31, T41, T51

At time t = 1 T32, T42, T51 T32, T42, T52 T21, T52

At time t = 2 T21, T52 T21, T53 T32, T42, T53

At time t = 3 T12, T53 T11, T43 T22, T54

At time t = 4 T43, T54 T22, T54 T32, T42, T52

At time t = 5 T33, T44, T55 T12, T23, T55 T11, T43

At time t = 6 T22, T45 T44, T24, T56 T12, T23, T55

At time t = 7 T13, T23 T13 T24, T44, T56

At time t = 8 T24, T56 T33, T45 T23, T45

Figure 9: Scheduling results of all three heuristics of task system shown in Figure 8 on 20 processors

7

4 4

1

5

1

1514

11

13 14 11

8 7

(a) Cmax LMCF=9,
LLCMCF=8 and
LLCMPF=8)

5 10

14 13

4 6 2

5 10 11 8

3 11 6 12

(b) Cmax LMCF=9,
LLCMCF=10 and
LLCMPF=9

5 1311 3

9

512 6

13 4 11

10

(c) Cmax LMCF=7,
LLCMCF=7 and
LLCMPF=8

Figure 10: Performance of MCF, LCMCF and LCMPF on contradictory examples

with 10% and 50% variation of number of phases of applications with one another for 500 applications on 100
processors. Our observation says that

1. For a fixed number of processors and applications, when phase variation, the difference between LB and
makespan time varies i.e. efficiency in time increases or decreases.

2. For fixed number of processors, applications and phase variation, when number of phases an application
can have increase efficiency in time increases for all three heuristics.

Time complexity of MCF will be the complexity of 0-1 knapsack solution at each time slot. As problem of
0-1 knapsack can be solved in pseudo-polynomial time with respect to capacity of knapsack and total number
of item, so in our case it will be O(NM), so total complexity of MCF is Cmax.NM . As described in Section 4,
complexity of LCMCF will be same as complexity of LCMPF.
Overall LCMPF will give better results than MCF and LCMCF for any set of applications having any number

of phases and any number of applications.

6.2 Splitable tasks

Scheduling of arbitrary chains of splitable multiprocessor unit time tasks is an interesting problem. As of
our knowledge, no one have found polynomial time solution and also no one has proved that this problem
is NP-Complete. Using processor as continuous medium which behaves like electrical charge passing from
task to task in the DAG (instead of chain), author of paper [27], solve this in iterative ways with complexity
is O(e2 + ne + I(n + e)), where e is the number of edges in the precedence graph and I is the number of
iterations in the algorithm. They use optimality conditions impose by a set of nonlinear equations on the
flow of processing power (processors) and on the completion times of independent paths of execution which is
analogous to Kirchhoff’s laws of electrical circuit theory. But our main aim is to solve in using discrete approach.
We have also used the same MCF, LCMCF and LCMPF heuristics to schedule this kind of application on

to multicore. As multiprocessor task are splitable, we use fractional knapsack in MCF heuristic. Experiment
shows all three heuristics produce exactly same result for randomly generated examples. We also observe that
all three heuristics perform equally if sum of processor requirement of all the ready multiprocessor tasks is ≥ M

11

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 0 10 20 30 40 50 60 70 80 90 100

R
at

io
 o

f C
m

ax
 to

 L
B

Upper limit of number of Phases

M = 64 and No. of Apps = 100

MCF
LCMCF
LCMPF

(a) M = 64, Apps = 100

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 0 10 20 30 40 50 60 70 80 90 100

R
at

io
 o

f C
m

ax
 to

 L
B

Upper limit of number of Phases

M = 64 and No. of Apps = 1000

MCF
LCMCF
LCMPF

(b) M = 64, Apps = 1000

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 0 10 20 30 40 50 60 70 80 90 100

R
at

io
 o

f C
m

ax
 to

 L
B

Upper limit of number of Phases

Number of Cores = 512 and No. of Apps = 100

MCF
LCMCF
LCMPF

(c) M = 512, Apps = 100

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 0 10 20 30 40 50 60 70 80 90 100

R
at

io
 o

f C
m

ax
 to

 L
B

Upper limit of number of Phases

Number of Cores = 512 and No. of Apps = 1000

MCF
LCMCF
LCMPF

(d) M = 512, Apps = 1000

Figure 11: Comparison between MCF, LCMCF and LCMPF

in all schedule time slot except the last time slot. If this condition is violated then LCMPF performed better
than other two heuristics.

7 Conclusion and Future work

Scheduling with considering the phase behavior improve the system performance. Our proposed approach
LCMPF scheduling of uniform and monotone chain of multiprocessor unit time task is proved to optimal. If
the multiprocessor task are non-splitable, then LCF approach is optimal, we don’t need to consider processor
occupancy criteria of multiprocessor task.
Scheduling arbitrary chain of multiprocessor unit time task is in NP-complete. In this case our proposed

LCMPF based heuristics perform better as compared to MCF and LCMCF heuristics. We believe that schedul-
ing of arbitrary chain of splitable multiprocessor unit time task is still an open problem. We have also compared
performance of proposed LCMPF and other MCF and LCMCF heuristics for scheduling this kind of task. In
future, we are planning to try to solve scheduling of arbitrary chain of splitable multiprocessor unit time task.
Also solve the same with other restrictive precedence constraints and or with some communication model.

References

[1] T. Sherwood, S. Sair, and B. Calder, Phase tracking and prediction, ACM SIGARCH Comp. Arch. News,
Vol. 31, No. 2, 2003, pp. 336349.

[2] C. B. Cho and T. Li, Complexity-based program phase analysis and classification, in Proc. of PACT, 2006,
pp. 105113.

12

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 0 10 20 30 40 50 60 70 80 90 100

R
at

io
 o

f C
m

ax
 to

 L
B

Number of Phases

M = 100, No. of Apps = 500, Phase Variation = 10%

MCF
LCMCF
LCMPF

(a) Phase variation = ±10%

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 0 10 20 30 40 50 60 70 80 90 100

R
at

io
 o

f C
m

ax
 to

 L
B

Number of Phases

M = 100, No. of Apps = 500, Phase Variation = 50%

MCF
LCMCF
LCMPF

(b) Phase variation = ±50%

Figure 12: Comparison between MCF, LCMCF and LCMPF with variation of phases in different
applications

[3] S. Banerjee, G. Surendra, and S. K. Nandy, On the effectiveness of phase based regression models to trade
power and performance using dynamic processor adaptation, J. Syst. Archit., Vol. 54, No. 8, 2008, pp.
797815.

[4] J. Blazewicz, Zhen liu, Scheduling multiprocessor tasks with chain constraint, Euro. J of Op. Res., Final
version, 1996.

[5] Amrutlal D Sueresh and Sahu, A., Scheduling of multi-phase applications on to mesh multicore architecture,
IEEE Indicon, Dec 2014.

[6] Jianzhong Du and Joseph Y-T. Leung, Complexity of Scheduling Parallel Task Systems, SIAM J. on Dis.
Math.., Vol. 2, No. 4, 1989, pp. 473-487.

[7] J. Blazewicz, J. Weglarz and M. Drabowski, Scheduling independent 2-processor tasks to minimize schedule
length, Info. Proc. Lett., Vol. 18, No. 4, 1984, pp. 267-273

[8] J. Bazewicz, M. Drozdowski, G. Schmidt and D. De Werra, Scheduling independent 2-processor tasks on a
uniform duo-processor system, Dis. App. Math., Vol. 28, No. 1, 1990, pp. 11-20.

[9] Teofilo F. Gonzalez and Donald B. Johnson, A New Algorithm for Preemptive Scheduling of Trees, J. of
ACM, Vol. 27, No. 2, 1980, pp. 287-312.

[10] J. Blazewicz, J. Weglarz and M. Drabowski, Scheduling Multiprocessor Tasks to Minimize Schedule Length,
IEEE Tran. on Comp., Vol. C-35, No. 5, 1986.

[11] C. H. Papadimitriou and M. Yannakakis, Scheduling Interval-Ordered Tasks, SIAM J. Comput., Vol. 8, No.
3, 1987, pp.405-409.

[12] Yu-Kwong Kwokand and Ishfaq Ahmad, Static Scheduling Algorithms for Allocating Directed Task Graphs
to Multiprocessors, ACM Comp. Surveys (CSUR), Vol. 31, No. 4, 1999, pp. 406-471.

[13] Qinghua Li, Youlin Ruan, ShidaYang and Tingyao Jiang, An optimal scheduling algorithm for fork-join
task graphs, Par. and Dist. Comp., Appl. and Tech., 2003.

[14] E.G. Coffman and R.L. Graham, Optimal Scheduling for Two-Processor Systems, Acta Informatica, Vol.
1, 1972, pp. 200-213.

[15] T.C. Hu, Parallel Sequencing and Assembly Line Problems, Oper. Res., Vol. 19, No. 6, Nov. 1961, pp.
841-848.

[16] M.R. Garey and D.S. Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness,
W.H. Freeman and Company, 1979.

[17] J. Ullman, NP-Complete Scheduling Problems, J. of Comp. and Sys. Sc., Vol. 10, 1975, pp. 384-393.

13

[18] R. Sethi, Scheduling Graphs on Two Processors, SIAM J. on Computing, Vol. 5, No. 1, Mar. 1976, pp.
73-82.

[19] J. Blazewicz, et al, Scheduling independent multiprocessor tasks on a uniform k-processor system, Par.
Comp., Vol. 20, 1994, pp. 15-28.

[20] J. Blazewicz and Zhen Liu, Linear and quadratic algorithm for scheduling chains and opposite chains, Euro.
J. of Ope. Res., Vol. 137, No. 2, 2002.

[21] J. Blazewicz and Daniel Kobler, Review of properties of different precedence graphs for scheduling problems,
Euro. J. of Ope. Res., Vol. 142, 2002.

[22] Teofilo Gonzalez and Sartaj Sahni, Flowshop and Jobshop Schedules: Complexity and Operation, Op. Res.,
Vol. 26, No. 1, Jan-Feb. 1978.

[23] Teofilo F. Gonzalez and Donald B. Johnson, A New Algorithm for Preemptive Scheduling of Trees, J. ACM,
Vol. 27, 1980, pp. 287-312.

[24] Peter Brucker, Scheduling Algorithms, Fifth Edition, Springer, 2006.

[25] Giorgio C. Buttazzo, Hard Real Time Computing Systems: Predictable Scheduling Algorithms and Appli-
cations, Third Edition, Springer, 2011.

[26] R. McNaughton, Scheduling with deadline and loss functions, Management Science, 6:1-12, 1959

[27] G.N.Srinivasa Prasanna, B.R.Musicus, Generalized multiprocessor scheduling for directed acyclic graphs,
Proc. of IEEE Supercomputing, 1994, 237-246.

14

This figure "criticality.PNG" is available in "PNG"
 format from:

http://arxiv.org/ps/1508.03236v1

http://arxiv.org/ps/1508.03236v1

	1 Introduction and Motivation
	2 Problem Formulation
	2.1 Scheduling of multiprocessor tasks on M processor system with chain constraint
	2.2 Considered types of multiprocessor tasks

	3 Previous Work
	3.1 Scheduling task on multiprocessor
	3.2 Scheduling multiprocessor task on multiprocessor

	4 Uniform Chains of Multiprocessor Unit Time Tasks
	4.1 Splitable multiprocessor tasks
	4.2 Non-splitable multiprocessor tasks

	5 Monotone chains of multiprocessor unit time tasks
	6 Arbitrary Chains of multiprocessor unit time tasks
	6.1 Non-splitable tasks
	6.2 Splitable tasks

	7 Conclusion and Future work

