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Abstract With the advent of OpenFlow, the concept of Software-Defined
Networking (SDN) becomes much popular. In the past, SDN had often been
used for network virtualization; however, with the rise of OpenFlow, which
speeds up network performance by separating the control layer from the data
layer, SDN can be further used to manage physical network facilities. In recent
years, many researchers focus on using OpenFlow to substitute regular net-
works and look for adding value-added services with OpenFlow, such as the
load balancer or the Firewall. Currently, some OpenFlow controller providers
have already provided users with load balancer packages in their controllers
for virtual networks, such as the Neutron package in OpenStack; nevertheless,
the existing load balancer packages work in the old fashion that causes extra
delay since they poll controllers for every new coming connection. In this pa-
per, we use the wildcard mask to implement the load balance method directly
on switches or routers and add a user prediction mechanism to change the
range of the wildcard mask dynamically. In this way, the load balance mecha-
nism can be applied conforming to real service situations. In our experiment,
we test the accuracies of flow prediction for different predicted algorithms and
compare the delay times and balance situations of the proposed method with
other load balancers. With the popularity of cloud computing, the demand
for cloud infrastructure also increases. As a result, we also apply our load bal-
ance mechanism on cloud services and prove that the proposed method can
be implemented to varieties of service platforms.
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1 Introduction

Since 2008, Software-Defined Networking (SDN) has become more and more
popular. SDN is a new approach to handle data forwarding and control sep-
arately. We can use this architecture to manage network easily [19]. In SDN,
we can control a network which is mix physical switch and a virtual switch,
and we can send the policy to individual switch [17]. Many researchers focus
on services and applications derived from its concept on OpenFlow, on which
load balancing is one of the most valuable value-added services. Additionally,
to load balancing, there is other research such as big data with SDN [16] or
SDN-based wireless [18]. There are many method and mechanism to imple-
ment load balancing. With the advent of OpenFlow, which speeds up network
performance by separating the control layer from the data layer, SDN can be
further used to manage physical network facilities. Recently, many researchers
focus on using OpenFlow to substitute regular networks and look for adding
value-added services with OpenFlow, such as the load balancer or the Fire-
wall. Currently, some OpenFlow controller providers have already provided
users with load balancer packages in their controllers for virtual networks,
such as the Neutron package in OpenStack; nevertheless, the existing load
balancer packages work in the old fashion that causes extra delay since they
poll controllers for every new coming connection. In this paper, we use the
wildcard mask to implement the load balance method directly on switches
or routers and add a user prediction mechanism to change the range of the
wildcard mask dynamically. In this way, the load balance mechanism can be
applied conforming to real service situations. In our experiment, we test the
accuracies of flow prediction for different predicted algorithms and compare
the delay times and balance situations of the proposed method with other load
balancers.

In this study, we aim to forecast load balancing technique in Software
Defined Networked Cloud Services. Specific contributions are:

1. To propose wild-card prediction of network-load-balancing based on neural
networks and k-means machine learning techniques.

2. To conduct an extensive experimental evaluation based on real-world work-
load trace to prove the feasibility of the proposed method.

3. To test the accuracies of flow prediction for different predicted algorithms
and compare the delay times and balance situations of the proposed method
with other load balancers.

The rest of the paper presented as follows: Section 2 discusses the related
works. Section 3 explains the proposed system design and implementation.
Section 4 describes the experimental results and conclusions and future works
are drawn in Section 5.
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2 Related Work

For services in unstructured networks N. Handigol et al. [31] proposed an
effective load-balancing system that minimizes response time by controlling
loads on the network and servers using customized flow routing. H. Uppal
and D. Brandon [1] implemented a general load balancing architecture using
OpenFlow and test its performance. There is still load balance issue on those
researchers, and we will try to solve it in this work [33]. P. Wang, et.al. [34] im-
plemented Back-propagation Neural Network to Predict Bus Traffic. In their
paper, they found out the best network structure and parameters suiting to
bus traffic prediction using BPNN. S. Sharma et al. [8] used two recovery mech-
anisms, such as restoration and protection, to achieve recovery requirements
using OpenFlow. They found that a lot of time is consumed if the switch con-
tacts the controller too often; given this, they applied the Group Table function
provided in OpenFlow v1.1 to eliminate contacting the controller to modify
the flow entries. They also found that memory of the switch is not enough
to store flow entries if they increase without limit. To reduce the frequency
for accessing the controller and number of flow entries, we propose to allocate
servers use the wildcard mask, which is a mask of bits that indicate which part
of an IP address is available for examination. A wildcard mask can be thought
of as an inverted subnet mask. For example, a subnet mask of 255.255.254.0
(binary equivalent is 11111111.11111111.11111110.00000000) inverts to a wild-
card mask of 0.0.1.255. The mechanism can solve access frequency and many
flow entries issues. After surveying literature, we found similar research by R.
Wang et al. [20]. But those papers have an issue that they assumed a nonreal-
istic situation in which the clients uniformly come from all IP addresses. This
presumption causes some weak results. We try to find the solution to improve
this situation, such as done in [9]. Security in the advancing domain such
as software defined networks and cloud computing become a primary focus
[24][25][26][27]. In our work, we establish a prediction mechanism to predict
the traffic of future users. Using this mechanism, we can dynamically update
the wildcard rule and enhance load balancing all over the whole service [32].

3 System Design and Implementation

In this section, we will begin by presenting our system architecture, following
by design flow and the explanation of prediction mechanism used in our system.
With the details as follow:

3.1 System Architecture

We used the wildcard mask to implement load balance, and we also built a
prediction mechanism that predicts according to the network traffic. As shown
in Figure 1, individual user packet must go through the load balancer in the
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Fig. 1 General Load Balancing

general load balancing process. In this case, the load balancer needs to check
each packet no matter the packet is set to be dropped or accessed, and thus
extra time is spent to check the packet. Several researchers want to improve
this condition with OpenFlow. Some researchers use a mechanism to check
the first of packets and send the new flow entry to switch [2] [3] [7]. In other
words, it checks the first packet instead of the whole set of packets and thus
extra time is spent just at the first connection as shown in Figure 2. When a
new user accesses the virtual IP of service, OpenFlow finds it is a new flow
and asks the OpenFlow controller to determine a server to provide service for
this flow. The controller will send a flow entry to the OpenFlow switch. After
the switch updating the flow table, users do not need to ask the controller for
the service path at the next time.

Fig. 2 OpenDayLight and FloodLight Load Balance

Using the mechanism with OpenFlow like in [3,2], extra time is still spent
at the first connection. In the work of R Wang et al. [20], a new mechanism is
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established to reduce communication frequency for the controller. Before users
connecting to servers, a network wildcard is used to disperse source IP and
thus load balancing is achieved. This mechanism works like pre-configuration.
To obtain good experimental results, they assume their services clients come
from all range of IP in a uniform distribution. In the real world, it is difficult
to have all clients come uniformly from all IP addresses for service.

A. R. Curtis et al. [9] used a wildcard rule to implement load balancer.
They improve the time spent on the switch by implementing the wildcard rule
to let flow packets going to different ports by a round-robin method. They
reduce all flows coming from the control plane to improve the load balance
time. It points a new direction for load balancing and is a very worthy article.

All components in the infrastructure connected to the OpenFlow switch is
shown in Figure 3. In [22] not much difference on latency is found using the
general switch or OpenFlow switch. Thus, we did not test the effect of using
the OpenFlow switch or the general switch in the experiments. We combined
the prediction server and the OpenFlow controller on the same machine. The
prediction server also can move to another machine or cluster if wanted.

Fig. 3 System Architecture

As shown in Figure 4, we mirrored all clients’ traffic and stored those traffic
in the database called as the traffic database. Based on the network traffic, we
trained the model to predict the future client traffic ratios and stored them
in the database called as the prediction database. Afterward, those data were
applied to an algorithm to create flow entries that were sent to the controller
to update the switch flow table.

3.2 Design Flow

Our design consists of the client, server, and prediction module side. As shown
in Figure 5, we sent the default wildcard flow entry that allocates all range of IP
before the client users connecting to the server. When users past through the
OpenFlow switch, we used the OpenFlow mirror method to mirror all network
traffic from the client to the prediction server. We stored the network traffic
in the traffic database. We would train the model to predict the future client
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Fig. 4 Prediction Module Architecture

traffic ratios according to the traffic database with flow data stored between
the last time of check and this time. We used the computed results from the
prediction module to create a new wildcard flow entry command and sent it
to the controller. When the controller received this command, the controller
would update the flow entry on the OpenFlow switch. After the controller
updating the switch, the clients connecting to the server could send packets
through the new traffic path by our load balance mechanism.

Fig. 5 Dynamic Wildcard Load Balance

3.3 Prediction Mechanism

To predict how the user would access services in the future, we used a data
mining technique. Data mining is used in the analysis step of the Knowledge
Discovery in Databases (KDD) process. We wanted to find out user behaviors
via user traffic information. We used different prediction mechanisms to test
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our module. We applied classification to predict whether a user in the future
would access the switch and applied cluster analysis to cluster users of different
usages. We used a neural network method and K-Mean cluster to train data
and established an IP tree. We could forecast each IP appearance rate at the
next checking time. In other papers [21][10][13][23], we are experimenting an
approach based on a mixture of fuzzy logic and neural network, that offers
positive preliminary results, but are still not entirely implemented, so their
description is out of scope for this paper.

3.3.1 Neural Network

We used the back-propagation neural network (BPNN) in our mechanism. We
had four input nodes, three hidden nodes, and one output node as shown in
Figure 6. The first input is each IP’s percentage of possession at this time
calculated by the following equation:

Input1 =
IPi Bytes

Total Bytes
(1)

We get the ith user’s traffic in bytes and sum of traffic in bytes and divide them
at this check time set at 5 minutes of the experiment. For example, assume
user A traffic of 1000 bytes and the sum of traffic of 20000 bytes at this check
time, then Input1 will be 0.05. There would be large variations of numbers
if bytes of traffic are used; besides, the input of the neural network should
be between 0 and 1, so we use the proportion of bytes for traffic. The second
input is each IP’s percentage of packets at this time as the following equation:

Input2 =
IPi Packets

Total Packets
(2)

We get the ith user’s traffic packets and the sum of traffic packets and divide
them at this check time set at 5 minutes using Equation 1. The packets and
bytes are essential information for traffic, so we use these two inputs for data
mining. The third input is the occurrence time for each IP as the following
equation:

Input3 =
IPi appear time

Total check time
(3)

We get the ith user total access time in the past and get the entire check time
of the service. For example, user B accessed the service three times in the past
and the total check time of service is 10, then the Input3 will be 0.3. We want
to use this data to find out the user usage behavior. The last input is about
how often each IP appears as the following equation:

Input4 =
Tf

Tu − Tlu

Tf : interval time of checking

Tu : this checking timestamp

Tlu : the latest update timestamp on IPi

(4)
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We want to know how often each user access this service. We use the interval
time of checking to get a not too small value. For example, the interval time of
checking is 300 seconds and the last time user C accesses this service at 10 a.m.
If the check time is at 11 a.m., then Input4 will be 0.083. We chose three nodes
instead of two in the hidden layer because more nodes in the hidden layer will
cost more time (Table 1), and fewer nodes in hidden layer may result in errors.
The output node is the probability of appearance for each IP. According to
the output value, we can surmise each IP will access service in future, and
we will merge all IPs’ results and find the most suitable wildcard for the next
time. We used the Sigmoid function:

f(x) =
1

1 + e−x
(5)

on our hidden nodes and the output node.

Table 1 Different number of hidden nodes in BPNN spend time

Number of hidden nodes Number of IP Spend time with 5000 ecophs
3 1600 165 s
3 1680 169 s
4 1600 202 s
4 1680 208 s
6 1680 280 s
9 1680 384 s

Fig. 6 BPNN 4 input, 3 hidden, 1 output

3.3.2 Traffic Classification

Many researchers studied traffic classification [11]. In this work, we used ma-
chine learning techniques to build our prediction model. We collected client’s
packets and traffic size to establish our model. We referenced models of Er-
man et al. [28] and Williams et al.[12] to implement our prediction mechanism.
These two references classified protocols instead of network traffic; however,
in our mechanism, we used the K-Mean cluster for traffic classification.
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Clustering is the partitioning of previously unlabeled objects into dis-
joint groups, referred to as ”clusters,” such that objects within a group are
similar according to chosen criteria. Formally, our clustering dataset D =
{t1, t2, ..., tn} and the chosen number of clusters k, the task of clustering is to
define a mapping f : D → {1, 2, ..., k} where each flow is assigned to only one
cluster.

The goal of clustering is to group objects that are similar users. We used
the Euclidean distance to measure the similarity between two flow vectors fi
and fj :

sim(fi, fj) =

√√√√ n∑
k=1

(xik − xjk)2 (6)

In this work, we used the K-Means [30] algorithm. The K-Means algo-
rithm is one of the quickest and simplest algorithms for clustering and some
researchers also use K-Means for clustering of Internet flows [28,29]. The algo-
rithm begins by randomly choosing cluster centroids from within the training
sample. Our training data set are the same as used in the neural network, so we
will get a four-dimensional dataset and use simple Euclidean distance Equation
6 to assign the remaining instances to their cluster center. K-Means iteratively
computes new centers of the clusters that are formed and then repartitions the
flows based on the new centers. The complexity of the K-Means is O(knm)
where k is the number of clusters, n is the number of training flows, and m is
the number of iterations.

The first step in the K-Means is to choose value K. We choose four Ks and
test the spent time. In Table 2, we can see most time is spent when K = 25
and the time spent reduces when K is greater than 25. We think the reason
for this situation is due to the number of data set. In our programming, when
value K is larger than the number of data set, we will not execute K-Mean
clustering. According to Table 2, we choose 10 for value K.

Table 2 Different K in K-Mean spend time

K K-Mean cost average time(s) Data set average number
10 0.16224944753 104
25 0.31429123688 104
50 0.292544601609 104
75 0.279896007556 104
100 0.24670831782 104

After K-Means clustering, we sorted the cluster with the percentage of
bytes in this training. We define the value as the user usage rate by the result
of sorting as follows:

value =
i

K
, i ∈ {1, 2, ...,K} (7)

This value will be used on wildcard load balance builder to implement load
balance.
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3.3.3 Wildcard Load Balance Builder

The output of each prediction mechanism is stored in the prediction database
as shown in Figure 4. After the prediction process, the flow entries are estab-
lished. Our flow entries are finer than those used in R. Wang, [20] and numbers
of flow entries are less than those used in the OpenDayLight Load Balancer
[3]. We established a wildcard tree to record the predictive output value as
shown in Figure 8. Each node records sum of children value, and the leaf is
the output of each IP. This tree has five layers. The first layer is the root layer,
which records all predictive outputs and our algorithms do not consider these
value. The second layer spans the first 8-bit of the IP address, and it has 255
nodes. The third layer spans the second 8-bit of the IP address, and it has
255× 255 nodes. The fourth layer spans the third 8-bit of the IP address, and
it has 255× 255× 255 nodes. And the fifth layer is the full IP address, and it
has 255× 255× 255× 255 nodes. At first glance this tree is huge; however, we
need to use part of the tree in our experiments. In the real tests of services,
less than 100 nodes on the first layer and less than 4000 total number of IPs
are found to be used. We used algorithms to establish flow entries as shown in
Fig. 7.

Fig. 7 Flowchart of Wildcard Flow Entries

The detail of Pseudocode is shown in Algorithm 3.1. We obtained all data
for P that is an object, include IP array P.ip[] and IP predictive output value
P.ip[].val. In our algorithms, we also received the number of load balance
servers sp and loaded weight of each server w. To start the algorithms, we
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need to build a wildcard tree. After building the wildcard tree, we integrate
the tree: we remove the children nodes when parent node’s value is enough to
allocate to load balance servers. After integration, we sort this tree according
to predictive values, and then we assign the wildcard to load balance servers
in descending order with S-type. If there is extra IP traffic, we will assign IP
to the minimum load server. If there is one IP with traffic bigger than each
load balance server loading, we will assign a load balance server to provide
service for this IP only. After allocation, we will change those data array into
Ryu controller commands, and send those commands to web REST API of
the Ryu controller to control the OpenFlow switch.

Algorithm 3.1: Establish Wildcard Flow Entries(P, sp, w)

V ← SUM of P.ip.val
for i← 0 to length of P

do


if data.wildcardexsit
then

{
data.wildcard.val← data.wildcard.val + P.ip[i].val

else
{
data.wildcard.val← P.ip[i].val

for k ← 0 to length of data

do

{
if data.wildcard[k].val ≤ (V/sp) ∗ w
then

{
data.wildcard[k].childrens.remove()

SORT(data)
c← 0
x← 0
for j ← 0 to length of data

do



if c%2 = 0
then

{
flow[j%sp]← data.wildcard[j]

else
{
flow[(sp− j)%sp− 1]← data.wildcard[j]

x← x + 1
if x%sp = 0
then c← c + 1

CHANGE TO RESTAPI(flow)

4 Experimental Environment and Results

In this section, we describe our experimental methodology in 3 phases. First,
we depict our experimental environment including hardware and software.
Second, we present our experimental results consists of prior experiments,
prediction experiments, web service delay experiments, and load balancers
experiments. Finally, we discuss the experimental results and comparison of
four Different Methods of Load Balancing.
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Fig. 8 Part of Wildcard Tree

4.1 Experimental Environment

The setting of our experiment is divided as the client side, the server side, and
three testbeds. As shown in Figure 9, the clients connect to the server through
the OpenFlow switch that is implemented with a wildcard-based load balancer.
The client side consists of four groups, and each group has the unique behavior
pattern as shown in Table 3. First, we have the always online users group that
still connects to the server. Second, we have regular users group that connects
to the server at a regular time. For example, the department staff work between
8 a.m. to 6 p.m. and they may play an online game between 7 p.m. to 11 p.m.
after working hours, so those users connect to the company’s service between
8 a.m. to 6 a.m. and connect to the game service between 7 p.m. to 11 p.m.
regularly. Third, we have random users group which connects to the server at
random time. For example, many people have mobile phones and use the web
service such as Facebook on them. They could access web services any time
and any place instead of at a regular time. Last, we have new users group
which connects to the server at the first time. We predict future traffic based
on user’s traffic connected to the server in the past; however, services must
have new users, so we add this new users group in our experiment. In the
server side, we created load balance servers by OpenStack. We created eight
servers and compared the results of R. Wang [20].

We created 500 to 1000 IPs for each users group except the new user’s
group and selected 1 to 50 IPs from each group to connect to the server with
the time based on the behavior pattern of each users group. We also created
1 to 20 new IPs for the new users’ group. Each IP has 1 to 10 connections at
the same time, and each connection carries data with a random size. For the
server, we have the service port that responds to basic packets.

We had three testbeds. In the first testbed, we used Mininet [4] to simulate
all the server side, client side, and OpenFlow switch. As shown in Figure 9, we
simulated eight servers to implement load balancing. In the second testbed,
we implemented cloud services on the server side with OpenStack [5] and
established eight virtual machines as servers as shown in Figure 10. We used
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Table 3 The client side specification on experiment

Group type Group name Number of IP Used IP
Always online 100 to 200 1 to 25

Connected before Regular 100 to 200 1 to 25
Random 100 to 200 1 to 25

No connected before New 224 − 1 − 1500 to 224 − 1 − 3000 1 to 10

a physical OpenFlow switch to connect to cloud services, and all clients must
go through the physical switch for services. In the third testbed, we applied
the real web service’s traffic collected from our department, and we used those
data to replace data on the client side of the second testbed.

Fig. 9 Experiment Architecture

Fig. 10 VM Status in OpenStack

4.1.1 Hardware

In our experiment, we have implemented prediction mechanisms and databases
on the controller. Our cloud service was built on three physical machines as
shown in Table 4 and our client-side was another cloud service’s virtual ma-
chine. The physical switch used was Netgear M5300.
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Table 4 Hareware specification list

Target Number Specification
Controller and prediction
server

1 CPU: I7-990 @ 3.47GHz, 6core, RAM: 8GB,

Cloud hosts 3 HDD: 2TB
VM Servers 8 CPU: 2core, RAM: 1GB, HDD: 10GB
VM Clients 4 CPU: 2core, RAM: 2GB, HDD: 20GB
OpenFlow Switch 1 Netgear M5300-52G

4.1.2 Software

We implemented the prediction mechanism and load balancing builder in
Python. Our simulator used the Mininet, and we implemented OpenFlow
switch with OpenvSwitch for both physical and virtual switches. Our Open-
Flow controller used the Ryu controller because it is also applied in Python,
comes with RESTful API, and supports multiple versions of OpenFlow. All
used software versions are shown in Table 5.

Table 5 Software version list

Name Version Direction
OpenFlow 1.0.0 [6] Version 1.0.0 is enough for our load balancing

Ryu 3.8.0 Our controller provider
OpenvSwitch 2.1.0 Implement our OpenFlow switch

Mininet 2.1.0 Using to simulate virtual environment
OpenStack IceHouse Establish our cloud services

MySQL 5.5.37 Store our traffic and training data
Python 2.7.3 Implement our code

4.2 Experimental Results

4.2.1 Prior Experiments

Two preliminary experiments were performed in the first testbed, i.e., is the
virtual switch testbed. First, we tested the effect of enabling the mirror func-
tion. We created one to ten clients to ping the virtual IP which was to be
implemented with load balancing. To avoid the impact from updating the flow
table, we did not update wildcard rules during the test. As shown in Figure
11 to 13, the mirror function causes delays no matter how many numbers of
connections are used. Although enabling the mirror function will increase time
cost, it is indispensable for monitoring the network.

In the second preliminary experiment, we tested the effect of updating
the flow tables. We created two clients and set IP 10.0.0.5 to client1 and IP
10.0.0.14 to client2. We update the wildcard rule which was /24 to /32 every
ten seconds from 0 to 80 seconds. We then updated different destination server
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Fig. 11 Testing delay time for one connection

Fig. 12 Testing delay time for five connection

IPs every ten seconds from 90 to 110 seconds. At last, we updated both the
wildcard rule and destination server IPs every ten seconds from 120 to 170
seconds. In the mixed test, we updated wildcard rule which was /26 to /31.
Figure 14 shows that there is high latency at 29 and 39 second from both of
two clients, due to that fact that the wildcard rule /27 and /28 influenced
both two clients. At 56 second, only client2 was affected by the wildcard rule
/30, and at 66 second client1 was affected by the wildcard rule /31. As shown
in Figure 14, no perceivable effect comes from updating deferent destination
server IPs. At 136, 146 and 156 seconds, we updated both the wildcard rule
and destination server IPs. According to the above results, we can surmise
that the effect of updating the wildcard rule is more than that of updating the
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Fig. 13 Testing delay time for one connection

server IP. We used the script to send commands at above designated times
automatically, and it also causes some latency.

Fig. 14 Testing the effect of the update flow entries

4.2.2 Prediction Experiments

The first experiment is to test the prediction mechanism. In the experiments,
we tested BPNN and K-Means clustering and observed two kinds of users with
a low usage rate or high usage rate. The experiment was done on the second
testbed in which OpenStack is used in the server side used, and a physical
OpenFlow switch is used. In Figure 15, 16, 17, 18, the x-axis is hour in a day
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and the y-axis is user traffic proportion that represents the user usage rate on
this time. We obtained the user traffic proportion data at the first 5 minutes
of every hour, which is set since we consider that the web service usually
occupies a short period, and if the check time is too long, then the result
will be inaccurate. However, performing the BPNN algorithm to predict will
spend a lot of time so we cannot choose a shorter checking time. The y-axis is
BPNN output value as shown in Figure 15, 16. These output values define the
user usage rate on the next 5 minutes. From Figure 17, 18, the y-axis means
K-Means clustering value which is defined in Equation 7.

As shown in Figure 15, 16, the BPNN output value curve is almost equal to
the user usage rate. It means the BPNN prediction mechanism may not work
accurately. Thus, we think it is possible to get the similar load balance result
by using BPNN outputs and using traffic flows directly. Because of this, we
will add direct traffic flows in load balance experiments. As shown in Figure

Fig. 15 BPNN Predictive Result by Lower Usage User

17,18 the K-Means classification is more inaccurate than the BPNN prediction
mechanism for lower usage rate users and better than the BPNN mechanism
for higher usage rate users.

4.2.3 Web Service Delay Experiments

The second experiment compares service delays of our module, the OpenDay-
Light module, and the general load balancer. From Figure 19, the x-axis is the
test time, and its unit is second. We got the request time every second for one
minute. The y-axis is the web request delay time, and its unit is a microsec-
ond. We get this value from the log file of Apache service. From this file, we
can get every connection request time in microseconds. We used the BPNN
prediction mechanism in the test and used data of high usage rate users. Fig-
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Fig. 16 BPNN Predictive Result by Higher Usage User

Fig. 17 K-Mean Classification Result by Lower Usage User

ure 19 shows that performances of our module and OpenDayLight module are
better than that of the general load balance service and our module has better
performance than the OpenDayLight module at the first connection. For the
OpenDayLight module, the first flow of each IP needs to ask the controller to
know which server to provide service for it and then adds or updates the flow
entry to the OpenFlow switch. As shown in Table 6, the OpenDayLight adds
flow entries for each IP, and our module uses about 100 flow entries for 2000
IPs with the wildcard.

4.2.4 Load Balancers Experiments

The last experiment tests performance of our load balancer by the realistic
data. We compare results of our modules using three different prediction mech-
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Fig. 18 K-Mean Classification Result by Higher Usage User

Fig. 19 Three Different Load Balance Request Time

Table 6 OpenDayLight Load Balancer and Wildcard Flow Entries Comparison

Modules Number of flow entries Number of IP
OpenDayLight 2000 2000

Wildcard 100 2000

anisms and the load balancer proposed by R. Wang [20]. We used the third
testbed that uses real web services to test the load balancers. From Figure 20,
21, 22, 23, the x-axis represents the time in hours during April 12, 2013. The
y-axis is the web network traffic, and the y-axis is the extra IP occurring rate.
Each stack of bars means the flow assigned to each server. In this experiment,
we resend all traffic during April 12, 2013. Our prediction mechanism uses
training data collected from April 1, 2013, to April 11, 2013.
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The load balancer of R. Wang et al. [20] just used four load-balanced servers
in this experiment as shown in Figure 23. That means the real web service’s
clients only come from four kinds of wildcard rules defined by them. Figure 20,
21, 22 show our module can assign traffic to each server at some point and the
best mechanism is load balance by bytes usage. We also found that the lower
the extra IP occurrence rate is, the better our module performs. If the extra
IP occurrence rate is too higher, the OpenDayLight module will outperform
our module. We did not compare the performance of the general load balance
service and OpenDayLight load balancer because they use more time delay to
exchange for more load balance. However, our module is established with the
aim to reduce delay time.

Fig. 20 Load Balance by Bytes Usage

4.3 Discussion

From the experimental results, we find that much delay is caused by updating
flow entries. Thus, we must reduce the number to update flow entries. In
the last experiment, the higher the extra IP occurrence rate is, the higher the
entry updating frequency is. We plot the balance deviation of the four different
methods used in the experiment in Figure 24. We can find our methods perform
better than the load balancer of R. Wang et al. [20] and the load balance
by bytes gives best results. We also combined the extra IP proportion from
Figure 20, 21, 22, 23 as shown in Figure 25. We can find that performance of
the load balancer of R. Wang et al. [20] is best and that of the load balance
by bytes is second. From above two comparisons, we can find modules without
prediction methods perform better than modules with prediction methods.

There are two issues in our module. The first issue is that prediction mech-
anism is not precise enough. Thus, we cannot uniformly assign flows. Figure
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Fig. 21 Load Balance by BPNN

Fig. 22 Load Balance by K-Mean

24, 25 show that methods without prediction are better than methods with
prediction. The second issue is that we cannot properly handle IP with sud-
denly large flow. In the experiment using real service data, it did include this
condition, so we did not see it occur. In the future, we will try to solve these
two issues.

Some methods can be included to improve our module. We can get packet
data bit or TCP flag to determine if there is incoming packet at the next time.
No packet data bit or TCP flag included in the specification of OpenFlow [6],
but we can get that information by OpenvSwitch. In this work, we only used
OpenFlow, so we did not add this policy to our module. We also can record
web paths when users access. According to this information, we can improve
the accuracy of the prediction mechanism. However, above information is too
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Fig. 23 Load Balance by Wildcard Only

Fig. 24 Compare Four Different Methods on Balance

detailed if we want to design a module that can perform load balance for the
variety of services instead of only for the web service. Thus, we focus on L2,
L3 information of flow packet in this work.
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Fig. 25 Compare Four Different Methods on Extra IP Proportion

5 Conclusions and Future Work

5.1 Concluding Remarks

We establish an OpenFlow load balance module, which use different data min-
ing algorithms based on neural networks and k-means to predict the future
user traffic. In this work, we consider the problem of the delay on the general
load balance service and the number of flow entries on the OpenFlow switch.
We establish a new load balance module with OpenFlow and some data min-
ing algorithms. In our experiments, we succeed in reducing average the web
request time and the number of flow entries. In addition to above contribu-
tion, we also test the delay time using the mirror function with OpenFlow
and updating wildcard rule on the OpenFlow switch. From the experimen-
tal results, we found our module is faster than the general load balancer and
OpenDayLight load balancer. We compared results of our modules using three
different prediction mechanisms: Load Balance by Bytes Usage, Load Balance
by BPNN, Load Balance by K-Mean, and Load Balance by Wildcard Only.
From this comparison, we can see our module can assign traffic to each server
at some point, and the best mechanism is load balance by bytes usage. We
also found that the lower the extra IP occurrence rate is, the better our mod-
ule performs. If the extra IP occurrence rate is too higher, the OpenDayLight
module will outperform our module.

5.2 Future Work

The prediction mechanism of the proposed load balancer in this work still have
some unsolved issues as follow:
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– We will test more data mining techniques such as the fuzzy neural network
[21] [10], and the decision tree [12]. Additionally, we will consider more data
set. After improving our load balance module, we will continue researching
for more applications using OpenFlow such as high availability or to be
part of a firewall.

– We also can integrate power-saving method [14] [35] [36] in our modules.
We will integrate those OpenFlow applications for ARM based cluster in
which every individual ARM machine is inefficient and heavy of network
requirement. The ARM based cluster is power efficient, and it will be able to
improve performance, reduce the burden, and improve overall performance
after clustering [15] and integrating with OpenFlow applications.

– We had also tried to combine the fuzzy logic with the neural network to
form a fuzzy neural network [21][10][13][23] but not yet finishing its im-
plementation. We would use traffic classification to cluster different usage
users by user traffic and allocate flows to different servers accordingly. We
wanted to observe the effects of load balance by using different data min-
ing techniques with reduced calculate times, rather using a neural network
since it needs spending the relatively long time to train.
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