
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

XDN: Cross-Device Framework for Custom Notifications Management / Corno, Fulvio; DE RUSSIS, Luigi; Montanaro,
Teodoro. - STAMPA. - (2017), pp. 57-62. (Intervento presentato al convegno The 9th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems tenutosi a Lisbon (Portugal) nel June 26-29, 2017)
[10.1145/3102113.3102127].

Original

XDN: Cross-Device Framework for Custom Notifications Management

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3102113.3102127

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2673059 since: 2017-10-06T11:12:59Z

ACM

XDN: Cross-Device Framework for Custom
Notifications Management

Fulvio Corno
Politecnico di Torino

Corso Duca degli Abruzzi, 24
Torino, Italy 10129

fulvio.corno@polito.it

Luigi De Russis
Politecnico di Torino

Corso Duca degli Abruzzi, 24
Torino, Italy 10129

luigi.derussis@polito.it

Teodoro Montanaro
Politecnico di Torino

Corso Duca degli Abruzzi, 24
Torino, Italy 10129

teodoro.montanaro@polito.it

ABSTRACT
As notifications become part of people’s lives, their impor-
tance often depends on various factors that can influence
the reaction and the disruption of recipients. The genera-
tion and the distribution of notifications should be carefully
designed every time a new application or smart device is de-
vised. This paper presents XDN (Cross Device Notification),
a framework to assist developers in creating cross-device
notifications by scripting. XDN provides a set of high-level
APIs, based on JavaScript, for designing personalized notifica-
tions to be distributed among ad-hoc sets of end-user devices.
Developers are also supported in implementing and testing
notification strategies thanks to an integrated environment.
We present a use case to demonstrate the functionality and
the applicability of the framework.

CCS CONCEPTS
• Human-centered computing → Interactive systems
and tools; • Software and its engineering → Develop-
ment frameworks and environments;

KEYWORDS
Cross-Device, Framework, Notifications, Developer, API

ACM Reference format:
Fulvio Corno, Luigi De Russis, and Teodoro Montanaro. 2017. XDN:
Cross-Device Framework for Custom Notifications Management.
In Proceedings of EICS ’17, Lisbon, Portugal, June 26-29, 2017, 6 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EICS ’17, June 26-29, 2017, Lisbon, Portugal
© 2017 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
During the last decade, the presence of notifications in peo-
ple’s routines has grown, with the aim of facilitating their
lives. Although people are becoming accustomed to notifica-
tions, the usefulness and the importance of each notification
often depends on various factors that can influence the reac-
tion and the disruption of recipients. According to Seshadri
et al. [6], in fact, even though providing individuals with
relevant information is an essential element in facilitating
their activities, the challenge for developers is “to provide
information in a desired manner notwithstanding vast differ-
ences in individuals’ information and delivery preferences”.
For this reason, the influence brought by notifications on
users should be taken into account by developers in order
to “deliver timely and personalized information on whatever
suitable device is available and accessible” [6]. In this way
developers will be able to increase the efficacy of both the
generation and the distribution of notifications and bring,
at the same time, a consequent alteration of user reaction
(e.g., a reduction of the recipient annoyance). Furthermore,
the Internet of Things (IoT) is also gaining importance in
the notification context. The growing spread of the IoT is
introducing new devices every day and “the ongoing wave
of smart devices makes it possible to reach the user through
multiple devices at once, amplifying the effects of notifica-
tions” [7]. Even though it is necessary to personalize noti-
fications to differently handle important notifications and
unimportant ones, it is also important to develop strategies
able to transform the disadvantages of receiving the same
notification on multiple devices into advantages. A contribu-
tion in this challenge could be brought by the application of
the cross-device approach [2] to notifications, i.e., extending
an application user experience across multiple devices.
This paper presents XDN (Cross Device Notification), a

framework that assists developers in designing personalized
notifications to be distributed among ad-hoc networks of
mobile and/or IoT devices.With XDN, developers can explore
and evaluate different design alternatives at reduced cost and
time. The framework is composed of two main parts: 1) the
XDN library that implements a set of high-level APIs to create

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

EICS ’17, June 26-29, 2017, Lisbon, Portugal F. Corno et al.

cross-device JavaScript algorithms and rapidly generate and
distribute cross-device notifications among available mobile
and/or IoT devices; and 2) the XDN GUI that provides a)
an IDE for allowing developers implement and test their
algorithms and b) a simulator that shows devices behavior
when a new notification arrives.

2 RELATEDWORKS
Framework for customizing or distributing
notifications
Notifications have been extensively treated in the literature,
but only a few works provide developers with the possi-
bility of customizing notifications and/or their distribution.
An interesting work able to smartly distribute notifications
among different IoT devices is proposed by Kubitza et al. [5].
They present an infrastructure for homes and offices that
enables developers to design and deploy context sensitive
notification strategies using arbitrary things and smart home
products connected to their meSchHub gateway. In the pro-
posed infrastructure, the notifications received on the user
smartphone are sent to themeSchHub gateway that forwards
them according to interaction scripts pre-defined by design-
ers. According to the provided description, the meSchHub
system lacks, at first, a support for cross-device distribution
of notifications. Lastly, it lacks a simulator: developers are not
allowed to test their interactions scripts on devices that are
not physically owned. In addition, the meSchHub system is
limited to the environment in which the gateway is installed
and in which the user is currently present. Another interest-
ing related work is the patent proposed by Seshadri et al. [6]
that presents a system and a methodology to facilitate the
development, debug, and deployment of a notification plat-
form application. According to their description, the system
only allows the interaction with configuration files, without
providing a GUI for simulating the designed algorithms. In
addition, it does not support neither any cross-device inter-
action, nor IoT devices.
In addition to the solutions found in literature, develop-

ers can use various existing commercial frameworks and/or
APIs for the development of mobile/IoT applications. As
an example, Apple provides the UserNotifications and the
UserNotificationsUI frameworks to let developers customize
notifications in their applications, and Google provides a sim-
ilar solution for Android devices. However, some drawbacks
emerge by analyzing the documentation provided for both
solutions. First of all, it is not currently possible to develop
cross-device strategies for distributing notifications. Second,
apart from few supported smart TVs, these solutions do not
consider other IoT devices. Third, they are strictly limited to
the development of applications for specific platforms. Thus,
if a notification strategy is developed for a platform (e.g.,

Android) it is not easy to export and use it in other platforms.
Finally, they do not allow the simultaneous simulation of
different devices to test the designed notification strategy on
all the target devices.

Cross-device notifications
The development of cross-device applications has already
been applied in different domains to solve different problems
(e.g., [1, 2]), but only a limited number of works are devoted
at the generation and/or the cross-device distribution of no-
tifications among different devices. Horvitz et al. [3] present
the Notification Platform, a cross-device messaging system
that modulates the flow of messages from multiple sources
to other devices by performing ongoing decision analyses.
Specifically, it balances the costs of disruption with the value
of information from multiple message sources. The system
employs a probabilistic model of attention and executes on-
going decision analyses about ideal alerting, fidelity, and
routing. Campbell et al. [4], instead, present some techniques
for cross-device notifications. Authors start from the consid-
eration that a notification could be missed due to any reason
(e.g., because the smartphone is in a bag) and, even though
other devices are in use, the user remains unaware about it.
They propose a solution that involves available devices to
allow user to be warned about incoming notifications. The
main contribution of presented works is related to the possi-
bility of distributing cross-device notifications among mobile
devices. In our work, we embrace the same approach but
we extend it to IoT devices. Likewise, one of the most inter-
esting works that support cross-device interactions among
mobile devices is the Chord [1] framework. It provides a
set of high-level APIs, based on JavaScript, for developers
to easily distribute UI output and combine sensing events
and user input across mobile and wearable devices. It also
contributes an integrated authoring environment for devel-
opers to program and test cross-device behaviors, and when
ready, deploy these behaviors to its runtime environment on
users’ ad-hoc network of mobile devices. Chord is mainly
designed to assist the implementation of cross-device inter-
actions and it does not give any support for notifications nor
for IoT devices. However, the cross-device nature of Chord,
its ease of use, and its linear data structure, guided us to
develop XDN to be compatible with Chord so that it could
be possibly integrated as a future extension.

3 REQUIREMENTS
We identified two high-level requirements for a cross-device
notifications framework. The first one (API, R1-R3) aims at
reducing repetitive code and encouraging rapid development
of algorithms for customizing and distributing notifications.
The latter (GUI, R4-R7) regards the need of having a graphical

XDN: Cross-Device Framework for Custom Notifications Management EICS ’17, June 26-29, 2017, Lisbon, Portugal

interface to develop and then test such algorithms in an
environment able to simulate the arrival of one or more
notifications.

R1. Access to notifications content One of the most
complete cross-device solution for developers found in liter-
ature is Chord. However, it is not natively able to manage
notifications, their properties, and all the specific mobile/IoT
devices’ features that could be used by developers to warn
the user about the arrival of a notification (e.g., turn on a
LED or make it blink). Consequently, XDN should provide
developers with the possibility of accessing notifications’
content, together with other related information: date and
time of receipt, generator and, if available, icon.

R2.Multi-platformAlthough different existing solutions
(e.g., development of an app through Android Studio) let de-
velopers customize notifications and/or their distribution,
they mainly allow the creation of software that is limited to
some specific devices (e.g., Android devices). XDN should
allow the development of scalable notification strategies that
could be easily exported on different platforms.

R3. Support for IoT devicesNowadays, with the increas-
ing spread of the IoT, new smart devices and appliances are
developed everyday with the ability to show notifications.
Consequently in addition to existing mobile devices, the
XDN framework should support existing IoT devices.

R4. Editor With the aim of supporting developers in im-
plementing their algorithms using the XDN APIs, the XDN
framework should provide a graphical editor that guides
developers in the correction of programming errors.

R5. Support for loading predefined use cases XDN
should provide some sample scenarios composed by different
devices, their properties, and their corresponding current
statuses (i.e., the current values assumed by each property).
The devices’ properties (as defined in a device portfolio) and
the devices’ statuses should be provided separately, so that
the same device could have different statuses for the tests.

R6. Simulator XDN should provide a simulator able to
simulate the arrival of a notification. The simulator should
graphically show the behavior of predefined devices running
the defined code.

R7. Notifications definition XDN should provide an
easy way to load “test” notifications from existing developer-
defined external files. In addition, some predefined notifica-
tions could be provided in the GUI to be used as examples.

4 USE CASE: STRATEGY VIDEOGAME
Before presenting the XDN framework, we introduce a use
case that will be used as an example in the next sections.
John is developing a strategy videogame for smartphones
and he wants to specify different behaviors for his game.
The behaviors mainly depends on two different kinds of

Figure 1: High level blocks that compose the XDN frame-
work

information that can be generated: the INFO notifications
should inform the user about the progresses of her virtual
world, and the WARN notifications should inform the user
about the necessity of his intervention in the game. John de-
signed the system to select all the smartphones as recipients
of an “INFO” notification. The notification content will be
shown on all the smartphones and the smartphones led will
be made blink with green color. For the “WARN” notifica-
tions, instead, John decided that smartwatches will be the
preferred devices for informing the user. However, if all the
smartwatches have the volume to 0, the smartphones will
be used to play a warning sound.

5 FRAMEWORK
The architecture of the framework (Figure 1) is composed
of two main blocks: the XDN library and the XDN GUI. The
XDN library provides all the classes, methods, and objects
to facilitate the creation of algorithms able to customize and
distribute cross-device notifications. In addition, it provides
all the methods used by the GUI to simulate the behavior
of the devices while new notifications arrive. On the other
hand, the XDN GUI provides all the graphical tools to easily
interact with the XDN library. The XDNGUI, in fact, provides
a web-based user interface that allows developers to:

• write their JavaScript algorithms or load them from
an existing developer script;

• define or load a devices set to be used during the sim-
ulations;

• define or load a list of notifications used during the
simulation as arriving notifications;

• run the simulation, to simulate the arrival of notifica-
tions showing the behavior of all the available devices;

• visualize the behavior of all the loaded devices during
the simulation.

A devices set is composed of some devices’ properties (de-
fined in a devices portfolio) that are static and represent the

EICS ’17, June 26-29, 2017, Lisbon, Portugal F. Corno et al.

device capabilities, and the corresponding current devices’
statuses, that represent the current values assumed by each
device’s property.

Framework GUI. John, the developer of our use case, wants
to develop a strategy videogame and, after the design phase,
he decides to use the XDN framework to implement the
notification manager of his game. As a first step, he con-
nects to the web-based XDN GUI (Figure 2) and, looking
at the documentation, he starts from the selection of the
devices a user will supposedly use during the gameplay. He
can choose between two options: select one of the existing
set of devices provided in the XDN GUI or create a new set
of devices by himself. He decides to choose the first option
and he selects and loads the predefined set of devices (i.e.,
a smartphone and a smartwatch). He is sure that all the de-
vices were successfully loaded because they appeared in the
column of simulated devices (column “Device Set”, letter B
in Figure 2). Now it is time to write the code he will integrate
in his application. He can do it by using the editor present
in the GUI, located in the left column (letter A). After creat-
ing the algorithm, John wants to test it using the simulator
included in the XDN framework. He has to perform three
actions: a) load the statuses of the available devices by using
the buttons present at the top of column marked with letter
B, b) load the list of notifications with which he wants to
test the algorithm, by using the buttons present at the top of
the column marked with letter C and, c) run the simulation
using the Run code button located at the top of the editor
(letter A). When all these actions are performed, John will
see all the updated statuses in the central column dedicated
to simulated available devices (letter B) and will be able to
analyze the list of all the performed actions (in sequence) in
the log section (letter D).

Framework API. The XDN APIs provide a set of clearly
defined methods that allow developers to customize and
distribute cross-device notifications by reducing repetitive
code. They are based on two main objects: xdn.notification
and xdn.device.

xdn.notification implements the Notification sub-object
and provides the notification handler interface. The Notifica-
tion sub-object represents a single notification and contains
all the properties reported in the Table 1. Instead, the noti-
fication handler interface is responsible for intercepting the
incoming notifications with the aim of performing the action
specified by the developer in the handler implementation.
Consequently, all the code implemented by John to customize
and distribute arriving notifications should be written as a
notification handler implementation. A snippet of the code
needed by John to log the content of the received notification
is shown in Listing 1, as an example.

Table 1: Notification properties

Property Type

dateTime date and time of notification receipt
content the content of the notification
generator the generator of the notification
icon the optional icon associated to the notification

xdn . n o t i f i c a t i o n . o nNo t i f i c a t i o n (function (
myNo t i f i c a t i o n) {

var con t en t = myNo t i f i c a t i o n . c on t en t ;
xdn . l og (c on t en t) ;

})
Listing 1: Log notification content

The xdn.device object implements all the classes, sub-
objects and methods needed by developers to interact with
available devices. The two main sub-objects provided by
the xdn.device objects are Device and DeviceSelection. The
Device sub-object represents a single device and contains all
its properties and all its statuses. Instead, the DeviceSelection
sub-object contains all the methods and functions applicable
for a) searching and filtering across a set of devices, and b)
perform actions on one or more selected devices.

The Device properties can be divided between static prop-
erties and the corresponding statuses: even though the frame-
work is designed to import them separately (the XDN GUI
asks separately for a set of devices’ portfolios, the static prop-
erties and a set of devices’ statuses), they are treated as a
unique object and contained in each instance of “Device”.
Each property will be assigned to each device depending
on its nature. For example, if John is using a tablet, it will
have for sure a display and a speaker, consequently the prop-
erties display and speaker will be specified in the Device
object. In addition, these properties could have one or more
sub-properties (e.g., a display has a size sub-property). All
the possible properties and sub-properties of a device are
listed in Table 2 in the Property and Sub-Property columns.
Instead, all the status properties and sub-properties are listed
in Table 3. In both tables, name is the unique identifier.
Before interacting with devices it is necessary to select

them with one of the methods listed below. According to
the specified criteria they return a DeviceSelection object
containing the desired Device objects.

• xdn.device.select: returns a list of Device objects that
satisfy the specified criteria (e.g., the code xdn.device.-
select(’deviceType=="smartwatch"’) returns all
the smartwatches);

• xdn.device.selectWith: returns a list of Device objects
that has the specified property (the property is set);

• xdn.device.selectAll: gets all the devices;

XDN: Cross-Device Framework for Custom Notifications Management EICS ’17, June 26-29, 2017, Lisbon, Portugal

Figure 2: Screenshot of the XDN GUI

Table 2: Device properties

Property SubProperty

name -
deviceType [smartphone, smartwatch, bracelet, smart-

Light, tablet, PC, fridge, hi-fi, smartTv, carHi-
fi]

display size, privacy: [high, normal, low], touch: [true,
false]

speaker privacy: [high, normal, low]
light colors, intensity: [true, false], frequency: [true,

false], blink: [true, false]
vibration [true, false]
os -

Table 3: Device statuses

Property SubProperty

name -
isAvailable [true, false]
display currentStatus: [on, locked, off]
speaker currentVolume, currentStatus: [playing, off]
light currentStatus: [on, off, blinking], currentIn-

tensity, currentColor
vibration currentStatus

• xdn.device.getDeviceName: returns the Device object
with the specified name (deviceName property set to
the specified name)

• xdn.device.not: returns all the Device objects that does
not satisfy the specified criteria. This method is used
to exclude one or more devices, e.g., if Johnwants to ex-
clude all the smartwatches: xdn.device.not(’device-
Type=="smartwatch"’).

Table 4: Device actions

Enabling property Action

display .show
speaker .play, .ring
light .on, .off, .changeColor, .changeIn-

tensity, .blink
vibration .vibrate

These methods can be concatenated with a “fluent” pro-
gramming pattern, so that only the Device objects satisfying
all the specified criteria are selected. Thus, if John wants to
select all the smartphones that are available he can use the
following snippet:

xdn . d e v i c e . s e l e c t ('deviceType ==" smartphone"'
) . s e l e c t ('isAvailable ==true')

Table 4 summarizes all the actions that it is possible to
perform on each selected device. It is important to note that
the available methods can be used only if the corresponding
property (reported in the column “Enabling property”) is
defined for the specific device. For example, it is possible to
turn the light on with the action .on only if a light property is
specified for the device. The final algorithm written by John
to implement the designed behavior of his strategy game is
available at https://elite.polito.it/files/xdn/strategyGame.js.

6 IMPLEMENTATION
The XDN framework consists of both a backend server and
a frontend user interface. The backend server is a web appli-
cation based on Node.js and jQuery and was packaged by

https://elite.polito.it/files/xdn/strategyGame.js

EICS ’17, June 26-29, 2017, Lisbon, Portugal F. Corno et al.

NW.js1 (previously known as node-webkit) to become a na-
tive application. It serves different purposes: a) it maintains
and exposes the XDN library with its methods and classes, b)
it hosts the predefined Device sets and Notifications’ samples
defined in JSON format, c) it provides the methods needed to
load and/or store developer-defined scripts, device sets and
notifications, and d) it provides the methods used by the GUI
to simulate the arrival of a notification. A developer inter-
acts with the frontend application which includes the web
IDE and the simulator interface. The frontend application
was built upon ace2, an embeddable code editor written in
JavaScript, jQuery, and Bootstrap.

7 PRELIMINARY EVALUATION AND DISCUSSION
The emphasis of the preliminary analysis has been put on the
actual advantages and disadvantages that the XDN frame-
work could provide for developers. The analysis was con-
ducted through the development of the “Strategy Videogame”
use case and it was performed by the authors of the paper.
Specifically, the use case was implemented using the XDN
GUI in 12 minutes and only 21 lines of code were necessary
to implement it. In addition, writing code to select devices
or to access notification content took only a few lines of
code and a few minutes. Instead, more time was needed to
differentiate the different behaviors required by the use case.
In the Requirements section, two different high-level re-

quirements were presented. The first one regarded the de-
velopment of a library able to reduce repetitive code and
encourage rapid development of algorithms aimed at cus-
tomizing and distributing notifications. Looking at the lines
of code needed to develop the described use case reported,
we can claim that this first requirement was satisfied. If, in
fact, we could recreate the same notification strategies with-
out using XDN, we would implement all the code needed to
select all the devices, check for the existence of the proper-
ties, check for the current statuses, and finally select only the
devices that satisfy the specified criteria. Instead, by using
XDN, only one line of code was needed to do all the de-
scribed procedures, and only a few other lines of code were
necessary to perform the desired actions on the selected de-
vices. Furthermore, we can claim that the designed GUI is
able to satisfy all the low-level requirements of the second
high-level requirement (GUI). The presence of an editor, a
log, a module to load devices’ portfolios and statuses, a mod-
ule to load notifications, and the possibility of running the
simulation could, in fact, motivate developers in using the
framework for their applications.

Finally, we identified a challenge regarding the XDN API
and, specifically, the two Device and DeviceSelection objects.
1https://nwjs.io/, last visited on January 15, 2017
2https://ace.c9.io/, last visited on January 15, 2017

JavaScript developers are typically accustomed to use objects
and their properties through variables. However, XDN does
not allow a direct access to devices and their statuses: it is
necessary to use theDeviceSelection object and its methods to
access, filter, search and/or drive them. This abstraction could
be difficult to understand by developers, but it is necessary
for the future enhancements in which real devices will be
driven through the framework.

8 CONCLUSIONS
This paper proposed a framework for developers to create
and distribute cross-device notifications by scripting. XDN
provides a) a set of high-level APIs and b) a web-based in-
tegrated GUI for creating algorithms able to manage cross-
device notifications. The GUI also allows the simulation of
the devices’ behavior when new notifications arrive. By using
a use case as a running example, all the components of the
framework were presented and explained. To demonstrate
the functionality and the applicability of the framework, the
proposed use case was actually implemented. The evaluation
revealed some challenges that will be addressed in future
works, together with a more complete evaluation with users.

REFERENCES
[1] Pei-Yu (Peggy) Chi and Yang Li. 2015. Weave: Scripting Cross-Device

Wearable Interaction. In Proceedings of the 33rd Annual ACMConference
on Human Factors in Computing Systems (CHI ’15). ACM, 3923–3932.
https://doi.org/10.1145/2702123.2702451

[2] Peter Hamilton and Daniel J. Wigdor. 2014. Conductor: Enabling
and Understanding Cross-device Interaction. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (CHI ’14).
ACM, New York, NY, USA, 2773–2782. https://doi.org/10.1145/2556288.
2557170

[3] Eric Horvitz, Carl Kadie, Tim Paek, and David Hovel. 2003. Models
of Attention in Computing and Communication: From Principles to
Applications. Commun. ACM 46, 3 (March 2003), 52–59. https://doi.
org/10.1145/636772.636798

[4] M. C. Koss, J. Dewitt, K. J. Messerly, and D. Titov. 2015. Cross-Device
Notifications. (December 2015). US Patent US 2015/0373089.

[5] Thomas Kubitza, Alexandra Voit, Dominik Weber, and Albrecht
Schmidt. 2016. An IoT Infrastructure for Ubiquitous Notifications
in Intelligent Living Environments. In Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Comput-
ing: Adjunct (UbiComp ’16). ACM, New York, NY, USA, 1536–1541.
https://doi.org/10.1145/2968219.2968545

[6] P. Seshadri, S. Abileah, N. Nilakantan, H. Knight, S. Pather, R.H. Gerber,
C.T. Mensa-Annan, P. Garrett, M.A. Faoro, and D.O. Lavery. 2008. User
interface system and methods for providing notification(s). (April
2008). US Patent 7,360,202.

[7] Dominik Weber, Alireza Sahami Shirazi, and Niels Henze. 2015. To-
wards Smart Notifications Using Research in the Large. In Proceedings
of the 17th International Conference on Human-Computer Interaction
with Mobile Devices and Services Adjunct (MobileHCI ’15). ACM, New
York, NY, USA, 1117–1122. https://doi.org/10.1145/2786567.2794334

https://nwjs.io/
https://ace.c9.io/
https://doi.org/10.1145/2702123.2702451
https://doi.org/10.1145/2556288.2557170
https://doi.org/10.1145/2556288.2557170
https://doi.org/10.1145/636772.636798
https://doi.org/10.1145/636772.636798
https://doi.org/10.1145/2968219.2968545
https://doi.org/10.1145/2786567.2794334

	Abstract
	1 Introduction
	2 Related Works
	Framework for customizing or distributing notifications
	Cross-device notifications

	3 Requirements
	4 Use case: Strategy videogame
	5 Framework
	6 Implementation
	7 Preliminary evaluation and discussion
	8 Conclusions
	References

