Skip to main content

Advertisement

Log in

Efficient routing for corona based underwater wireless sensor networks

  • Published:
Computing Aims and scope Submit manuscript

Abstract

The imbalance energy consumption and high data traffic at intermediate nodes degrade the network performance. In this paper, we propose: energy grade and balance load distribution corona, EG without corona and DA without corona based schemes to distribute data traffic across the network nodes for efficient energy consumption. The dynamic adjustment of transmission range in first scheme helps in reducing data load. Additionally, the transmission range is purely based on distance, energy and data load of the receiver node for achieving maximum network lifetime. Second scheme divides a data packet into three fractions; small, medium and large for transmitting from various paths to evenly distribute the data load on the network nodes. In third scheme, depth adjustment of void node is performed to resume network operations, whereas, the load distribution and transmission range mechanisms are the same. The extensive simulations are carried out to show the effectiveness of proposed schemes in terms of PDR, energy consumption, and load distribution against the baseline scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Azam I, Javaid N, Ahmad A, Abdul W, Almogren A, Alamri A (2017) Balanced load distribution with energy hole avoidance in underwater WSNs. IEEE Access 5:15206–15221

    Article  Google Scholar 

  2. Latif K, Javaid N, Ahmad A, Khan ZA, Alrajeh N, Khan MI (2016) On energy hole and coverage hole avoidance in underwater wireless sensor networks. IEEE Sens J 16(11):4431–4442

    Article  Google Scholar 

  3. Yu H, Yao N, Wang T, Li G, Gao Z, Tan G (2016) WDFAD-DBR: weighting depth and forwarding area division DBR routing protocol for UASNs. Ad Hoc Netw 37:256–282

    Article  Google Scholar 

  4. Zidi C, Bouabdallah F, Boutaba R (2016) Routing design avoiding energy holes in underwater acoustic sensor networks. Wirel Commun Mob Comput 16(14):2035–2051

    Article  Google Scholar 

  5. Li Z, Yao N, Gao Q (2014) Relative distance based forwarding protocol for underwater wireless networks. Int J Distrib Sens Netw 10(2):173089

    Article  Google Scholar 

  6. Kong L, Ma K, Qiao B, Guo X (2016) Adaptive relay chain routing with load balancing and high energy efficiency. IEEE Sens J 16(14):5826–5836

    Article  Google Scholar 

  7. Liu G, Wei C (2011). A new multi-path routing protocol based on cluster for underwater acoustic sensor networks. In: 2011 International conference on multimedia technology (ICMT). IEEE, pp 91–94

  8. Yan H, Shi ZJ, Cui JH (2008) DBR: depth-based routing for underwater sensor networks. In: International conference on research in networking. Springer, Berlin, pp 72–86

  9. Luo H, Guo Z, Wu K, Hong F, Feng Y (2009) Energy balanced strategies for maximizing the lifetime of sparsely deployed underwater acoustic sensor networks. Sensors 9(9):6626–6651

    Article  Google Scholar 

  10. Cao J, Dou J, Dong S (2015) Balance transmission mechanism in underwater acoustic sensor networks. Int J Distrib Sens Netw 11(3):429340

    Article  Google Scholar 

  11. Javaid N, Shah M, Ahmad A, Imran M, Khan MI, Vasilakos AV (2016) An enhanced energy balanced data transmission protocol for underwater acoustic sensor networks. Sensors 16(4):487

    Article  Google Scholar 

  12. Ali T, Jung LT, Faye I (2014) End-to-end delay and energy efficient routing protocol for underwater wireless sensor networks. Wirel Pers Commun 79(1):339–361

    Article  Google Scholar 

  13. Nguyen KV, Le Nguyen P, Vu QH, Van Do T (2017) An energy efficient and load balanced distributed routing scheme for wireless sensor networks with holes. J Syst Softw 123:92–105

    Article  Google Scholar 

  14. Coutinho RW, Boukerche A, Vieira LF, Loureiro AA (2016) Geographic and opportunistic routing for underwater sensor networks. IEEE Trans Comput 65(2):548–561

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu H, Yao N, Liu J (2015) An adaptive routing protocol in underwater sparse acoustic sensor networks. Ad Hoc Netw 34:121–143

    Article  Google Scholar 

  16. Xie P, Cui JH, Lao L (2006) VBF: vector-based forwarding protocol for underwater sensor networks. In: International conference on research in networking. Springer, Berlin, pp 1216–1221

  17. Zhou Z, Peng Z, Cui JH, Shi Z (2011) Efficient multipath communication for time-critical applications in underwater acoustic sensor networks. IEEE/ACM Trans Netw (TON) 19(1):28–41

    Article  Google Scholar 

  18. Xie P, Zhou Z, Peng Z, Cui JH, Shi Z (2009) Void avoidance in three-dimensional mobile underwater sensor networks. In: International conference on wireless algorithms, systems, and applications. Springer, Berlin, pp 305–314

  19. Lee U, Wang P, Noh Y, Vieira LF, Gerla M, Cui JH (2010) Pressure routing for underwater sensor networks. In: INFOCOM, 2010 proceedings IEEE. IEEE, pp 1–9

  20. Erol M, Vieira LFM, Gerla M (2007) AUV-aided localization for underwater sensor networks. In: International conference on wireless algorithms, systems and applications, 2007. WASA 2007. IEEE, pp 44–54

  21. Bulusu N, Heidemann J, Estrin D (2000) GPS-less low-cost outdoor localization for very small devices. IEEE Pers Commun 7(5):28–34

    Article  Google Scholar 

  22. Doherty L, El Ghaoui L (2001) Convex position estimation in wireless sensor networks. In: INFOCOM 2001. Twentieth annual joint conference of the ieee computer and communications societies. Proceedings. IEEE, vol 3. IEEE, pp 1655–1663

  23. Ammari HM, Das SK (2008) Promoting heterogeneity, mobility, and energy-aware voronoi diagram in wireless sensor networks. IEEE Trans Parallel Distrib Syst 19(7):995–1008

    Article  Google Scholar 

  24. Zhang J, Yang T, Zhao C (2016) Energy-efficient and self-adaptive routing algorithm based on event-driven in wireless sensor network. Int J Grid Util Comput 7(1):41–49

    Article  Google Scholar 

  25. Serhan Z, Diab WB (2016) Energy efficient QoS routing and adaptive status update in WMSNS. Int J Space Based Situat Comput 6(3):129–146

    Article  Google Scholar 

  26. Chen L, Liu L, Qi X, Zheng G (2017) Cooperation forwarding data gathering strategy of wireless sensor networks. Int J Grid Util Comput 8(1):46–52

    Article  Google Scholar 

  27. Kuniyasu T, Shigeyasu T (2018) Data-centric communication strategy for wireless sensor networks. Int J Space Based Situat Comput 8(1):30–39

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahoor Ali Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Z.A., Latif, G., Sher, A. et al. Efficient routing for corona based underwater wireless sensor networks. Computing 101, 831–856 (2019). https://doi.org/10.1007/s00607-018-0690-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-018-0690-x

Keywords

Mathematics Subject Classification

Navigation