
ar
X

iv
:1

90
5.

04
64

2v
1

 [
cs

.M
S]

 1
2

M
ay

 2
01

9

Software System Design based on Patterns

for Newton-Type Methods

Ricardo Serrato Barrera∗,a, Gustavo Rodŕıguez

Gómez†,b, Julio César Pérez Sansalvador‡,b,c, Saul E.

Pomares Hernández§,b, Leticia Flores Pulido¶,d, and

Antonio Muñoz‖,e

aEstratei Sistemas de Información S.A. de C.V., Virrey de Mendoza 605-B, Col. Las
fuentes, 59699, Zamora, Michoacán, México

bInstituto Nacional de Astrof́ısica, Óptica y Electrónica, Computer Science
Department, Luis Enrique Erro 1, 72840, Tonantzintla, Puebla, México

cCátedra CONACyT - Instituto Nacional de Astrof́ısica, Óptica y Electrónica,
Computer Science Department, Luis Enrique Erro 1, 72840, Tonantzintla, Puebla,

México
dUniversidad Autónoma de Tlaxcala, Facultad de Ciencias Básicas, Ingenieŕıa y
Tecnoloǵıa, Calzada Apizaquito, Colonia Apizaquito, 90300, Apizaco, Tlaxcala,

México
eDepartamento de Ingenieŕıas, Universidad de Guadalajara, Ave. Independencia

Nacional, Autlán, Jalisco, México

Abstract

A wide range of engineering applications uses optimisation techniques as part of their
solution process. The researcher uses specialized software that implements well-known
optimisation techniques to solve his problem. However, when it comes to develop ori-
ginal optimisation techniques that fit a particular problem the researcher has no option
but to implement his own new method from scratch. This leads to large development
times and error prone code that, in general, will not be reused for any other ap-
plication. In this work, we present a novel methodology that simplifies, fasten and
improves the development process of scientific software. This methodology guide us
on the identification of design patterns. The application of this methodology gener-
ates reusable, flexible and high quality scientific software. Furthermore, the produced
software becomes a documented tool to transfer the knowledge on the development
process of scientific software. We apply this methodology for the design of an optim-
isation framework implementing Newton’s type methods which can be used as a fast
prototyping tool of new optimisation techniques based on Newton’s type methods.
The abstraction, re-useability and flexibility of the developed framework is measured

∗rsbserrato@inaoep.mx
†grodrig@inaoep.mx
‡jcp.sansalvador@inaoep.mx, correspondence author
§spomares@inaoep.mx
¶leticia.florespo@udlap.mx
‖jose.munoz@cucsur.udg.mx

1

http://arxiv.org/abs/1905.04642v1

1 Introduction 2

by means of Martin’s metric. The results indicate that the developed software is highly
reusable.

Keywords: Scientific Software Design, Object–Oriented Programming, Design Pat-
terns, Newton’s methods, Optimization techniques

1 Introduction

A wide range of applications are solved using a variation of Newton’s method [4],
these include: trust regions methods and line search methods [27], damping methods,
inexact or truncated methods [26], quasi–Newton methods [41], or hybrid methods [6],
[32]. Each variation presents specific features that make it suitable for the solution
of a particular problem: unconstrained optimisation, solution of nonlinear systems of
equations, or data fitting problems.

Name Language Comments

MINPACK 1.0 [24] Fortran Optimization package
MINOS 5.0 [25] Fortran Optimization package
UNCMIN [36] Fortran Unconstrained minimisation, evolved to TENSOLVE
HOMPACK [40] Fortran Homotopies package
TENSOLVE [7] Fortran Tensor methods package
NITSOL [31] Fortran Nonlinear equations solver package
Matlab software
routines [19]

Matlab Nonlinear equations solvers

COOOL [20] C++ Optimization and matrix operations package
PETSc [1] C++ Differential equations and nonlinear systems solver

package
OPT++ [23] C++ Optimization package

Tab. 1: A selection of software packages implementing Newton–type methods to solve
specialized problems.

Currently, there is a large collection of specialized software packages that imple-
ment variations of Newton–type methods; see Table 1. Note that most of these software
packages are implemented following the procedural programming paradigm which main
drawback is the lack of flexibility of the developed code; that is, the software is hard
to extend or reuse [23, 8, 13, 16, 22]. Generally, software packages developed using the
procedural programming paradigm present the following problems:

• Code that is difficult to read and understand due to the use of unsuitable data
structures, [13].

• Code that does not describe the algorithms that implements, [16].

• Code that is hard to reuse or modify since it is based on very restrictive pro-
gramming concepts and the large number of parameters in the interfaces [8, 22].

Only three of the software packages presented in Table 1 implement the object-
oriented programming approach; this shows us the preference of the procedural pro-
gramming paradigm over the object-oriented paradigm in the scientific community.
The three software packages implementing the object-oriented approach are: COOOL

(The CWP -Center for Wave Phenomena- Object-Oriented Optimization Library)
[20], PETSc (Portable, Extensible Toolkit for Scientific Computation) [1] and OPT++

[23]. COOOL only handles unconstrained optimisation problems and do not fully exploit
the object-oriented paradigm; concepts such as inheritance and polymorphism are not
exploited in its software design. PETSc implements Newton’s method for the solution

1 Introduction 3

Work Context Proposed patterns

Blilie, 2002, [5] Dynamic systems Particle–Particle, Particle–Mesh, Mesh.
Rodriguez et
al. 2004, [33]

Dynamic systems Model-Solver, System-Modularization

Matthey et al.
2005, [9]

Nodes three-dimensional
simulation of morphogen-
esis, Molecular Dynamics

Generic Automation, Plugins, Dynamic
Class Nodes, Policy, Multigrid, Strategy
Chain

Heng and
Mackie 2009,
[17]

Finite Element Model-Analysis separation, Model-UI
separation, Modular element, Compos-
ite element, Modular analyzer

Rouson et al.
2010, [35]

Multiphysics Modeling Semi-Discrete, Surrogate, Puppeteer

Rouson et al.
2011, [34]

Multiphysics Modeling Abstract Calculus, Surrogate, Puppet-
eer

Tab. 2: Works that propose new scientific software patterns.

of nonlinear systems of equations, it is a set of routines and data structures for the
solution of PDEs that is widely used for the scientific community. OPT++ is a software
library for nonlinear optimisation in C++, it uses inheritance and polymorphism to
provide an interface hierarchy to implement quasi–Newton methods, inexact Newton
methods, line search methods, and trust region methods.

The application of object-oriented techniques for the development of scientific soft-
ware started in the late 90’s; Diffpack [8] was a pioneer project in the application
of object-oriented techniques, it was a software for the simulation of engineering and
scientific applications.

1.1 Software Design Patterns and Scientific Software

Development

Software design patterns were firstly introduced by Gamma et al. in the book “Design
patterns: elements of reusable object–oriented software” [15]. Design patterns are soft-
ware design solutions to common and repeatable software design problems. Software
design patterns benefit low coupling and strong cohesion relations between software
components; therefore, the resulting software is easy to reuse, modify and extend.

The application of design patterns for the development of business software dates
back to the 1990’s [34]. Even though, currently there is neither a recognised pattern
language for the numerical specialists nor a research area focused on the specification
or application of design patterns for the development of scientific software.

In recent years, the scientific community has shown interest in the application of
design patterns to benefit from the knowledge of expert software designers for the
development of scientific software [23, 13, 16, 22, 34, 35, 14, 2]. Tables 2 and 3 show a
list of selected works in scientific computing that apply design patterns, we organised
them into two main categories:

• Works that find, create and specify new scientific software patterns, see Table
2.1

• Works that borrow, modify and apply software patterns from other areas (such
as those for the development of administrative software) for the development of
scientific software, see Table 3

1 According to Vlissides [39], any new proposed scientific pattern can not be immediately
recognised as real patterns until they are validated by specialist, and their offered solutions
are applied in other contexts.

1 Introduction 4

Work Context

Padula et al. 2004, [29] Simulation and optimization
Decyk et al. 2008, [11] Particle in cell simulation
Sansalvador et al. 2011, [30] Multirate integration methods
Rouson et al. 2011, [34] Multiphysics Modeling
Barbieri et al. 2012, [2] Matrix Computations
Filippone et al. 2012, [14] Matrix Computations
Barrera et al. 2017, [4] Newton-type methods software

Tab. 3: Works that uses software patterns in scientific software applications.

The works listed in Table 3 benefit from the application of design patterns in
their software designs, they gain flexibility and reusability. Nevertheless, none of them
explains the methodology used to select the software patterns.

1.1.1 Difficulties on the application of design patterns for the development of

scientific software

The specification of a pattern is often abstract, hence determining or mapping a pat-
tern to a specific application is a difficult task that mainly relies on the expertise of the
software developer. In order to apply a design pattern, we must identify the software
elements that comprise the design.

In the scientific software field there are no explicit relations between numerical
concepts and design patterns, therefore we need to establish such relations in order
to develop a numerical software based on software patterns. In the particular case
of Newton–type methods, we have to identify or establish relations between the ab-
stract concepts in the domain of the problem, the numerical methods involved in the
implementation of Newton–type methods, and the design pattern’s domain.

The main contribution of this work is a methodology that guides the researcher
through the identification of software design patterns to efficiently apply the object-
oriented paradigm to develop reusable and easy to adapt software. This methodology
applies the object–oriented paradigm, domain analysis, and Scope Commonality and
Variability analysis (SCV) [10]. We start by performing a domain analysis that help
us to generate abstractions to understand the problem domain in terms of software
patterns. Then we select a subset of design patterns from Gamma’s book [15] that
can be applied to address the problems in the software design. We provide guidelines
to determine what software patterns to use. Finally, we apply Martin’s metrics [21]
to provide evidence that the resulting software design is easy to reuse, extend and
modify.

We apply the mentioned methodology to develop a framework for the implement-
ation of Newton–type methods. We capture the structure of Newton–type methods in
a novel software design by means of software patterns. Our newly developed software
system design facilitates the implementation of algorithms by providing a flexible and
extensible framework to incorporate new Newton–type methods and easily integrate
off-the-shelf software libraries.

1.2 Paper Organisation

In Section 2 we introduce the mathematical notation used in the paper and define
the mathematical problem regarding Newton–type methods. Then in Section 3 we
describe the methodology used to identify concepts and relations to generate software
components that will be associated via design patterns. The application of this meth-
odology for the development of a Newton–type methods software system is presented

2 The mathematical problem 5

in Section 4. In Section 5 we present an evaluation of the resulting software design by
using Martin’s metrics. The conclusions and future work are presented in Section 6.

2 The mathematical problem

We start by identifying the main concepts in problems involving Newton–type meth-
ods. We use the following notation throughout this work. The n-dimensional Eu-
clidean space is denoted by R

n. A vector x ∈ R
n is to be understood as a column

vector. The vector x∗ ∈ R
n denotes a solution, and {xk}, k = 0, 1, . . . ,M is a sequence

of iterates. The i-th component of the vector xk is denoted by xk,i. The gradient of
the function f(x) is denoted by ∇f(x) = (∂f/∂x1, . . . , ∂f/∂xn)

T . The Hessian of
f(x) is the matrix Hf(x) = (∂2f/∂xi∂xj)i,j and the Jacobian of the function F (x)
is the matrix JF (x) = (∂Fi/∂xj)i,j , where Fi(x) are the i-th component functions of
F (x). We use the Euclidean norm: ‖x‖2 =

∑n

i=1
x2
i .

We consider three classes of nonlinear problems that appear in many applications
of the real–world.

• The nonlinear equations problem or NE, which comprises to find x∗ such that
the vector-value function F of n variables satisfies F (x∗) = 0.

• The unconstrained optimisation problem or UO, which involves to find x∗ such
that the real-value function f of n variables satisfies f(x∗) ≤ f(x) for all x close
to x∗.

• The nonlinear least-square problem or NLS, which requires to find x∗ for which∑m

i=1
(ri(x))

2 is minimised, where ri(x) denotes the i-th component function of
R(x) = (r1(x), r2(x), . . . , rm(x))T , x ∈ R

n, m ≥ n.

The above problems are are mathematically equivalent under reasonable hypo-
theses [12]. For example, the NE problem can be transformed into the UO problem
by using the Euclidean norm and defining the f : Rn → R function as

f =
1

2
‖F (x)‖2 (1)

For the above problems a Newton–type method is involved, in Algorithm 1 we
present the generic form of a Newton algorithm given by Kelley in [18]. where s

Algorithm 1 Generic Newton Algorithm

1: while Stopping condition is not satisfied do

2: s← calculate Newton direction

3: λ← calculate step length

4: xk+1 = xk + λs

5: end while

is called the Newton direction and λ the step length. Different methods exist to
compute these variables, for example, Newton’s method, Quasi-Newton’s method,
Newton’s method with Cholesky decomposition, method of Steepest Descent, Line
Search methods, Trust Region methods, among others.

3 Methodology for patterns identification

One of the key stages when using design patterns for software development is the iden-
tification of relations between software components. In the case of scientific software
development there are no explicit relations between software patterns and numerical

4 Software design for Newton–type methods 6

methods. The methodology presented in this section helps us to identify and estab-
lish relations between the abstract concepts in the problem domain and the software
patterns.

The main tasks of our proposed methodology are the following:

• Find key concepts of the problem domain.

• Perform an SCV analysis to identify software components that remain invari-
ant through different scenarios, and to identify software components that may
change at run time.

• Analyse the resulting software components and their relations to identify soft-
ware design problems and recognize software design patterns that may solve
these problems.

The above listed tasks may be decomposed in the following steps:

1. Create a general description of the problem to identify key concepts of the prob-
lem domain. These concepts define the Scope of the SCV analysis.

2. Study the commonalities and variabilities of the concepts in different scenarios
by applying the Analysis Matrix approach by Shalloway; see [37]. Variations of
the concepts generally lead to different versions or implementations of software
components. These variations are generally encapsulated to facilitate change
and adaptation of the developed software.

3. Find the most important concepts or participants, and study their relations.
These concepts may represent subsystems in the final software design.

4. Identify complex relations between concepts that may lead to software design
problems.

5. Recognize software desing patterns thay may be applied to solve the design
problems found in the previous step.

In Figure 1 we highlight the key concepts of the above presented methodology.

Fig. 1: Software patterns identification methodology.

4 Software design for Newton–type methods

4.1 UML and the class diagrams

We use class diagrams from the Unified Modelling Language (UML) to present our
developed software design. UML diagrams are widely used in the software develop-
ment community. There are different type of diagrams, each providing specific type

4 Software design for Newton–type methods 7

of information. In our case, we are interested in the relations between the objects
that compose our software design, therefore we use class diagrams which help us in
visualising these relations.

A class is represented by a rectangle with the class name in the upper half of the
rectangle. The lower half is used to specify methods and properties associated with
the class. 2

There are two main type of relationships between classes:

• An is-a relation, When one class is a sub-type of another class.

• A has-a relation, when one class uses or contains another class.

In Figure 2 we present three classes, each represented by a rectangle. The line
with the white triangle connecting Class A and Class C represents an is-a relation.
The Class C is a sub-type or sub-class of Class A. The line with the black diamond
connecting Class A with Class B represents an has-a relation. In this case we have a
composition relation, it means that when Class A is deleted then Class B is deleted
as well. A white diamond represents an aggregation relation, if that would be the case
then Class A would not be responsible for the life-cycle of Class B.

Fig. 2: A simple class diagram showing the two main relationships between classes.

4.2 Software system design foundations

At this stage, our main goal is to generate the foundations of the software design. These
foundations should allow us to add and modify software components easily. A software
design that supports easy incorporation and exchange of Newton–type methods will
help researches when comparing the performance of these type of methods.

We start by analysing the generic form of a Newton–type method presented in
Algorithm 1 and performing a top-down analysis of the iterative form of the method.
Newton–type methods share the following basic sequence:

xk+1 = xk + λs, (2)

where xk+1 is equal to xk shifted by λs. The step length λ is calculated to guarantee
convergence of the algorithm, and the Newton direction s is found with a linear or
quadratic model based on Taylor series. The step length and the Newton direction are
components of Newton–type methods. These components will represent subsystems in
the whole system design [38]. The variations of these components in different scenarios
are summarised in Table 4.

2 The methods and properties of the classes in our software design are not shown to focus
the attention in the relations between the classes.

4 Software design for Newton–type methods 8

Scenarios Concept: Newton direction s Concept: Step length λ

Line search meth-
ods

Solve ϕ(λ) = f(x + λs) with
fixed x and s

Calculate an step length to
guarantee convergence.

Trust region
methods

Solve a linear or quadratic
model within a trust ratio to
find the Newton direction.

The step length is implicit in
the Newton direction.

Damped methods Solve a system of equations us-
ing a direct method to find the
Newton direction.

The step length is found using
Line search methods.

Quasi-Newton
methods

Solve the system Ax = b,
where A is an approximation of
the first or second derivative.

Use Line search of Trust region
methods to compute the step
length.

Inexact or trun-
cated methods

Use an iterative method to
solve the system Ax = b.

Use a Line search method to
calculate the step length.

Hybrid methods Find a trajectory between a
Newton direction and a gradi-
ent direction.

Use a Trust region method to
compute the step length.

Tab. 4: Scope-Commonality and Variability (SCV) Analysis for Newton methods.

The variation in Newton components produces different Newton methods, for ex-
ample, a damped Newton method is instantiated by varying the Step length and the
Newton direction components as presented in Table 4.

We identified two additional components to those detailed above, the Stopping

condition, and the evaluation function. Even though these two additional Newton
components do not define Newton’s method classes they are part of the iterative
method and must be considered in the software design.

In Figure 3 we present the relations between the identified concepts and the steps of
the generic form of the Newton–type method. Each component represents a subsystem.
The step length component represents a subsystem specialized in the searching step
lengths.

Once the problem has been stated and the SCV analysis has been performed, we
proceed to identify problematic relationships and interfaces in the software design.
Consider the relations presented in Figure 3 and the generic form of a Newton al-
gorithm. Note that we can construct an specialized version of a Newton-type method
by specifying the components of each step of the generic algorithm. In order to cap-
ture this structure, we apply the Template method pattern [15] which defines the
skeleton of an algorithm and allows for variations at each of its steps. We apply the
Facade design pattern [15] to provide a simple and general interface for the Newtons
components. This facilitates the variation of Newtons components in the skeleton of
the algorithm.

In order to support different implementations3 of a single Newton component we
apply the Bridge design pattern [15], this pattern decouples the abstraction from the
implementation and lets them vary independently.

The foundation components of the software design are described in Figure 4.
In the following sections we present the software design for some of the identified

Newton components.

3 Consider the case that the software developer provides a debugging and release imple-
mentation that share a common interface

4 Software design for Newton–type methods 9

Fig. 3: Relations between Newton components and the generic form of the Newton–
type method.

4.3 Software Design for Newton components

4.3.1 Nonlinear Problems and the State pattern

The numerical schemes for solving the three nonlinear problems presented in Section 2
are closely related. The nonlinear equation problem and the nonlinear least-square
problem are a particular case of an unconstrained minimization problem. Given a
vector-valued function F (x) = 0 of n variables we define f(x) = (1/2)‖F (x)‖2. Find-
ing x∗ such that F (x∗) = 0 is equivalent to find x∗ such that f(x∗) = 0. In other
words, a nonlinear least-square problem may be transformed into an unconstrained
optimisation problem. This transformation is represented as a state machine depicted
in Figure 5.

In each state the nonlinear functions and its derivatives are handled accordingly
with the nonlinear problem represented by the state.

Using the Analysis Matrix approach by Shalloway [37] and the SCV analysis we
identified the concepts and their variations in different scenarios as indicated in Table
5.

Scenarios Concept: Non-
linear equations
problem

Concept: Uncon-
strained optimisa-
tion problem

Concept: Nonlinear least-
square problem

Function F : Rn → R
n f : Rn → R F : Rn → R

m, n < m,

f = 1

2
‖F‖2

First
derivative

JF (x) ∇f(x) ∇f(x) = JF (x)TF

Second de-
rivative

N/A Hf(x) Hf(x) = JF (x)T JF (x) +∑m
i=1

Fi(HFi(x))

Tab. 5: SCV analysis for nonlinear problems.

Note that for a particular problem we compute either the Gradient, or the Jac-

4 Software design for Newton–type methods 10

Fig. 4: Foundations of the software design. We highlighted the application of the
design patterns Template Method, Facade and Bridge in the software design.
In the classes names the prefixes CA and CC indicate abstract and concrete
classes, respectively.

obian matrix of the function F (x), or the Hessian matrix of the function f(x), i.e. the
derivative of the function changes according to the nonlinear problem to solve. Chan-
ging the nonlinear problem involves different operations to the functions f(x) or F (x).
The State design pattern [15] implements an state machine to changes the behaviour
of an specific object. In our case, changing the nonlinear problem produce a transition
in the state machine that switches between strategies to handle the nonlinear function
and its derivatives; see Figure 6.

4.3.2 Line Search Methods and the Strategy pattern

The aim of line search methods is to find a search direction sk and its corresponding
step length λk. Typical strategies in line search methods test a sequence of candidate

Fig. 5: Transition from an unconstrained optimisation problem to an nonlinear least-
square problem, and vice versa.

4 Software design for Newton–type methods 11

Fig. 6: Software system design implementing transitions between nonlinear problems
by means of the State pattern.

values for s and stop when one of them satisfies some condition, for example when
f(xk + λksk) < f(xk). Popular strategies are Wolfe, Curvature and Goldstein condi-
tions [28, 12]. These strategies involve two main tasks: the computation of the step
length, and the step length decrease condition. In order to perform the SCV analysis
we regard these two tasks as concepts. The variations of these concepts are presented
in Table 6.

Scenario Concept: Step length com-
putation

Concept: Step length de-
creasing condition

Line Search Methods
Bisection Wolfe
Quadratic interpolation Goldstein
Cubic interpolation Curvature condition

Tab. 6: Variations of the concepts in the Line Search Methods scenario.

The step length test condition is a sub-step in the computation of the step length.
The test condition can vary independently of the selection of the strategy to calculate
the step length. In order to allow variations in the test condition separately from the
step length computation procedure we apply the Strategy pattern [15]. This pattern
defines a family of algorithms, encapsulate them and makes them interchangeable.
We apply a double strategy, one to encapsulate the step length test condition, and
the second one to encapsulate the method for the computation of the step length, see
Figure 7.

The software design presented in this section belongs to the Newton component:
Step length from Figure 3.

4.3.3 Trust Region Methods and the Adapter pattern

Trust region methods construct a mathematical model to approximate the function
f(x) in a region around xk. The size of this region, known as the trust regions, is
critical for the effectiveness of each step. It is necessary to find a balance between
an small and a big region, therefore these methods look for a maximum trust region
expansion such that the model provides a good approximation to the function f(x).
We have a constrained minimization problem as follows:

4 Software design for Newton–type methods 12

Fig. 7: Software design for Line Search Methods applying a double Strategy Pattern
for the implementation of the test condition and the step length computation
procedure.

min
s∈Rn

m(s) = f(xk) +∇f(xk)
T s+

1

2
sTHf(xk)s (3)

subject to ‖s‖ ≤ ∆, where ∆ > 0 is the trust region radius; see Section 2 for details
on the mathematical notation.

The main tasks in trust region methods are the solution of the system of equations
derived from (3), the trust region radius update, and the model–function approxima-
tion. In Table 7 we present the variations of each of the tasks or concepts identified
above.

Scenario Concept: Solution
of system of equa-
tions

Concept: Update
trust region radio

Concept: Model–
function approxima-
tion

Trust region Cauchy point method
methods Dogleg methods Adaptive methods

using thresholds [12]
Decreasing condition
in Line Search Meth-
ods

Two–dimensional
sub-space minimisa-
tion methods

Tab. 7: SCV analysis for Trust Region Methods.

The identified concepts are highly related: a) if the trust region radius is decreased
too much then the descending direction found to solve equation (3) may not be correct,
b) if the solution of the equation (3) is not good enough then there might be many
updates of the trust region to increase or decrease the radius, and c) the trust region
update depends on how good is the approximation to the function f(x) given by the
model (model–function approximation).

We apply the Strategy pattern [15] to encapsulate the algorithms that solve
equation (3) in a family of classes that share the same interface. The Adapter pattern
helps us to reuse algorithms in different contexts, in this case it is applied to reuse
the methods that solve nonlinear unconstrained optimisation problems to update the
descending direction in equation (3), see Figure 8.

The software design presented in this section belongs to the Newton component:
Newton direction from Figure 3.

4 Software design for Newton–type methods 13

Fig. 8: Software design for Trust Region Methods applying the Strategy and the Ad-
apter patterns.

4.4 Objects Creation, the Abstract Factory and the Singleton

Patterns

In order to grant additional flexibility for the integration of new routines or algorithms
we apply the Abtract Factory pattern. This pattern provides an interface to create
families of objects without specifying their concrete classes [15]. A single global object
implemented via the Singleton pattern [15] is used as the interface for each of the
factories in the software design [3], see Figure 9.

Fig. 9: Software design implementing the Abstract Factory and the Singleton design
patterns. Note that the prefix CA and CC are used to identify abstract and
concrete classes, respectively.

4 Software design for Newton–type methods 14

4.5 External Packages and the Adapter Pattern

Newton-type methods solve a system of equations as part of its computations, in order
to include support for third-party state-of-the-art numerical software libraries we use
the Adapter design pattern to convert an interface from an external package into an
interface expected by our software design, [15], see Figure 10.

Fig. 10: The adapter pattern allows to use external numerical libraries without modi-
fying the existing source code.

4.6 Patterns summary

In the previous section we identified and applied eight design patterns from Gamma’s
book [15] for the development of a software system design for Newton–type methods.
In Table 8 we summarise the identified design patterns and their implications in the
designed software.

5 Evaluation of the Software Design 15

Desing

Pattern

General intent Specific use

Bridge Decouples abstraction from imple-
mentation such that both can vary
independently

Facilitates the implementation of
different versions of a method to
target the needs of each user (de-
bugging or production version)

Facade Provides a unified interface to a set
of interfaces

Implements a simple and unique in-
terface for the Newton component

Adapter Wraps an existing interface with a
new one

Facilitates the use of third-party
numerical software libraries. Also
used to reuse Newton direction
strategies from Trust Region Meth-
ods

Abstract
Factory

Provides an interface to create a
family of objects

Provides and interface to create and
configure the objects of the software
system. When combined with the
Adapter pattern, they decouple the
creation of external packages from
the software design

Singleton Provides a global access points for
an only-one instance of a class

Simplifies the the communication
with the factory objects

Template
Method

Defines the skeleton of an algorithm
and lets sub-methods to implement
each step

Defines the general structure of the
three presented Newton–type meth-
ods: nonlinear, trust region and line
search

State Allows an object to modify its be-
haviour based on the internal state
of the object

Switch the strategies to handle non-
linear functions and its derivatives
based on the problem to solve

Strategy Defines a family of algorithms and
encapsulate them to make them in-
terchangeable

Encapsulates the step-length test
condition and the computation of
the step-length methods

Tab. 8: Applied design patterns.

5 Evaluation of the Software Design

In order to evaluate the quality of our software design we applied Martin’s metrics
[21]. These metrics consider the dependency between subsystems to compute the
instability and abstractness of the software design. These measurements provide in-
sightful information regarding the adaptation, extension and reusability capacities of
the software design.

We identified 17 sub-systems or packages in our software system. For each of these
packages we measured their instability and abstractness as indicated by Martin in [21].

5.1 Abstractness

The level of abstractness of a software package is given by the ratio between the number
of abstract classes in the package and the total number of classes in the package, that
is

A =
Na

Nc

, (4)

where Na represents the number of abstract classes in the package and Nc represents
the total number of classes in the package. When A = 1 then we have an abstract
packages, conversely, when A = 0 then we have a concrete package.

The level of abstractness of a package is an indicator of its capacity for extension
and reuse.

5 Evaluation of the Software Design 16

5.2 Instability

The instability of a package is given by the ratio

I =
Ce

Ce + Ca

, (5)

where Ce is the number of classes inside the package that depend on classes outside the
package, and Ca is the number of classes outside the package that depend on classes
inside the package [21].

If Ce = 0 then I = 0, therefore we have an stable package, on the contrary, if
Ca = 0 then I = 1, which indicates that we have an unstable package.

5.3 The main sequence

Considering Martin’s metrics, a good software design is that when D = 0, where
D = |A + I − 1|. D is an indicator on the facility of a package to be adapted or
extended. A package value of D = 1 indicates that the package is difficult to adapt
or modify. In Table 9 we present the obtained values for the main packages of the
developed software design.

Package name A I D

TrustRegionMethods 0.29 0.80 0.09
BaseArchitecture 0.75 0.31 0.06
LineSearchMethods 0.20 0.70 0.10
NonlinearMethods 0.29 0.46 0.25

Tab. 9: Martin’s metric applied to the main packages of the architecture.

We observe that D = 0.06 for the package BaseArchitecture, it indicates that the
package is mostly abstract and has low dependency with other packages, therefore the
package is easy to extend or adapt. Note that the BaseArchitecture package is part
of the foundation of the software design. The other packages are also close to D = 0.

The D metric is better understood as a function of I and A as shown in Figure 11.
The closer the points representing the packages are to the main sequence, the more
easy to adapt or extend they are.

Fig. 11: The main sequence. Note that I and A should add to one in order to stay
close to the main sequence.

6 Conclusions 17

6 Conclusions

We presented a new methodology based on a domain analysis and a Scope, Common-
ality and Variability analysis to transfer the knowledge of scientific experts into simple,
flexible and effective object-oriented software designs. We applied the presented meth-
odology to develop a pattern-object-oriented software design for Newton–Types meth-
ods. We evaluated the instability and the flexibility of the developed software design
by means of Martin’s metric. The results shown that the software design is stable
enough to be extended without loss of flexibility.

Newton’s method has many applications in scientific computing; in this work we
used for solving optimisation problems. Another of its main uses is the approximation
of solutions of systems of equations arising in simulation problems involving the finite
difference method, the finite element method or the finite volume method. In this
regard, the presented software design may be used as the core of an specialized software
for the simulation of physical phenomena or industrial processes.

Regarding the identification of design patterns for the development of scientific
and engineering software, we successfully applied eight patterns from Gamma’s book
[15], namely: bridge, facade, adapter, abstract factory, singleton, template method,
state and strategy. In this regard, a main contribution of this work is the identification
and application of the state pattern; after a thorough search in the relevant literature
we found no reports of the application of this pattern for the development of scientific
software.

As part of our future work, in order to overcome the abstraction penalty, introduced
by the application of design patterns, in the code performance, we are working in the
use of parallel technologies, the integration of third-party state-of-the-art software
libraries and code optimisation techniques for the development of high-performance
numerical software.

7 Acknowledgements

The first author wants to thank to CONACyT for partially funding the development
of this work as part of his master thesis project.

References

[1] Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschel-

man, K., Dalcin, L., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley,

M. G., May, D. A., McInnes, L. C., Mills, R. T., Munson, T., Rupp, K.,

Sanan, P., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H. PETSc
users manual. Tech. Rep. ANL-95/11 - Revision 3.9, Argonne National Laborat-
ory, 2018.

[2] Barbieri, D., Cardellini, V., Filippone, S., and Rouson, D. Design pat-
terns for scientific computations on sparse matrices. In Euro-Par 2011: parallel
processing workshops (Bordeaux, France, 2012), Springer–Verlag, pp. 367–376.

[3] Barrera, R. S. Arquitectura de Software Flexible y Genérica para Métodos
del tipo Newton. Master’s thesis, Instituto Nacional de Astrof́ısica, Óptica y
Electrónica, 2011.

[4] Barrera, R. S., Gómez, G. R., Hernández, S. E. P., Sansalvador, J.

C. P., and Pulido, L. F. Using design patterns to solve newton–type methods.
In Trends and Applications in Software Engineering: Proceedings of CIMPS 2016
(2017), J. Mejia, M. Muñoz, Á. Rocha, T. San Feliu, and A. Peña, Eds., Springer
International Publishing, pp. 101–110.

7 Acknowledgements 18

[5] Blilie, C. Patterns in scientific software: an introduction. Compt. Sci. Eng. 4,
3 (2002), 48–53.

[6] Blue, J. L. Robust methods for solving systems of nonlinear equations. SIAM
J. Sci. Stat. Comput. 1, 1 (Mar. 1980), 22–33.

[7] Bouaricha, A., and Schnabel, R. B. Algorithm 768: Tensolve: A software
package for solving systems of nonlinear equations and nonlinear least-squares
problems using tensor methods. ACM Trans. Math. Softw. 23, 2 (1997), 174–195.

[8] Bruaset, A. R. E. M., and Langtangen, H. P. Object-Oriented Design of
Preconditioned Iterative Methods in Diffpack. ACM Trans. Math. Softw. 23, 1
(1997), 50–80.

[9] Cickovski, T., Matthey, T., and Izaguirre, J. Design patterns for generic
object-oriented scientific software. Tech. Rep. TR05-12, Departament of Com-
puter Science and Engineering, University of Notre Dame, 2005.

[10] Coplien, J., Hoffman, D., and Weiss, D. Commonality and variability in
software engineering. IEEE Softw. 15, 6 (Nov. 1998), 37–45.

[11] Decyk, V. K., and Gardner, H. J. Object-oriented design patterns in fortran
90/95. Comput. Phys. Commun. 178, 8 (2008), 611–620.

[12] Dennis, J., and Schnabel, R. Numerical methods for unconstrained optimiza-
tion and nonlinear equations. Society for Industrial Mathematics, Philadelphia,
USA, 1996.

[13] Dongarra, J., Lumsdaine, A., Niu, X., Pozo, R., and Remington, K. A
sparse matrix library in c++ for high performance architectures. In Proceedings
of the 2nd Annual Object-Oriented Numerics Conference (Oregon, USA, 1994),
pp. 214–218.

[14] Filippone, S., and Buttari, A. Object oriented techniques for sparse matrix
computations in fortran 2003. ACM Trans. Math. Softw. 38, 4 (2012), 23:1–23:20.

[15] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design patterns:
elements of reusable object–oriented software. Addison–Wesley, Massachusetts,
Massachusetts, USA, 1995.

[16] Gockenbach, M. S., Petro, M. J., and Symes, W. W. C++ classes for
linking optimization with complex simulations. ACM Trans. Math. Softw. 25, 2
(1999), 191–212.

[17] Heng, B. C. P., and Mackie, R. I. Using design patterns in object-oriented
finite element programming. Computers and Structures 87, 15-16 (2009), 952–961.

[18] Kelley, C. Iterative methods for optimization. Society for Industrial Mathem-
atics, Philadelphia, USA, 1999.

[19] Kelley, C. Solving nonlinear equations with Newton’s method. Society for In-
dustrial Mathematics, Philadelphia, USA, 2003.

[20] Lydia Deng, H., Gouveia, W., and Scales, J. An object-oriented toolbox for
studying optimization problems. Springer Berlin Heidelberg, Berlin, Heidelberg,
1996, pp. 320–330.

[21] Martin, R. Agile software development: principles, patterns, and practices. Pren-
tice Hall, NJ, USA, 2003.

[22] Matthey, T., Cickovski, T., Hampton, S., Ko, A., Ma, Q., Nyerges, M.,

Raeder, T., Slabach, T., and Izaguirre, J. A. Protomol, an object-oriented
framework for prototyping novel algorithms for molecular dynamics. ACM Trans.
Math. Softw. 30, 3 (2004), 237–265.

7 Acknowledgements 19

[23] Meza, J., Oliva, R., Hough, P., and Williams, P. Opt++: An object-
oriented toolkit for nonlinear optimization. ACM Trans. Math. Softw. 33, 2
(2007), 12–27.

[24] Moré, J., Garbow, B., and Hillstrom, K. User guide for minpack-i. Tech.
Rep. ANL-80-74, Argonne National Laboratory, 1980.

[25] Murtagh, B., and Saunders, M. Minos 5. 0 user’s guide. Tech. rep., Systems
Optimization Laboratory, Stanford University, 1983.

[26] Nash, S. G. A survey of truncated-newton methods. Journal of Computational
and Applied Mathematics 124, 1–2 (2000), 45 – 59.

[27] Nocedal, J., and Wright, S. Numerical Optimization, 1st ed. Springer–Verlag,
1999.

[28] Nocedal, J., and Wright, S. Numerical Optimization, 2nd ed. Springer–
Verlag, 2006.

[29] Padula, A., Scott, S., and Symes, W. The standard vector library: a software
framework for coupling complex simulation and optimization. Tech. Rep. TR05-
12, Rice University, 2004.

[30] Pérez-Sansalvador, J., Rodŕıguez-Gómez, G., and Pomares-Hernández,

S. Pattern object-oriented architecture for multirate integration methods. In
CONIELECOMP (Puebla, México, 2011), pp. 158–163.

[31] Pernice, M., and Walker, H. F. Nitsol: A newton iterative solver for nonlinear
systems. SIAM J. Sci. Comp. 19, 1 (1998), 302.

[32] Powell, M. J. A hybrid method for nonlinear equations. Numerical methods
for nonlinear algebraic equations 7 (1970), 87–114.

[33] Rodŕıguez-Gómez, G., Muños Arteaga, J., and Fernández, B. Scientific
software design through scientific computing patterns. In Fourth IASTED Inter-
national Conference (Hawai, USA, 2004).

[34] Rouson, D., Xia, J., and Xu, X. Scientific Software Design, 1st ed. Cambridge
University Press, New York, USA, 2011.

[35] Rouson, D. W. I., Adalsteinsson, H., and Xia, J. Design patterns for mul-
tiphysics modeling in fortran 2003 and c++. ACM Trans. Math. Softw. 37, 1
(2010), 3.

[36] Schnabel, R. B., Koonatz, J. E., and Weiss, B. E. A modular system
of algorithms for unconstrained minimization. ACM Trans. Math. Softw. 11, 4
(1985), 419–440.

[37] Shalloway, A., and Trott, J. Design Patterns Explained: A New Perspective
on ObjectOriented Design (2Nd Edition) (Software Patterns Series). Addison-
Wesley, 2002.

[38] Sommerville, I. Software Engineering, 8th ed. Addison-Wesley, 2004.

[39] Vlissides, J. Pattern hatching: design patterns applied. Addison-Wesley, Essex,
UK, 1998.

[40] Watson, L. T., Billups, S. C., and Morgan, A. P. Algorithm 652: Hompack:
A suite of codes for globally convergent homotopy algorithms. ACM Trans. Math.
Softw. 13, 3 (1987), 281–310.

[41] Xu, C., and Zhang, J. A survey of quasi-newton equations and quasi-newton
methods for optimization. Annals of Operations Research 103, 1 (2001), 213–234.

	1 Introduction
	1.1 Software Design Patterns and Scientific Software Development
	1.1.1 Difficulties on the application of design patterns for the development of scientific software

	1.2 Paper Organisation

	2 The mathematical problem
	3 Methodology for patterns identification
	4 Software design for Newton–type methods
	4.1 UML and the class diagrams
	4.2 Software system design foundations
	4.3 Software Design for Newton components
	4.3.1 Nonlinear Problems and the State pattern
	4.3.2 Line Search Methods and the Strategy pattern
	4.3.3 Trust Region Methods and the Adapter pattern

	4.4 Objects Creation, the Abstract Factory and the Singleton Patterns
	4.5 External Packages and the Adapter Pattern
	4.6 Patterns summary

	5 Evaluation of the Software Design
	5.1 Abstractness
	5.2 Instability
	5.3 The main sequence

	6 Conclusions
	7 Acknowledgements

