
Noname manuscript No.
(will be inserted by the editor)

Optimized SAT Encoding of Conformance Checking
Artefacts

Mathilde Boltenhagen · Thomas Chatain ·
Josep Carmona

the date of receipt and acceptance should be inserted later

Abstract Conformance checking is a growing discipline that aims at assisting or-
ganizations in monitoring their processes. On its core, conformance checking relies
on the computation of particular artefacts which enable reasoning on the relation
between observed and modeled behavior. It is widely acknowledge that the compu-
tation of these artifacts is the lion’s share of conformance checking techniques. This
paper shows how important conformance artefacts like alignments, anti-alignments
or multi-alignments, defined over the Levenshtein edit distance, can be efficiently
computed by encoding the problem as an optimized SAT instance. From a general
perspective, the work advocates for a unified family of techniques that can compute
conformance artefacts in the same way. The implementation of the techniques pre-
sented in this paper show capabilities for dealing with both synthetic and real-life
instances, which may open the door for a fresh way of applying conformance check-
ing in the near future.

1 Introduction

Organizations are struggling to adapt to the demands arising from the digital trans-
formation. Thus, the use of all kinds of digital data related to an organization’s daily
routines is a mandatory practice: one cannot think of a successful organization that
disregards the data generated by its clients, or the data generated by its processes.
In terms of business processes, modern organizations are extremely complex and
evolving entities, representing a real challenge for current technology. The fields of
Business Process Management, and Process Mining, propose strategies to tackle this
challenge.

M. Boltenhagen and T. Chatain
ENS Paris-Saclay

J. Carmona
Universitat Politècnica de Catalunya

This is a post-peer-review, pre-copyedit version of an article published in Computing.
The final authenticated version is available online at: http://dx.doi.org/10.1007/s00607-020-00831-8

2 Mathilde Boltenhagen et al.

a

a

a b

a

τ

(a) Model with two types of runs :
〈a, a, . . . , a〉 and 〈a, b, a, b, . . . , a, b〉

Log trace :
〈b, a, b, a, b〉

Hamming
distance

Edit distance

run (size = 6)
〈a, a, a, a, a, a〉

3 6

run (size = 6)
〈a, b, a, b, a, b〉

6 2

(b) Comparision of Hamming and edit distances

Fig. 1: How Hamming distance penalizes alignment and anti-alignment’s qual-
ity: Trace 〈b, a, b, a, b, a〉 is closer to 〈a, a, a, a, a, a〉 than 〈a, b, a, b, a, b〉 accord-
ing to Hamming distance. However there is only a shift of letter a and b between
〈b, a, b, a, b, a〉 and 〈a, b, a, b, a, b〉. The model run 〈a, b, a, b, a, b〉 is a better anti-
alignment for trace 〈b, a, b, a, b, a〉, revealed by the edit distance.

In particular, conformance checking is a growing subdiscipline of process mining
that focuses on providing algorithmic means to support process models in organi-
zations, with a clear emphasis on the relation of processes and process models. On
its core, conformance checking relies on the computation of artefacts that link ob-
served and modeled behavior, which are used with different purposes: spotting devi-
ations, evaluating quality metrics of a process model, extending a process model with
evidence-based information, among others [10].

Conformance checking is expected to be the fastest growing segment within Pro-
cess Mining in the years to come1. Still, the field is facing several challenges. Among
them, we highlight two important ones: techniques for a sound replay of event data
on top of process models, and the advent of faithful metrics for evaluating process
models with respect to observed behavior.

The former challenge is strongly related to the notion of alignment artefact: given
a trace and a process model, find a run in the process model that is as close as possi-
ble (in edit distance terms) to the observed trace. The seminal work in [1] describes
an algorithm for computing alignments based on A∗. Alternatives to this algorithm
have appeared recently (see Section 2 for a detailed description of the current ap-
proaches). In this paper, we provide an alternative to the aforementioned techniques,
that is based on encoding the computation of an alignment as a SAT instance. We also
show how to encode in SAT multi-alignments [13], which are artefacts that general-
ize the notion of alignments, so that not one but several traces are considered when
computing the closest process model run. The latter challenge is mainly concerned
with the proposal of sound and meaningful metrics for precision and generalization,
nowadays acknowledged as the quality dimensions with less convincing estimations
(e.g., [26]). Anti-alignments, presented in [12], are an effective conformance artefact
to foresee those model runs that deviate most (again, in terms of edit distance) with

1 https://www.marketsandmarkets.com/Market-Reports/
process-analytics-market-254139591.html

Optimized SAT Encoding of Conformance Checking Artefacts 3

respect to a trace or a complete log. In [32] it is shown how anti-alignments can be
used to provide a more consistent estimation to both precision and generalization, us-
ing the Hamming distance. The use of Hamming distance for anti-alignment shows
important drawbacks, highlighted in Fig. 1.

Overall, the current paper adopts SAT as a reasoning engine to compute confor-
mance checking artefacts like alignments, multi-alignments and anti-alignments, over
the edit distance. Furthermore, we show for the first time how the baseline encoding
for Levenshtein edit distance, reported in recent works [7,11], can be significantly
optimized to process larger instances. Formal proofs are provided of these optimiza-
tions, and a novel adaptation of the SAT objective function to improve the quality of
the obtained artefacts is proposed in this paper. Finally, all the techniques proposed
in this paper are implemented in a new tool, which is evaluated over synthetic and
real-life benchmarks from the literature.

The paper is organized as follows: next section provides related techniques for
the tasks considered in this paper. Then in Section 3 we provide the background for
understanding the paper. Section 4 shows how to encode the computation of a run
at a given edit distance of a trace. Then Section 5 shows how to adapt this encoding
to particular conformance checking artefacts, and Section 6 presents optimizations
which refine these encodings. Section 7 reports experiments and Section 8 discusses
theoretical and experimental complexity of our problems, whilst Section 9 concludes
the paper.

2 Related work.

The seminal work in [1] introduced the notion of alignment. The approach uses a
depth-first search, alongside with the A∗ method over the state space corresponding
to the synchronous product between the model and the trace. A recent publication
shows under which circumstances the A∗ can be improved by extending the heuristic
pruning the search space [30].

Alternatives to the A∗ have appeared recently: in the approach presented in [15],
the alignment problem is mapped as an automated planning instance. Unlike the A∗,
the aforementioned work is only able to produce one optimal alignment (not all opti-
mal), but it is expected to consume considerably less memory. Automata-based tech-
niques have also appeared [25,20]. In particular, the technique in [25] can compute
all optimal alignments. The technique in [25] relies on state space exploration and de-
terminization of automata, whilst the technique in [20] is based on computing several
subsets of activities and projecting the alignment instances accordingly. A different
perspective that uses event structures focusing in behavioral alignments is presented
in [16]. Finally, the work in [6] uses binary decision diagrams to compute alignments.
These alternative techniques are competitive for certain inputs, but at the same time
are more sensitive to crucial aspects as problem size or degree of concurrency.

To tackle the computational challenge of computing an alignment, [28] proposed
an approach grounded on the resolution of Integer Linear Programming (ILP), along-
side with partitioning the input observed trace σ. This technique can provide approx-
imate alignments, a novel class of alignments where deviations can be explained be-

4 Mathilde Boltenhagen et al.

tween sets of transitions, instead of singleton pairs as in [1]. Although this approach
is efficient both in time and memory, it is not complete, i.e., it cannot guarantee
the computation of a real solution in general. A similar approach which can always
guarantee a solution and heavily uses the resolution of ILP and marking equation in
combination with a bounded backtracking is presented in [32].

Decompositional and projection approaches have also appeared in the last years
to fight the complexity of computing alignments. The technique in [27], presents a
framework to reduce a process model and the event log accordingly, with the goal to
alleviate the computation of the alignments. The computed alignment, which is called
macro-alignment, will be expanded based on the gathered information during the
reduction. A different line of work is by opting for a decomposition perspective [29,
23]. The proposed approach decomposes a given model to smaller parts and projects
the observed trace to each corresponding part, and then computes the alignment for
each part independently. This technique is very efficient, but the result is decisional
(a yes/no answer on the fitness of the trace) and cannot provide a global alignment.
Recently, [33,19] proposed a set of conditions for providing a global alignment from
the decomposed alignments.

Recent studies focus on SAT implementation of Data Mining algorithms, in order
to satisfy all the constrains and get optima [22,14]. By introducing a SAT imple-
mentation of alignments in this paper, we hope to push a new family of algorithmic
methods for conformance checking in the line of [12,8]. However, these works mostly
consider Hamming distance between log traces and process models, which is usually
considered less appropriate than edit distance (c.f. Fig. 1).

The SAT encoding of the edit distance between words has already been intro-
duced in previous works [3,17]. The work in [3] studies the computation of edit
distance for its interest in complexity theory.

3 Preliminaries

We use labeled Petri nets as process models.

Definition 1 (Process Model (Labeled Petri Net System) [24]) A Process Model
defined by a labeled Petri net system (or simply Petri net) is a tuple N =
〈P, T, F,m0,mf , Σ, Λ〉, where P is the set of places, T is the set of transitions (with
P ∩ T = ∅), F ⊆ (P ×T)∪ (T ×P) is the flow relation, m0 is the initial marking,
mf is the final marking, Σ is an alphabet of actions and Λ : T → Σ ∪ {τ} labels
every transition by an action or as silent.

A marking is the set of places that contain tokens for a given instant. A transition
x can fire if all the places before x, noted •x def

= {y ∈ P | (y, x) ∈ F}, are marked.
When a transition fires, all the tokens in •x are removed and all the places in x• def

=
{y ∈ P | (y, x) ∈ F} become marked. A marking m′ is reachable from m if there is
a sequence of firings 〈t1 . . . tn〉 that transformsm intom′, denoted bym[t1 . . . tn〉m′.

Definition 2 (Full runs) A full run of a model N is a firing sequence 〈t1 . . . tn〉 of
transitions that can transform the initial marking m0 of N to the final marking mf of
N . We note Runs(N) the full runs of N .

Optimized SAT Encoding of Conformance Checking Artefacts 5

pi s

f

c

g

b

a

τ
pf

d

Log traces (some non-fitting):
〈s, f, b, a〉
〈s, g, c〉
〈s, c, b, a〉
〈s, g, c, d, d〉
〈s, a, a〉

Fig. 2: Example of process model of the behaviors of users rating an app. s repre-
sents the start activity, f and c indicate if the user sent a file or wrote a comment.
Transitions g and b separate good and bad marks. Bad ratings get apologies noted by
activity a. Finally, the d loop is enabled when a user donates to the developer of the
app.

The run 〈s, f, b, a〉 is a full run of the model of Fig. 2.
Now we formalize logs:

Definition 3 (Log) A log L over an alphabet Σ is a finite set of words, i.e., L ⊆ Σ∗.
An element σ ∈ L is called log trace.

3.1 Alignments

Aligning log traces to model traces has been identified as a central problem in Process
Mining [1]. The problem is to find a run in the process model that is as close as
possible to the observed trace. This closeness is usually defined in terms of the edit
distance:

Definition 4 (Edit distance) The edit distance dist(u, v) between two words u and
v ∈ Σ∗ is the minimal number of edits needed to transform u to v. In our case, edits
can be deletions or additions of a letter in words.

Example 1 Considering words u = 〈s, g, c〉 and v = 〈s, b, c, a〉 the number of edits
to transform u to v is indeed 3. The letter g has to be removed and the letters b and a
inserted. Then the two words are at distance 3.

Formally, we define alignments in a way that not only achieves the optimal edit
distance between the log trace and a model trace, but also makes explicit where they
match and mismatch.

Definition 5 (Alignment, optimal alignment) An alignment of a log trace s =
〈s1, . . . , sm〉 ∈ L to a run u = 〈u1, . . . , un〉 of process model N =
〈P, T, F,m0,mf , Σ, Λ〉 is a sequence of moves 〈(s′1, u′1), . . . , (s′p, u′p)〉 with p ≤
m+ n such that

– each move (s′i, u
′
i) is either:

6 Mathilde Boltenhagen et al.

– (ei, ti) with ei = Λ(ti) for a synchronous move
– (ei,�) for a log move (� is a skip symbol which indicates the mismatch),

i.e. ei is deleted in the trace
– (�, ti) for a model move, i.e. Λ(ti) is inserted in the trace;

– projection of 〈s′1, . . . , s′p〉 to Σ∗ (which drops the occurrences of�), yields s
– projection of 〈u′1, . . . , u′p〉 to T ∗ (which drops the occurrences of�), yields u

A move (�, τ) is called a silent move, and is considered to not influence in the cost
of an alignment. Therefore, an alignment between u ∈ Runs(N) and s is optimal
if it minimizes the number of occurrences of � in non-silent moves. This minimal
number of mismatches corresponds to the edit distance dist(u, s) between u and s.

Alignments can be represented in a two-row matrix. Next figure shows an align-
ment between the second log trace (〈s, g, c〉) and the run 〈s, b, c, a〉 of the model of
Fig. 2.

trace s g � c �
run s � b c a

In general, aligning a trace to a process model often means searching the minimal
number of moves, i.e. the optimal alignment. Different cost functions are used but
the most common one applies the weights 0 for a synchronous move, and 1 for a log
move or a model move. This function is know as the standard cost function. Next
figure shows an alignment for the trace 〈s, g, c〉 and the run 〈s, g, c, τ〉 of the model
of Fig. 2. Since τ moves inccur into no cost, the alignment has cost 0, and hence it is
optimal.

trace s g c �
run s g c τ

4 SAT Encoding of the Edit Distance

We first introduce our SAT encoding of the edit distance between two words, which
will serve as a building block for computing alignments, multi-alignments and anti-
alignments.

The Boolean satisfiability (or SAT) problem, is the problem of determining, for a
given Boolean formula, if there exists a combination of assignments to the variables
that satisfies it. In the case of alignment, a SAT formula would encode the following
question: Does an alignment exist between the trace σ and the model N for a cost d?
In other words, we are looking for a formula that encodes the edit distance d between
a trace and a run of the model. Our encoding is based on the same relations that are
used by the classical dynamic programming recursive algorithm for computing the

Optimized SAT Encoding of Conformance Checking Artefacts 7

edit distance between two words u = 〈u1, . . . , un〉 and v = 〈v1, . . . , vm〉:

dist(〈u1, . . . , ui〉, ε) = i
dist(ε, 〈v1, . . . , vj〉) = j
dist(〈u1, . . . , ui+1〉, 〈v1, . . . , vj+1〉) =dist(〈u1, . . . , ui〉, 〈v1, . . . , vj〉) if ui+1 = vj+1

1 + min(dist(〈u1, . . . , ui+1〉, 〈v1, . . . , vj〉),
dist(〈u1, . . . , ui〉, 〈v1, . . . , vj+1〉))

if ui+1 6= vj+1

where ε denotes the empty word.
We encode this computation in a SAT formula φ over variables δi,j,d, for i =

0, . . . , n, j = 0, . . . ,m and d = 0, . . . , n +m. The formula φ will have exactly one
solution, in which each variable δi,j,d is true iff dist(〈u1 . . . ui〉, 〈v1 . . . vj〉) ≥ d.

In order to test equality between the ui and vj , we use variables λi,a and λ′
j,a,

for i = 0, . . . , n, j = 0, . . . ,m and a ∈ Σ, and we set their value such that λi,a is
true iff ui = a, and λ′j,a is true iff vj = a. Hence, the test ui+1 = vj+1 becomes
in our formulas:

∨
a∈Σ(λi+1,a ∧ λ′j+1,a). For readability of the formulas, we refer to

this coding by [ui+1 = vj+1]. We also write similarly [ui+1 6= vj+1].
In the following, we describe the different clauses of the formula φ of our SAT

encoding of the edit distance2.

δ0,0,0 ∧
∧
d>0 ¬δ0,0,d (1)∧

d

∧n
i=0 (δi+1,0,d+1 ⇔ δi,0,d) (2)∧

d

∧n
j=0 (δ0,j+1,d+1 ⇔ δ0,j,d) (3)∧

d

n∧
i=0

n∧
j=0

[ui+1 = vj+1]⇒ (δi+1,j+1,d ⇔ δi,j,d) (4)

∧
d

n∧
i=0

n∧
j=0

[ui+1 6= vj+1]⇒ (δi+1,j+1,d+1 ⇔ (δi+1,j,d ∧ δi,j+1,d)) (5)

Example 2 At instants i = 1 and j = 1 of words u = 〈s, g, c〉 and v = 〈s, b, c, a〉,
the letters are the same, then, by (4), the distance is only higher or equal to 0 : (u1 =
v1)⇒ (δ1,1,0 ⇔ δ0,0,0).

However at instants i = 2 and j = 2, the letters u2 and v2 are different. A step
before, δ1,2,1 and δ2,1,1 are true because of the length of the subwords. Then, by
(5), the distance at instants i = 2 and j = 2 is higher or equal to 2 : δ2,2,2. The result
is understandable because the edit distance costs the deletion of g and the addition of
b to transform u into v.

5 SAT Encoding of Conformance Checking Artefacts

The distance between log traces and a process model is not only a distance between
words, since the process model describe a (possibly infinite) language. In this sec-
tion, we recall the SAT encoding of full runs of Petri nets [12], and combine it with
the encoding of the edit distance to obtain SAT encondings for alignments, multi-
alignments and anti-alignments.

2 We use the logic operator A⇔ B as a shortcut to A⇒ B ∧B ⇒ A.

8 Mathilde Boltenhagen et al.

5.1 SAT implementation of process models.

For a Petri net N = 〈P, T, F,m0,mf , Σ, Λ〉 and n the size of the full runs, the
variables mi,p, with i ∈ {0..n} and p ∈ P , represent the marking at instant i. The
variables µi,t encode a firing transition t ∈ T at instant i ∈ {0..n}. The following
constraints encode the semantics of the Petri net.

– Initial marking:
(
∧
p∈m0

m0,p) ∧ (
∧
p∈P\m0

¬m0,p) (6)

– Final marking:
(
∧
p∈mf

Mn,p) ∧ (
∧
p∈P\mf

¬mn,p) (7)

– One and only one ti for each i:∧n
i=1

∨
t∈T (µi,t ∧

∧
t′∈T\{t} ¬µi,t′) (8)

– The transitions are enabled when they fire:∧n
i=1

∧
t∈T (µi,t =⇒

∧
p∈•tmi−1,p) (9)

– Token game (for safe Petri nets):∧n
i=1

∧
t∈T

∧
p∈t•(µi,t =⇒ mi,p) (10)∧n

i=1

∧
t∈T

∧
p∈•t\t•(µi,t =⇒ ¬mi,p) (11)∧n

i=1

∧
t∈T

∧
p∈P,p6∈•t,p 6∈t•(µi,t =⇒ (mi,p ⇐⇒ mi−1,p)) (12)

Example 3 Consider the model of Fig. 2. At the initialization, place pi has a token.
This information is encoded by m0,pi = true. All the other places do not have a
token at this instant, this is described by axiom (6). At the first instant, only transition
s can fire. We then have µ1,s = true. All the others transitions do not fire at this
instant. For instance µ1,f is false, i.e., transition f does not fire at instant 1. This
behavior is defined by axiom (8). The last axioms defined the token game.

Henceforth, a process model’ semantics can be encoded as a SAT formula, and as we
will see below, can be combined with log traces for obtaining different conformance
artefacts.

5.2 SAT Edit Distance for Alignments

Log traces are sequences of activities that can be considered as words, and hence
can be implemented as described in Section 4. SAT encoding of process models has
been recalled in previous section. All the above clauses are considered in the SAT
implementation of alignments. A last series of constraints is needed to be appended,
to relate the fired transitions, represented by the µi,t, with the actions in the corre-
sponding model trace, represented by variables λi,a from the encoding of Section 4:

n∧
i=1

∧
a∈Σ

(
λi,a ⇐⇒

∨
t∈T,Λ(t)=a

µi,t

)
(13)

Optimized SAT Encoding of Conformance Checking Artefacts 9

Trace Alignment Distance
〈s, f, b, a〉 〈s, f, b, a〉 0
〈s, g, c〉 〈s, g, c, τ〉 0
〈s, c, b, a〉 〈s, c, b, a〉 0
〈s, g, c, d, d〉 〈s, g, c, d, d, τ〉 0
〈s, a, a〉 〈s, b, c, a〉 3

Fig. 3: Alignment of each trace and the model of Fig. 2

Example 4 All the full runs of the process model of Fig. 2 contain an s at the first
position. So the variable µ1,s is true. If the log trace is σ = 〈s, f, g〉 then, λ1,s is
true which implies δ1,1,0 by (4).

5.2.1 Minimization of the edit distance.

The conjunction of the previous clauses for the full runs of the model and their edit
distance to a given log trace σ, gives a formula which has one solution per full run
of the model. With each solution, the values of the δn,m,d determine the edit distance
between the corresponding model trace and σ. Our goal for optimal alignments is
to minimize this distance, which corresponds to the number of variables assigned
to true among the δn,m,d. Pseudo-Boolean solvers like MINISAT+ deal with min-
imization objectives 3 under the form of a weighted sum of variables; in our case:∑
d 1× δn,m,d.

5.2.2 How to deal with runs of different length.

In order to consider different sizes of traces and different sizes of runs, we added
a loop on a wait activity on the final marking of the model. The SAT encoding of
the edit distance is adjusted so that skipping a wait activity does not increment the
distance between words.

Example 5 Fig. 3 shows optimal alignments of every trace of the log of Fig. 2. The
deviating trace 〈s, a, a〉 is then highlighted by the distance to its alignment.

5.3 SAT Implementation for Multi-alignments

Multi-alignments were introduced in [13] as a generalization of alignments. They
were recently extended in the contex of model-based trace clustering [8]. Instead of
aligning a trace to a run of a process model, multi-alignments consider aligning a set
of log traces (typically from the same cluster) to a common run of the model.

Definition 6 (Multi-alignment) Given a finite collectionC of log traces and a model
N , an (optimal) multi-alignment of C to N is a full run u ∈ Runs(N) which mini-
mizes the maximal distance to the traces : maxσ∈C dist(σ, u).

3 SAT problems with minimization objectives and weigthed variables are also called MaxSAT problems

10 Mathilde Boltenhagen et al.

Multi-Alignment Trace Distance

〈s, g, c, a〉

〈s, f, b, a〉 4
〈s, g, c〉 1
〈s, c, b, a〉 2
〈s, g, c, d, d〉 3
〈s, a, a〉 3

Fig. 4: A multi-alignment of the log traces and the model of Fig. 2

Anti-Alignment Trace Distance

〈s, b, f, d, d, d, d, τ〉

〈s, f, b, a〉 7
〈s, g, c〉 8
〈s, c, b, a〉 7
〈s, g, c, d, d〉 6
〈s, a, a〉 8

Fig. 5: An anti-alignment of the log traces and the model of Fig. 2

The SAT implementation of multi-alignment requires us to duplicate the variables
λσi,a that represent actions in the log traces σ ∈ L and the variables δσi,j,d that measure
the edit distance to the model trace. Section 5.5 details the weighted variables to get
the minimization.

Example 6 We computed a multi-alignment of the model and the full log of Fig. 2.
An optimal multi-alignment is the full run 〈s, g, c, a〉 which is at distance d ≤ 4 to
all the log traces. Fig. 4 shows the distance between the multi-alignment and the log
traces. Notice that other runs of the model are also at maximal distance 4 to the log
traces. There are then many optimal multi-alignments.

5.4 SAT Implementation for Anti-alignments

Anti-alignment was introduced in [12]. Contrary to multi-alignments, the aim of anti-
alignments is to get, for a given log, the run of a model which differs as much as
possible to all the traces in the log. The notion of anti-alignment is used in some
quality metrics like precision and generalization [31].

Definition 7 (Anti-alignment) Given a finite collection L of log traces and a model
N , an anti-alignment is a run u ∈ Runs(N) which maximizes the minimal distance
minσ∈L dist(σ, u) to the log.

The encoding is then very similar to the multi-alignment version. Instead of min-
imizing the maximal distance to the set of log traces, we maximize the minimal dis-
tance using the opposite minimization objective.

Example 7 We computed an anti-alignment of model and the set of log traces of
Fig. 2. Limited by a maximum size of run to 8, an optimal anti-alignment found by
our tool is 〈s, b, f, d, d, d, d, τ〉 (see Fig. 5). The minimal distance between each trace
and this full run is 6. We compared our result with the module Anti-Alignment of

Optimized SAT Encoding of Conformance Checking Artefacts 11

ProM 4, which computes anti-alignment over Hamming distance. For the same size
of run, the algorithm returned the sequence 〈s, b, d, d, d, c, a, d〉 that is indeed linearly
far from the log traces. However as either letters c or a are present in every trace, the
run looks more similar to the log than the one found with edit distance.

5.5 Minimization of Minimal Distance versus Sum of Distances

In our previous work [7], we presented a variant of multi-alignment and anti-
alignment definitions that aims at optimizing the sum of the distances. Although in
a way, optimizing the sum of distances tends to obtain in general reasonable witness
of multi- and anti-alignments, in some situations they can fail in representing a good
solution. In this section we propose a variation of this optimization, which instead
focuses on minimizing the minimal distance. We detail the two kinds of MaxSAT
problems, and explain their differences.

Minimizing Minimal Distance. As presented in this paper, multi-alignment consid-
ers the run of the model that minimizes its maximal distance to the log traces. To
produce the general distance of the run and all the traces, we introduce novel vari-
ables ∆d and the following axiom:∧

d

(∨
j

δj,n,|σ|,d ⇔ ∆d

)
(14)

where n is the size of the run. The ∆d variables define the distances d for which all
the traces verify this distance to the run of the model. The minimization objective for
multi-alignment is then :

∑
d 1×∆d.

Conversely, an anti-alignment is a run of the model which maximizes its minimal
distance to the log traces; hence, the SAT objective is this opposite :

∑
d−1 × ∆d,

with the ∆d now satisfying: ∧
d

(∧
j

δj,n,|σ|,d ⇔ ∆d

)
(15)

Minimizing Sum of Distances. A variant of anti-alignment and multi-alignment has
been presented in [7]. Instead of minimizing (or maximizing) a distance to the traces
of the log, this version of the conformance artefacts minimizes (respectively max-
imizes) the sum of the distances. The SAT formula does not require variables ∆d

introduced in the previous minimization. Similarly to Section 5.2, the optimal multi-
alignment is found by minimizing objective:

∑
d

∑
σ∈L 1 × δσn,|σ|,d. The minimiza-

tion objective for anti-alignment is then:
∑
d

∑
σ∈L−1× δσn,|σ|,d.

The different minimizations presented in this section give different definitions,
that may not be used in the same context. To convince readers, we propose the fol-
lowing example:

4 Anti-alignment Precision/Generalization of package AntiAlignments of ProM software version 6.8,
http://www.promtools.org/

12 Mathilde Boltenhagen et al.

Method Anti-Alignment Paa(M,L)
Minimizing Sum of Distances 〈s, f, b, a〉 1
Maximizing Minimal Distance 〈s, c, b, a〉 0.75

Table 1: Comparison of minimization method used for Anti-Alignment of model of
Fig. 2 and log Laa = {〈s, f, b, a〉1, 〈s, c, g〉10}

Example 8 A recent metric for precision that uses anti-alignments is the follow-
ing [11]:

Paa(N,L)
def
= 1− sup

γ∈L(N)

dist(γ, L) .

Let’s define Laa = {〈s, f, b, a〉1, 〈s, c, g〉10} a log of 11 traces that fit in model
M of Fig. 2. When one computes precision Paa(M,L), one uses anti-alignments that
maximize the minimal distance to any trace of the log. Table 1 highlights a great
difference in the use of minimizing the sum of distance, which is not desired in this
case. Anti-alignment 〈s, f, b, a〉 obtains a sum of edit distance equal to 50 but is
at minimal distance to any trace to 0 as this trace exists in the log. Anti-alignment
〈s, c, b, a〉 is at minimal distance to any trace of the log equal to 2 and precision is
then not optimal which is much more realistic. The use of the different minimizations
is then dependent to the need.

As a concluding remark, the interested reader may have noticed that in contrast to
(multi-) alignments, the selection of a particular length for the case of anti-alignment
may seem a bit arbitrary at first glance. The previous example illustrates that, when
using anti-alignments in practice (e.g., to estimate precision), focusing on a particu-
lar length makes sense. The anti-alignments described in Table 1 are both of lengh
4, which is actually the maximal length observed in the log Laa. Since the model
of Fig. 2 is fitting, using 4 as the maximal anti-alignment length will not affect con-
siderably deviations that may be less related to the observed patterns in the log. In
general, and to be more resilient to fitness and other issues, one may allow certain
variations on the maximal observed lenth (e.g., twice the maximal length of a fitting
trace observed in the log).

6 Optimizations

For multi-alignment and anti-alignment, the SAT edit distance formula presented in
section 4 is duplicated by the number of log traces, which generates thousands of
variables (see graphs of Fig. 6). In this section we present a reduction of the formula
per artefact. The main idea is to keep only one direction of the double implications.
As double implications create clauses in the SAT formula, we improve the size of the
formula and its resolution.

Optimized SAT Encoding of Conformance Checking Artefacts 13

6.1 Formula Reduction for Multi-Alignment

As seen in Section 4, the edit distance between two words corresponds to the number
of variables assigned to true among the δn,m,d in the (unique) solution s of the
formula φ. Let us denote this value val(s). Now, when searching for an alignment
to a log trace (consider only alignment to one trace for simplicity), we combine the
formula φ with a formula ψ which encodes a set of runs of the model, and look for
the solution s of the combined formula Φ ≡ φ ∧ ψ which minimizes val(s). This
minimization amounts to filter the set of solutions of Φ. Here, we show that, relying
on this filtering by the minimization, we can reduce the formula Φ (that we now
denote Φ⇔) constructed from the formula φ of Section 4 (now denoted φ⇔) into a
simpler formula Φ⇐ constructed from a reduced version of φ⇔, denoted φ⇐ and
defined as:

δ0,0,0 ∧
∧
d>0 ¬δ0,0,d (16)∧

d

∧n
i=0 (δi+1,0,d+1 ⇐ δi,0,d) (17)∧

d

∧n
j=0 (δ0,j+1,d+1 ⇐ δ0,j,d) (18)∧

d

n∧
i=0

n∧
j=0

[ui+1 = vj+1]⇒ (δi+1,j+1,d ⇐ δi,j,d) (19)

∧
d

n∧
i=0

n∧
j=0

[ui+1 6= vj+1]⇒ (δi+1,j+1,d+1 ⇐ (δi+1,j,d ∧ δi,j+1,d)) (20)

Lemma 1 The minimal value obtained by minimizing val(s) over the solutions of
Φ⇐ is equal to the minimal multi-alignment distance obtained using Φ⇔. Formally,
denote sol(Φ⇔) (respectively sol(Φ⇐)) the set of solutions of Φ⇔ (respectively Φ⇐):

min
s∈sol(Φ⇐)

val(s) = min
s′∈sol(Φ⇔)

val(s′) .

Proof We represent every solution of a SAT formula as an application s : V ars →
{true, false} where V ars is the set of variables of the formula, so that s(v)
denotes the value assigned to variable v in s.
1. mins∈sol(Φ⇐) val(s) ≥ mins′∈sol(Φ⇔) val(s

′) : As Φ⇐ is defined like Φ⇔ with
less constrains, we have Φ⇔ ⇒ Φ⇐, then sol(Φ⇔) ⊆ sol(Φ⇐) which implies
mins∈sol(Φ⇐) val(s) ≥ mins′∈sol(Φ⇔) val(s

′).

2. mins∈sol(Φ⇐) val(s) ≤ mins′∈sol(Φ⇔) val(s
′) : Let s ∈ sol(Φ⇐). We will show

how to create s′ ∈ sol(Φ⇔) such that val(s′) ≥ val(s). We define s′ as follows :
– ∀i∈{0...n}, p∈P s′(mi,p) := s(mi,p)
– ∀i∈{1...n}, a∈Σ s′(µi,a) := s(µi,a)
– ∀σ∈L, i∈{1...|σ|}, a∈Σ s′(λσi,a) := s(λσi,a)

and
– ∀σ∈L, i∈{1...n},j∈{1...|σ|}, d∈{0...(n+|σ|)}
s′(δσi,j,d) := (dist(〈u1, .., ui〉, 〈σ1, .., σj〉) ≥ d) where dist is the edit dis-
tance defined in section 3. I.e., s′ assigns the values for the variables
δσi,j,d according to the exact edit distance while solution s represents under-
approximation of the distances.

14 Mathilde Boltenhagen et al.

We then demonstrate that s′ is indeed a solution of Φ⇔ :
– variables mi,p, µi,a and λσi,a are assigned like in s which is a solution of Φ⇐

and those variables are not affected by the reduction.
– variables δσi,j,d are defined using the edit distance which verifies axioms (2)

to (5) of Φ⇔.
Finally, we show that val(s) ≤ val(s′) : As, for multi-alignment, we mini-
mize the distances, let’s demonstrate that s′(δσi,j,d) ⇒ s(δσi,j,d) for σ ∈ L,
i ∈ {0, .., n}, j ∈ {0, .., |σ|} and d ∈ {0, .., (n+ |σ|)}.
Let σ ∈ L. We prove by induction on n that:

∀i,j,i+j≤n ∀d (dist(〈u1, . . . , ui〉, 〈σ1, . . . , σj〉) ≥ d)⇒ s(δσi,j,d).

– Initialization : for n = 0, which implies i = 0 and j = 0, we have:
– d = 0 dist(ε, ε) = 0 and δσ0,0,d = true.

Then it verifies (dist(ε, ε) ≥ 0)⇒ s(δσ0,0,0)
– ∀d>0, dist(ε, ε) < d and δσ0,0,d = false.

Then it verifies (dist(ε, ε) ≥ d)⇒ s(δσ0,0,d).
– Induction step: Assuming that (dist(〈u1, . . . , ui〉, 〈σ1, . . . , σj〉) ≥ d) ⇒
s(δσi,j,d) holds for all i, j, d such that i+ j ≤ n, we show that the implication
still holds when i+ j = n+ 1:

– for i = 0 (i.e. u = ε): assume (dist(ε, 〈σ1, . . . , σj〉) ≥ d) is
true. By definition of the edit distance, dist(ε, 〈σ1, . . . , σj〉) = 1 +
dist(ε, 〈σ1, . . . , σj−1〉, which implies dist(ε, 〈σ1, . . . , σj−1〉) ≥ d − 1.
By the induction we know that (dist(ε, 〈σ1, . . . , σj−1〉) ≥ d − 1) ⇒
s(δσ0,j−1,d−1). And finally, since s satisfies axiom (17), we have s(δσ0,j,d).

– for j = 0 (i.e. σ = ε): the proof is similar to the previous case (with
axiom (18).

– for ui = σj : assume dist(〈u1, . . . , ui〉, 〈σ1, . . . , σj〉) ≥ d.
By the induction hypothesis, (dist(〈u1, . . . , ui−1〉, 〈σ1, . . . , σj−1〉) ≥
d) ⇒ s(δσi−1,j−1,d). Here, dist(〈u1, . . . , ui−1〉, 〈σ1, . . . , σj−1〉) =
dist(〈u1, . . . , ui〉, 〈σ1, . . . , σj〉) by definition of the edit distance. Then
s(δσi−1,j−1,d) holds, and, since s satisfies axiom (20), we have s(δσi,j,d).

– for ui 6= σj : if (dist(〈u1, . . . , ui〉, 〈σ1, . . . , σj〉) ≥ d) is true, then,
by definition of the edit distance, (dist(〈u1, . . . , ui−1〉, 〈σ1, . . . , σj〉) ≥
d−1) and (dist(〈u1, . . . , ui〉, 〈σ1, . . . , σj−1〉) ≥ d−1). As i−1+j = n
and i+ j − 1 = n, we use the induction hypothesis to get s(δσi−1,j,d) =
true and s(δσi,j−1,d) = true. From axiom (20), we obtain s(δσi1,j,d) =
true.

6.2 Formula Reduction for Anti-Alignment

In the previous section, we have shown how, relying on the minimization of the δn,m,d
variables, we can reduce Φ⇔ to Φ⇐. Conversely, for anti-alignment, we found that
Φ⇔ can be simplified relying on the maximization. We demonstrate how Φ⇔ can be

Optimized SAT Encoding of Conformance Checking Artefacts 15

reduced into Φ⇒, described below, when δn,m,d variables are maximized.

δ0,0,0 ∧
∧
d>0 ¬δ0,0,d (21)∧

d

∧n
i=0 (δi+1,0,d+1 ⇒ δi,0,d) (22)∧

d

∧n
j=0 (δ0,j+1,d+1 ⇒ δ0,j,d) (23)∧

d

n∧
i=0

n∧
j=0

[ui+1 = vj+1]⇒ (δi+1,j+1,d ⇒ δi,j,d) (24)

∧
d

n∧
i=0

n∧
j=0

[ui+1 6= vj+1]⇒ (δi+1,j+1,d+1 ⇒ (δi+1,j,d ∧ δi,j+1,d)) (25)

Lemma 2 The maximal value obtained by maximizing val(s) over the solutions of
Φ⇒ is equal to the maximal anti-alignment distance obtained using Φ⇔. Formally:

max
s∈sol(Φ⇒)

val(s) = max
s′∈sol(Φ⇔)

val(s′) .

Proof Similarly to the reduction to Φ⇐ in Lemma 1, we show that Φ⇔ and Φ⇒ define
the same anti-alignment distance when we maximize val(s):

1. maxs∈sol(Φ⇒) val(s) ≥ maxs′∈sol(Φ⇔) val(s
′) : The proof is exactly the same

as for multi-alignments (see Lemma 1).
2. maxs∈sol(Φ⇒) val(s) ≤ maxs′∈sol(Φ⇔) val(s

′) : The idea of the proof is similar
to Φ⇐ reduction. We create s′ ∈ sol(Φ⇔) such as, for s ∈ sol(Φ⇒), val(s) ≤
val(s′). This is proved by induction with : ∀i,j,i+j≤n ∀d s(δσi,j,d) ⇒
(dist(〈u1, . . . , ui〉, 〈σ1, . . . , σj〉) ≥ d).

7 Experiments

In this section, we show different experiments of the SAT encoding artefacts over
edit distance. We first present our new implementation, da4py. Then in section 7.2
we report on the impact of optimizing the formulas as described in Section 6. In sec-
tion 7.3, we compare previous running times to the new optimized implementation.
Finally, in 7.4 we present new experiments on real-life logs.

7.1 da4py: Python Librairy for Conformance Artefacts

In [7], we presented an Ocaml version of the SAT encoding called DARKSIDER.
In this paper, we present da4py, a novel Python library that implements the three
edit distance SAT encodings presented above5. With this new library, we improve the
efficiency of artefacts computation in different ways. First, the reduced formulas opti-
mize the number of clauses and variables, which accelerates the formula construction
and resolution. Due to the use of the SAT library PySAT [18], da4py runs RC2, a
MaxSAT algorithm that finds solutions faster by using heuristics. Finally, one can

5 The da4py library and examples is available at https://github.com/BoltMaud/da4py.

16 Mathilde Boltenhagen et al.

(a) Number of clauses per formula for a size of
run to 10 by increasing number of traces

(b) Number of clauses per formula for a log of
10 traces by increasing size of run

Fig. 6: Comparison of Number of CNF Clauses of Produced Formulas for a model of
10 transitions.

easily choose its SAT solver in a set of state-of-the-art solvers with PySAT. da4py
is compatible with the library pm4py [5], and uses the same data objects.

Like DARKSIDER, da4py proposes two heuristics to deal with large logs. To
alleviate the complexity, one can compute a prefix of artefacts instead of requiring
a full run (parameter PRE). Furthermore, another simplification is to add a thresh-
old on the number of editions between the run and the traces (parameter LIM). This
solution computes a lower-bound for the anti-alignment, instead of the complete anti-
alignment.

7.2 Optimization Analysis

In the Section 6, we show two optimizations of the SAT encoding. To convince read-
ers, we present Fig. 6 that reports the size of the formulas in term of Conjunctive
normal form (CNF) clauses. The formulas have been created for a proces model con-
sisting of 12 transitions. In Fig. 6a, for 0 traces, the number of clauses of the formula
represents the number of clauses needed to create the SAT encoding of the model,
described in Section 5.1. This number is not significant when compared to the size
of the edit distance formulas, as the number of traces increases. In Fig. 6b, we show
the number of clauses when increasing the size of the run. As expected, the exact for-
mula creates much more clauses than the optimized variants. We see that the reduced
versions do not define the same number of clauses, which is also expected because
we do not keep the same side of the implications in the two reductions.

7.3 Artificial Log - Improvement Results

In this section, we compare the previous work [7] to the optimized one presented in
this paper with artificial models and logs. To illustrate the differences, we decided to
show the same table than the one in [7] (see Table 2), with a new column for da4py

Optimized SAT Encoding of Conformance Checking Artefacts 17

results. Notice that while for alignments we show average numbers over one hundred
traces, for multi- and anti-alingments (where only a run is computed for the whole
log), total numbers are provided. The first two columns (Model and |L|) describe
the model and the log sizes, respectively. Column ”Size of run” shows the maximal
size allowed for the run in the model (which will be an alignment in (a), a multi-
alignment in (b), and an anti-alignment in (c)). For memory issues, we sometimes
had to limit the length of the run as explained in section 7.1. Then, if only prefix
of runs are computed, we specify it with PRE notation. Moreover, the fourth column
reports the maximal number of edits allowed (see section 7.1). When LIM is indicated,
the distance between the model and the trace is larger than what was tested. The last
columns show computation times.

For simple alignment, our SAT encoding still do not beat PROM implementation
time scores, but our new optimized encoding improves significantly the baseline SAT
encoding of our previous works. Clearly, the incorporation of several engineering
efforts like caching intermediate solutions, will make our solution at the same im-
plementation level than the one in PROM, so that the comparison is more fair. For
multi-aligment and anti-alignment, da4py gives the best computation times of the
state-of-the-art.

7.4 Real-life Logs

By reducing the size of the SAT encoding with the optimizations proposed in this pa-
per, our new implementation can handle now real-life problems that were intractable
with the baseline encoding of previous work. The following set of experiments has
been run in a virtual machine with 12 CPU Intel Xeon 2.67GHz and 50GB RAM.

We launch experiments over the twelve real-life logs available at the 4DTU Data
Center6. For each log, we compute anti-alignments and multi-alignments on sublogs
and models discovered with both the Inductive Miner [21], and the Split Miner [2].
Table 3 shows average execution times of the twelve logs and corresponding models.
As sizes of models vary from 8 to 150 transitions, we also give minimal and maximal
execution times. The results show very similar execution times for anti-alignment and
multi-alignments, which is expected as the formulas are very similar. The library is
able to handle sublogs of 200 traces and execution times are reasonable. However,
because of memory space, we had to limit the size of run and the number of edits.
Even for 100 traces, we see that, for a prefix of 10, parameters are bounded, i.e., the
maximal number of edits is lower than the real possible number of edits for a size of
run to 10. The size of the run and maximal number of edits increase a lot the formulas
size, and it is still too complex to get full runs without these limitations in the search.
Still, this is the first time a tool is able to compute multi-alignment and anti-alignment
on real-life logs of this nature.

6 https://data.4tu.nl/repository/collection:event_logs_real

18 Mathilde Boltenhagen et al.

Model |L| Size of
run

Maximal
number of

Darksider
execution

da4py
execution

ProM
execution

Reference |T | |P | edits time (sec) time (sec) time (sec)

Fig. 2 8 7 100 7 5 0.349 0.264 0.002

M8 of [27] 15 17 100 PRE: 20 LIM:10 15.530 6.781 0.001

M1 of [27] 40 39 100 PRE: 7 LIM:10 7.16 2.845 0.005

Loan [9] 15 16 100 PRE: 19 LIM: 10 20.915 6.169 0.002

(a) Alignments (showing averages).

Fig. 2 8 7
10 8 7 15.362 4.406 6

100 8 7 200.569 34.607

M8 of [27] 15 17
10 18 LIM: 6 414.174 29.953 6

100 PRE: 15 LIM: 6 741.162 196.412

M1 of [27] 40 39
10 PRE: 13 LIM: 10 172.500 59.362 6

100 PRE: 13 LIM: 5 1066.94 266.670

Loan [9] 15 16
10 PRE: 19 15 373.683 81.854 6

100 PRE: 9 LIM:10 508.542 120.352

(b) Multi-alignments.

Fig. 2 8 7
10 8 LIM: 10 21.502 6.127 6

100 8 LIM: 10 243.842 51.563

M8 of [27] 15 17
10 18 LIM: 10 148.271 47.086 6

100 PRE: 10 LIM: 10 496.733 146.478

M1 of [27] 40 39
10 39 LIM: 10 2069.505 477.036 6

100 PRE: 13 LIM: 5 995.361 265.132

Loan [9] 15 16
10 PRE: 19 LIM: 10 203.257 56.173 6

100 PRE: 19 LIM: 10 2185.785 121.114

(c) Anti-alignments.

Table 2: Experimental results for the computation of optimum and approximations of
alignments and anti-alignments over Edit Distance with our Python library da4py,
obtained on a virtual machine with 12 CPU Intel Xeon 2.67GHz and 50GB RAM.

|L| Size
of

Maximal
number

Method Inductive Miner Split Miner

run of edits avg min max avg min max

100 5 10 MA 150.008 25.162 305.978 127.379 37.201 234.195
AA 151.253 25.553 309.400 129.829 37.241 237.013

200 5 10 MA 295.830 45.377 605.277 252.437 67.537 466.752
AA 298.425 46.598 611.877 252.502 68.048 465.374

100 10 10 MA 614.136 95.212 1245.584 500.603 143.315 926.757
AA 600.697 101.354 1243.523 501.265 145.366 923.399

Table 3: Multi-Alignments (MA) and Anti-Alignments (AA) Execution Times (in
seconds) by da4py using the twelve real-life logs.

Optimized SAT Encoding of Conformance Checking Artefacts 19

8 Theoretical and Experimental Complexity

Deciding the existence of alignments, anti-alignments or multi-alignments (of size
bounded by an integer n given as input in unary) are NP-complete problems [12,8].
In this paper we propose to encode them as SAT instances and rely on efficient SAT
solvers to compute the artefacts. The dominating factor in the time complexity of
our technique is to solve the formulas, i.e. the call to the SAT solver dominates the
complexity. The size of our formulas (and the computation time to construct them)
are polynomial in the input.

More precisely, the formula that encodes the edit distance between two words of
lengths n and m, has size O((n +m) × n ×m). The formula for runs of length n
of a model N = 〈P, T, F,m0,mf , Σ, Λ〉 has size O(|P | + n × (|T |2 + |F |)). The
n × |T |2 comes from the SAT formula (8) which enumerates pairs of transitions; it
is immediate to encode the same constraint as a pseudo-SAT formula of size O(n ×
|T |) using the ability of pseudo-SAT to express directly constraints on the number
of variables assigned to true among a set of variables. Hence, the encoding of the
model runs has size O(n× |F |).

For anti-alignments or multi-alignments, we need to repeat the encoding of the
edit distance for each log trace. The size of the final formula sums to O((n +m) ×
n×m× |L|+n× |F |), where m is the maximum length of log traces. The (n+m)
factor can be reduced significantly by setting a limit threshold to the value of d in the
computation of edit distances (parameter LIM of Section 7.1) when the distances of
interest are expected to be sufficiently small. With this threshold, our formulas are
essentially:

– linear in the size of the model
– linear in the size of the log
– quadratic in the length n of the considered anti- or multi-alignments. Actually,

going further with the heuristic using threshold LIM for edit distance, one could
eliminate all the variables δi,j,d with |j − i| ≥ LIM and then make our formulas
linear also in n. We have not implemented this optimization.

The optimizations presented in Section 6 have a very significant impact in practice
but do not change the theoretical complexity.

In practice, what limits our approach is mainly memory used by the solver. While
in theory, solving a SAT formula requires only linear space, in practice, solvers tend
to store information in order to improve their time complexity. On the other hand, the
time required to solve our formulas in practice, does not grow as fast as the exponen-
tial than one could expect from the theoretical complexity.

9 Conclusion

This paper has shown a unified approach to compute important conformance arte-
facts over SAT formulas. Thanks to its high versatility, the encoding as SAT for-
mula allows one to compute exact solutions to various problems (here alignments,

20 Mathilde Boltenhagen et al.

anti-alignments and multi-alignments), under various optimality criteria. For multi-
alignment and anti-alignments, two minimizations, respectively maximizations, of
the distances between the traces and the models are proposed. Moreover, a new op-
timized version of the baseline SAT encodings is presented, for which formal proofs
of correctness are provided. These optimization are crucial to widen the applicability
of the family of the alignment-based techniques grounded in SAT to realistic, large
conformance checking instances.

For future work, several directions will be considered. First, we aim at exploring
new optimizations that can allow a further reduction of the SAT formulas arising from
encoding conformance checking artefacts. Second, we will consider how to incorpo-
rate projection mechanisms into the SAT encoding techniques, so that only a fraction
of the process model is considered. Third, we will explore the combination of the
techniques of this paper with log sampling, following the interesting line conducted
in [4]. Finally, we aim at combining the current work with model repair.

Acknowledgments.

This work has been supported by Farman institute at ENS Paris-Saclay and by MINECO and FEDER
funds under grant TIN2017-86727-C2-1-R.

References

1. A. Adriansyah. Aligning observed and modeled behavior. PhD thesis, Department of Mathematics
and Computer Science, 2014.

2. Adriano Augusto, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, and Artem Polyvyanyy. Split
miner: automated discovery of accurate and simple business process models from event logs. Knowl.
Inf. Syst., 59(2):251–284, 2019.

3. Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic time
(unless seth is false). In Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, pages 51–58. ACM, 2015.

4. Martin Bauer, Han van der Aa, and Matthias Weidlich. Estimating process conformance by trace sam-
pling and result approximation. In Business Process Management - 17th International Conference,
BPM 2019, Vienna, Austria, September 1-6, 2019, Proceedings, pages 179–197, 2019.

5. Alessandro Berti, Sebastiaan J van Zelst, and Wil van der Aalst. Process Mining for Python (PM4Py):
Bridging the Gap Between Process-and Data Science. pages 13–16, 2019.

6. Vincent Bloemen, Jaco van de Pol, and Wil M. P. van der Aalst. Symbolically aligning observed
and modelled behaviour. In 18th International Conference on Application of Concurrency to System
Design, ACSD, Bratislava, Slovakia, June 25-29, pages 50–59, 2018.

7. Mathilde Boltenhagen, Thomas Chatain, and Josep Carmona. Encoding conformance checking arte-
facts in SAT. In Business Process Management Workshops. Springer, 2019.

8. Mathilde Boltenhagen, Thomas Chatain, and Josep Carmona. Generalized alignment-based trace clus-
tering of process behavior. In Proceedings of the 40th International Conference on Applications and
Theory of Petri Nets (ICATPN’19), number 11522 in Lecture Notes in Computer Science. Springer,
2019.

9. J.C.A.M. Buijs. Loan application example. 4TU. Centre for Research Data. Dataset. doi.org/10.4121,
2013.

10. Josep Carmona, Boudewijn F. van Dongen, Andreas Solti, and Matthias Weidlich. Conformance
Checking - Relating Processes and Models. Springer, 2018.

11. Thomas Chatain, Mathilde Boltenhagen, and Josep Carmona. Anti-Alignments – Measuring The
Precision of Process Models and Event Logs. Report hal-02383546: https://hal.inria.fr/hal-02383546,
November 2019.

Optimized SAT Encoding of Conformance Checking Artefacts 21

12. Thomas Chatain and Josep Carmona. Anti-alignments in conformance checking–the dark side of pro-
cess models. In International Conference on Application and Theory of Petri Nets and Concurrency,
pages 240–258. Springer, 2016.

13. Thomas Chatain, Josep Carmona, and Boudewijn Van Dongen. Alignment-based trace clustering. In
International Conference on Conceptual Modeling, pages 295–308. Springer, 2017.

14. Ian Davidson, SS Ravi, and Leonid Shamis. A sat-based framework for efficient constrained clus-
tering. In Proceedings of the 2010 SIAM International Conference on Data Mining, pages 94–105.
SIAM, 2010.

15. Massimiliano de Leoni and Andrea Marrella. Aligning real process executions and prescriptive pro-
cess models through automated planning. Expert Syst. Appl., 82:162–183, 2017.

16. Luciano Garcı́a-Bañuelos, Nick R.T.P. van Beest, Marlon Dumas, Marcello La Rosa, and Willem
Mertens. Complete and interpretable conformance checking of business processes. IEEE Transactions
on Software Engineering, 44(3):262–290, March 2018.

17. Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. Error explanation with distance
metrics. International Journal on Software Tools for Technology Transfer, 8(3):229–247, 2006.

18. Alexey Ignatiev, Antonio Morgado, and Joao Marques-Silva. PySAT: A Python toolkit for prototyping
with SAT oracles. In SAT, pages 428–437, 2018.

19. Wai Lam Jonathan Lee, H. M. W. Verbeek, Jorge Munoz-Gama, Wil M. P. van der Aalst, and Marcos
Sepúlveda. Recomposing conformance: Closing the circle on decomposed alignment-based confor-
mance checking in process mining. Inf. Sci., 466:55–91, 2018.

20. Sander J. J. Leemans, Dirk Fahland, and Wil M. P. van der Aalst. Scalable process discovery and
conformance checking. Software and System Modeling, 17(2):599–631, 2018.

21. Sander JJ Leemans, Dirk Fahland, and Wil MP van der Aalst. Discovering block-structured process
models from event logs containing infrequent behaviour. In International conference on business
process management, pages 66–78. Springer, 2013.

22. Jean-Philippe Métivier, Patrice Boizumault, Bruno Crémilleux, Mehdi Khiari, and Samir Loudni.
Constrained clustering using sat. In International Symposium on Intelligent Data Analysis, pages
207–218. Springer, 2012.

23. Jorge Munoz-Gama, Josep Carmona, and Wil M. P. Van Der Aalst. Single-entry single-exit decom-
posed conformance checking. Inf. Syst., 46:102–122, December 2014.

24. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4):541–574,
April 1989.

25. Daniel Reißner, Raffaele Conforti, Marlon Dumas, Marcello La Rosa, and Abel Armas-Cervantes.
Scalable conformance checking of business processes. In OTM CoopIS, , Rhodes, Greece, pages
607–627, 2017.

26. Niek Tax, Xixi Lu, Natalia Sidorova, Dirk Fahland, and Wil M. P. van der Aalst. The imprecisions of
precision measures in process mining. Inf. Process. Lett., 135:1–8, 2018.

27. Farbod Taymouri and Josep Carmona. Model and event log reductions to boost the computation of
alignments. In Proceedings of the 6th International Symposium on Data-driven Process Discovery
and Analysis (SIMPDA 2016), Graz, Austria, December 15-16, 2016., pages 50–62, 2016.

28. Farbod Taymouri and Josep Carmona. A recursive paradigm for aligning observed behavior of large
structured process models. In 14th International Conference of Business Process Management (BPM),
Rio de Janeiro, Brazil, September 18 - 22, 2016.

29. Wil M. P. van der Aalst. Decomposing petri nets for process mining: A generic approach. Distributed
and Parallel Databases, 31(4):471–507, 2013.

30. Boudewijn F. van Dongen. Efficiently computing alignments - using the extended marking equa-
tion. In Business Process Management - 16th International Conference, BPM 2018, Sydney, NSW,
Australia, September 9-14, 2018, Proceedings, pages 197–214, 2018.

31. Boudewijn F. van Dongen, Josep Carmona, and Thomas Chatain. A unified approach for measuring
precision and generalization based on anti-alignments. In Business Process Management - 14th Inter-
national Conference, BPM 2016, Rio de Janeiro, Brazil, September 18-22, 2016. Proceedings, pages
39–56, 2016.

32. Boudewijn F. van Dongen, Josep Carmona, Thomas Chatain, and Farbod Taymouri. Aligning modeled
and observed behavior: A compromise between computation complexity and quality. In Advanced
Information Systems Engineering - 29th International Conference, CAiSE 2017, Essen, Germany,
June 12-16, 2017, Proceedings, pages 94–109, 2017.

33. H. M. W. Verbeek and W. M. P. van der Aalst. Merging Alignments for Decomposed Replay, pages
219–239. Springer International Publishing, Cham, 2016.

