Skip to main content
Log in

IEEE 802.15.4 historical revolution versions: A survey

  • Regular Paper
  • Published:
Computing Aims and scope Submit manuscript

Abstract

The IEEE 802.15.4 is a well-known standard that is widely utilized for wireless sensor networks in order to meet the low rate, low cost and energy efficiency requirements. Seventeen years have already passed since its appearance, but new amendments are constantly being introduced. Since the standard can operates in specific countries or can support some types of networks like SUN, LECIM and RFID, modifications are carried on the basic version and then new versions have been released. In this paper, we provide a clear and structured overview of the 802.15.4 standard and all its amendments and revisions. After a general introduction to the 802.15.4-2003 standard, we present a chronological description of the amendments specified by this standard. These descriptions include the modifications made either on the physical layer or the MAC sublayer. Some references having developed the amendments whether it be a simple overview or an evaluation of the performance of the standard have been cited. The aim of this paper is to present the evolution of the standard as well as to deal with many problems frequented by wireless sensor networks using the basic version.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. IEEE 802.15.4 Standard (2003) Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low rate wireless personal area networks (LR WPANs), pp 1–670

  2. Ramonet AG, Noguchi T (2019) IEEE 802.15.4 historical evolution and trends. In: 21st international conference on advanced communication technology (ICACT). IEEE, pp 351–359

  3. Moreno-Moreno CD, Brox-Jiménez M, Gersnoviez-Milla AA, Márquez-Moyano M, Ortiz-López MA, Quiles-Latorre FJ (2018) Wireless sensor network for sustainable agriculture. Multidiscip Digit Publ Inst Proc 2(20):1302

    Google Scholar 

  4. Diego VQ, Marcelo SA, Ruan DG et al (2017) Survey and systematic mapping of industrial wireless sensor networks. J Netw Comput Appl 97:96

    Article  Google Scholar 

  5. Nawaz F, Jeoti V (2016) Performance assessment of WirelessHART technology for its implementation in dense reader environment. Computing 98(3):257–277

    Article  MathSciNet  Google Scholar 

  6. Yessad N, Omar M, Tari A, Bouabdallah A (2018) Qos-based routing in wireless body area networks: a survey and taxonomy. Computing 100(3):245–275

    Article  MathSciNet  Google Scholar 

  7. Sastry N, Wagner D (2004) Security considerations for IEEE 802.15. 4 networks. In: Proceedings of the 3rd ACM workshop on Wireless security, pp 32–42

  8. IEEE 802.15.4 Standard (2006) Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs), pp 1–320

  9. IEEE Standard 802.15.4a (2007) Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (WPANs): Amendment 1: Add Alternate PHYs, pp 1–203

  10. Karapistoli E, Pavlidou F-N, Gragopoulos I, Tsetsinas I (2010) An overview of the IEEE 802.15.4a standard. IEEE Commun Mag 48(1):47–53

    Article  Google Scholar 

  11. De Nardis L, Di Benedetto M-G (2007) Overview of the IEEE 802.15.4/4a standards for low data rate wireless personal data networks. In: 2007 4th workshop on positioning, navigation and communication. IEEE, pp 285–289

  12. IEEE Standard 802.15.4c (2009) Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs) Amendment 2: Alternative Physical Layer Extension to support one or more of the Chinese 314-316 MHz, 430-434 MHz, and 779-787 MHz bands

  13. Xia B, Fu Q, Li D, Zhang L (2010) Performance evaluation and channel modeling of IEEE 802.15.4c in urban scenarios. In: 2010 16th Asia-Pacific conference on communications (APCC). IEEE, pp 497–502

  14. IEEE Standard 802.15.4d (2009) Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs) Amendment 3: Alternative Physical Layer Extension to support the Japanese 950 MHz bands. pp 1–27

  15. IEEE Std 802.15.4 (2011) Part 15.4: low-rate wireless personal area networks (LR-WPANs), pp 1–314

  16. Du W, Navarro D, Mieyeville F (2015) Performance evaluation of IEEE 802.15.4 sensor networks in industrial applications. Int J Commun Syst 28(10):1657–1674

    Article  Google Scholar 

  17. Abbas Z, Javaid N, Khan MA, Ahmed S, Qasim U, Khan ZA (2012) Simulation analysis of IEEE 802.15.4 non-beacon mode at varying data rates. In: Seventh international conference on broadband, wireless computing, communication and applications. IEEE, pp 46–52

  18. Park P, Di Marco P, Fischione C, Johansson KH (2012) Modeling and optimization of the IEEE 802.15.4 protocol for reliable and timely communications. IEEE Trans Parallel Distrib Syst 24(3):550–564

    Article  Google Scholar 

  19. Striccoli D, Boggia G, Grieco LA (2015) A markov model for characterizing IEEE 802.15.4 MAC layer in noisy environments. IEEE Trans Ind Electron 62(8):5133–5142

    Article  Google Scholar 

  20. Di Marco P, Park P, Fischione C, Johansson KH (2012) Analytical modeling of multi-hop IEEE 802.15.4 networks. IEEE Trans Veh Technol 61(7):3191–3208

    Article  Google Scholar 

  21. Atmani M, Aïssani D, Hadjadj-Aoul Y (2018) Towards bandwidth and energy optimization in IEEE 802.15.4 wireless sensor networks. Computing 100(6):597–620

    Article  MathSciNet  Google Scholar 

  22. IEEE Std 802.15.4e (2012) Part 15.4: low-rate wireless personal area networks (LR-WPANs) Amendment 1: MAC sublayer, pp 1–225

  23. De Guglielmo D, Brienza S, Anastasi G (2016) IEEE 802.15.4e: a survey. Comput Commun 88:152–153

    Google Scholar 

  24. Chen F, German R, Dressler F (2010) Towards IEEE 802.15.4e: a study of performance aspects. In: 2010 8th IEEE international conference on pervasive computing and communications workshops (PERCOM workshops). IEEE, pp 68–73

  25. De Guglielmo D, Anastasi G, Seghetti A (2014) From IEEE 802.15.4 to IEEE 802.15.4e: a step towards the internet of things. In: Advances onto the internet of things. Springer, pp 135–152

  26. Touloum S, Bouallouche-Medjkoune L, Aissani D, Ouanteur C (2020) Performance analysis of the ieee 802.15. 4e tsch-ca algorithm under a non-ideal channel. Int J Wirel Mob Comput 18(1):1–15

    Article  Google Scholar 

  27. Papadopoulos GZ, Fafoutis X, Thubert P (2020) Multi-source time synchronization in ieee std 802.15. 4-2015 tsch networks. Int Technol Lett 3(2):e148

    Article  Google Scholar 

  28. Choudhury N, Matam R, Mukherjee M, Lloret J (2020) A performance-to-cost analysis of IEEE 802.15. 4 MAC with 802.15. 4e MAC modes. IEEE Access 8:41936–41950

    Article  Google Scholar 

  29. IEEE Std 802.15.4f (2012) Part 15.4: low-rate wireless personal area networks (LR-WPANs) amendment 2: active radio frequency identification (RFID) system physical layer (PHY), pp 1–72

  30. IEEE Std 802.15.4g (2012) Part 15.4: low-rate wireless personal area networks (LR-WPANs) amendment 3: physical layer (PHY) specifications for low-data-rate, wireless, smart metering utility networks, pp 1–252

  31. Chang K-H, Mason B (2012) The IEEE 802.15.4g standard for smart metering utility networks. In: 2012 IEEE third international conference on smart grid communications (SmartGridComm). IEEE, pp 476–480

  32. Righetti F, Vallati C, Comola D, Anastasi G (2019) Performance measurements of IEEE 802.15.4g wireless networks. In: 2019 IEEE 20th international symposium on” a world of wireless, mobile and multimedia networks”(WoWMoM). IEEE, pp 1–6

  33. Harada H, Mizutani K, Fujiwara J, Mochizuki K, Obata K, Okumura R (2017) IEEE 802.15.4g based wi-sun communication systems. IEICE Trans Commun 100(7):1032–1043

    Article  Google Scholar 

  34. Sum C-S, Zhou M-T, Kojima F, Harada H (2017) Experimental performance evaluation of multihop IEEE 802.15.4/4g/4e smart utility networks in outdoor environment. In: Wireless communications and mobile computing

  35. Sum C-S, Kojima F, Harada H (2013) Performance analysis of a multi-hop IEEE 802.15.4g ofdm system in multi-phy layer network. In: 2013 IEEE 24th annual international symposium on personal, indoor, and mobile radio communications (PIMRC). IEEE, pp 1538–1542

  36. IEEE Std 802.15.4j (2013) Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 4: Alternative Physical Layer Extension to Support Medical Body Area Network (MBAN) Services Operating in the 2360 MHz-2400 MHz Band, pp 1–24

  37. Wang D, Evans D, Krasinski R (2012) IEEE 802.15.4j: extend IEEE 802.15.4 radio into the mban spectrum [industry perspectives]. IEEE Wirel Commun 19(5):4–5

    Article  Google Scholar 

  38. Abbasi MAB, Nikolaou S, Antoniades MA (2016) A high gain EBG backed monopole for MBAN off-body communication. In: 2016 IEEE international symposium on antennas and propagation (APSURSI). IEEE, pp 1907–1908

  39. Wang S, Mimis K, Bocus MZ, Watkins GT, Coon JP (2013) Cognitive antenna selection relay for green heterogeneous healthcare networks. IEEE Wirel Commun 20(5):44–52

    Article  Google Scholar 

  40. IEEE Std 802.15.4k (2013) Part 15.4: low-rate wireless personal area networks (LR-WPANs) amendment 5: physical layer specifications for low energy, critical infrastructure monitoring networks, pp 1–149

  41. Xiong X, Wu T, Long H, Zheng K (2014) Implementation and performance evaluation of lecim for 5g m2m applications with SDR. In: 2014 IEEE Globecom workshops (GC Wkshps). IEEE, pp 612–617

  42. Gebremedhin BG, Haapola J, Iinatti J (2015) Performance evaluation of IEEE 802.15.4k priority channel access with DSSS PHY. In: Proceedings of European wireless 2015; 21th European wireless conference. VDE, pp 1–6

  43. Roth Y, Doré J-B, Ros L, Berg V (2016) A comparison of physical layers for low power wide area networks. In: International conference on cognitive radio oriented wireless networks. Springer, pp 261–272

  44. Kiran MPRS, Rajalakshmi P (2018) Performance analysis of csma/ca and pca for time critical industrial iot applications. IEEE Trans Ind Inform 14(5):2281–2293

    Article  Google Scholar 

  45. Alkama L, Bouallouche-Medjkoune L, Bachiri L (2020) Modeling and performance evaluation of the IEEE 802.15.4K CSMA/CA with priority channel access mechanism under fading channel. Wirel Pers Commun

  46. IEEE Std 802.15.4m (2014) Part 15.4: low-rate wireless personal area networks (LR-WPANs) amendment 6: TV white space between 54 MHz and 862 MHz physical layer, pp 1–118

  47. Sum C-S, Lu L, Zhou M-T, Kojima F, Harada H (2013) Design considerations of IEEE 802.15.4m low-rate wpan in tv white space. IEEE Commun Mag 51(4):74–82

    Article  Google Scholar 

  48. Sum C-S, Zhou M-T, Lu L, Funada R, Kojima F, Harada H (2012) IEEE 802.15.4m: the first low rate wireless personal area networks operating in TV white space. In: 2012 18th IEEE international conference on networks (ICON). IEEE, pp 326–332

  49. Kim J, Han J, Mir ZH, Ko Y-B (2017) Efficient topology construction and routing for IEEE 802.15.4m-based smart grid networks. Wirel Netw 23(2):533–551

    Article  Google Scholar 

  50. Kim J, Han J, Ko Y-B, Filali F (2015) Interleaving-based orphan channel scanning for the IEEE 802.15.4m in TVWS smart grid networks. In: 2015 seventh international conference on ubiquitous and future networks. IEEE, pp 89–94

  51. IEEE Std 802.15.4p (2014) Part 15.4: Low-rate wireless personal area networks (LR-WPANs) amendment 7: physical layer for rail communications and control (RCC), pp 1–45

  52. IEEE Std 802.15.4 (2015) IEEE standard for low-rate wireless personal area networks (WPANs), pp 1–709

  53. IEEE Std 802.15.4n (2016) IEEE standard for low-rate wireless networks amendment 1: physical layer utilizing China medical bands, pp 1–27

  54. IEEE Std 802.15.4q (2016) IEEE standard for low-rate wireless networks amendment 2: ultra-low power physical layer, pp 1–52

  55. IEEE Std 802.15.4u (2016) IEEE standard for low-rate wireless networks amendment 3: use of the 865 MHz to 867 MHz band in India, pp 1–18

  56. IEEE Std 802.15.4t (2017) IEEE standard for low-rate wireless networks amendment 4: higher rate (2 Mb/s) Physical (PHY) layer, pp 1–25

  57. IEEE Std 802.15.4v (2017) IEEE standard for low-rate wireless networks amendment 5: enabling/updating the use of regional sub-GHz bands, pp 1–35

  58. IEEE Std 802.15.4s (2018) IEEE standard for low-rate wireless networks amendment 6: enabling spectrum resource measurement capability, pp 1–51

  59. IEEE Std 802.15.4x (2019) IEEE standard for low-rate wireless networks amendment 7: defining enhancements to the smart utility network (SUN) physical layers (PHYs) supporting up to 2.4 Mb/s data rates, pp 1–28

  60. 802.15.4-2015/cor 1 (2018) IEEE standard for low-rate wireless networks corrigendum 1. pp 1–12

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynda Alkama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkama, L., Bouallouche-Medjkoune, L. IEEE 802.15.4 historical revolution versions: A survey. Computing 103, 99–131 (2021). https://doi.org/10.1007/s00607-020-00844-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-020-00844-3

Keywords

Navigation