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Abstract
Multi-agent systems constitute a wide class of decentralised systems. Their functions
are usually carried out by collaborative activities of agents. To ensure resilience of
multi-agent systems, we should endow them with a capability to dynamically recon-
figure. Usually, as a result of reconfiguration, the existing relationships between agents
are changed and new collaborations are established. This is a complex and error-prone
process, which can be facilitated by the use of formal reasoning and automated verifi-
cation. In this paper, we propose a generic resilience-explicit formalisation of the main
concepts of multi-agent systems. Based on it, we introduce corresponding specifica-
tion and refinement patterns in Event-B. Our patterns facilitate modelling behaviour
of resilient multi-agent systems in a rigorous systematic way and verification of their
properties.We demonstrate the application of the proposed approach by a case study—
a smart warehouse system.

Keywords Multi-agent systems · Resilience · Formal modelling · Event-B ·
Refinement

1 Introduction

Multi-agent systems constitute a large class of decentralised systems [9,23]. There
are many examples of multi-agent systems from different domains including robotics,
health care, manufacturing etc. Despite differences in the application domains and
correspondingly, the nature of their agents, all multi-agent systems rely on agent
collaboration to deliver their functions [15]. Moreover, the systems are expected to
cope with the unforeseen changes in their operating environment as well as internal
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failures. Hence, an important requirement imposed on the multi-agent systems is
resilience—an ability to deliver services in a dependable way despite the changes
[19].

To achieve resilience, the systems should be able to recognise the changes and
adapt to them. One of the main mechanisms to achieve resilience is dynamic recon-
figuration [13,16]. In this paper, we propose a generic formalisation of the concept of
dynamic reconfiguration of multi-agent systems and define the corresponding speci-
fication patterns for resilience-explicit modelling of multi-agent systems in Event-B.
Our formalisation introduces the notion of agent capability that dynamically changes
according to the internal system state and the changes in the operating environment.
The functional behaviour of the system is structured using the concept of goals [18].
Based on their capabilities, the agents can establish collaborations and perform their
activities in a cooperative way to achieve the required goals. We define the logical
relationships between the main generic concepts and then map them into Event-B
framework.

Event-B [1] is a state-based modelling framework for formal specification and
proof-based verification of distributed and reactive systems. The framework is sup-
ported by the Rodin platform [2] that provides us with an integrated environment
for modelling and verification. Event-B supports correct-by-construction develop-
ment paradigm, which enables a derivation of a system specification in a number of
correctness-preserving refinement steps. In this paper, we rely on our generic formal-
isation to define the modelling patterns required for specification and verification of
dynamic reconfiguration. Our patterns facilitate verification of correctness of complex
dynamically-changing agent collaboration and interactions during dynamic reconfig-
uration. We demonstrate an application of the proposed approach by a case study—a
development of smart warehouse system.

In this paper, we use Event-B refinement to unfold system architecture in a step-
wise way. Refinement allows us to incrementally introduce resilience mechanisms at
different levels of system architecture. By formally specifying agent capabilities and
their collaborations, we systematically derive the specifications of both system-level
and local reconfiguration mechanisms required to achieve resilience. Our reasoning
about resilience at different levels of abstraction facilitates verifying that they allow
the system to achieve its goal.

We believe that the proposed approach facilitates the development of complex
multi-agent systems by formalising the main concepts of dynamic reconfiguration
mechanism and demonstrating how to develop resilient multi-agent systems in a sys-
tematic and rigorous way.

2 Resilient multi-agent system

Multi-agent systems belong to a large class of distributed systems composed of asyn-
chronously communicating heterogeneous components. In our work, we focus on
studying a behaviour of multi-agent systems that should function autonomously, i.e.,
without human intervention, for the extended periods of time [13,16]. Usually, these
are different kinds of robotic systems that can be deployed, e.g., in hazardous or unac-
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cessible areas [11]. Autonomy and resilience require from a multi-agent system a
capability to monitor and adapt its behaviour in response to the external and internal
conditions. Typically, adaptability is achieved via dynamic reconfiguration.

A system configuration is a specific arrangement of the elements (components)
that compose the system [24]. A configuration can be defined by relationships and
dependencies between system elements that are established according to the missions
(or functions) of the system. Dynamic reconfiguration implies that the system is capa-
ble of changing its configuration, i.e., evolve from one configuration to another. As a
result of reconfiguration, some components might be replaced or removed from the
system, while new components being introduced. Consequently, this leads to changing
interdependencies between components and probably, also their interactions.

The purpose of reconfiguration is to ensure that the system remains operational and
dependable, i.e., achieve resilience [24]. Since the components of the system—the
agents—should perform some functions in a collaborative way, dynamic reconfigura-
tion might have unforeseen effect on agent’s relationships and interactions. It is clear
that resilience plays an important role in the design of multi-agent systems and hence,
should be addressed explicitly while reasoning about relationships between the system
components and their interactions, as we demonstrate next.

2.1 Resilience-explicit modelling of multi-agent interactions

In this section, we present a formalisation of the key concepts of resilient multi-agent
systems and resilience-explicit reasoning about collaborative multi-agent system. We
focus on formalising the notions of agents, their attributes as well as agent relation-
ships and interactions. The formalisation facilitates an analysis of logical connections
between agents and the conditions under which agent interactions result in a correct
execution of a cooperative activity. The established dynamic relationships between
the agents allow us to reason about resilience of complex agent interactions.

Agents are autonomous heterogeneous components that asynchronously commu-
nicate with each other. Each agent has a certain functionality within a system and
contributes to achieving system goals. Goals are the functional and non-functional
objectives of a system [18]. Goals constitute suitable basics for reasoning about the
system behaviour and its resilience. Resilience can be seen as a property that allows
the system to progress towards achieving its functional goals despite changes in the
internal and external operating conditions.

The goal-oriented framework provides us with a suitable basis for reasoning about
reconfigurable autonomous systems. We formulate reconfigurability as an ability of
agents to redistribute their responsibilities and restore or compensate their capabil-
ities to ensure goal reachability. Next we discuss how the notions of goals, agents,
agent capabilities and agent interactions can be used to reason about behaviour of an
autonomous resilient multi-agents system.
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2.2 Main concepts of multi-agent systems

We assume that there is a number of main (global) goals defined for the system. LetG
be a set of functional and non-functional goals that system should achieve. Goals can
be decomposed into a subset of corresponding subgoals and organised hierarchically.
In general, the goals at the same level of hierarchy are considered to be independent.
Theymight have a conflict on some system resource required for their accomplishment.
Such a conflict can be resolved by explicitly modelling the state of the resource and
locking and unlocking by the corresponding goal. Since the focus of this work is on
agent interactions and resilience, for brevity, we assume that goals are on the same
level and not conflicting with each other.

The system consists of a number of agents (components, in general). Let A be a set
containing all possible system agents. We also define agent classes. Each system agent
belongs to a particular agent class. These classes represent a partitioning of the system
agents into different groups according to their functional capabilities. In general, there
can bemany agent classesAi , i ∈ 1..n, such that∀ i ∈ 1..n,Ai ⊆ A, A1∪. . .∪An = A.
We assume that all of them are disjoint.

During the system functioning, the agents have to utilise their capabilities in order to
contribute to overall goal achievement.We defineC to be a set of all agent capabilities.
Then, we also define a relation AC (called agent capabilities) between the agents and
their capabilities as follows:

AC : A ↔ C (1)

It associates agents with their capabilities. In general, agents might have many capa-
bilities, and different agents might have the same capabilities. Changes in operating
environment or internal failures can prevent them from utilising their capabilities,
i.e., AC is a dynamic structure meaning that at the run-time, a set of current agent
capabilities might be changing. Therefore, AC is a state-dependant relation.

In practice, if the system has a small number of agent types and their capabilities,
the capabilities can be represented by corresponding separate variables.

Based on their capabilities, the agents perform the tasks contributing to achieving
the system goals. We define the following functionGC_Rel to associate the goals with
the agent capabilities:

GC_Rel : G ↔ C. (2)

Therefore, for any goal g and agent capability cj, the expression (g �→ cj) ∈ GC_Rel
implies that capability cj is required to achieve the goal g.

For example, a mobile robot might have a capability “bring a box”, which might
become unavailable if it experiences a grip failure, which, in turn, would result in
hindering achieving the goal “collect the items in a shipment”.

Additionally, we introduce the dynamic agent attribute Active, which defines a set
of the active (healthy) system agents. We call active those agents that can carry out
the tasks in order to achieve the system missions. In its turn, inactive agents are those
agents that are not currently in the system or those that are failed and thus incapable
of carrying out any tasks.

Typically, in amulti-agent system, agents interactwith each other in order to achieve
their individual or common goals. Interactions might be simple, e.g., information
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exchange, or complex, e.g., involving requests for service provisioning from one agent
to another [15].

In our work, we assume that agent interactions in a multi-agent system are based
on the specific logical connections between agents called relationships. There can be
as many relationships as necessary to describe all such connections between agents.
A relationship r between two agents can be defined as follows:

AA_Relr : A ↔ A, (3)

where r is an identifier of a relationship. AA_Relr establishes the logical connections
between two system agents of the same or different classes. In a general case, if we
want to specify a relationship involving more than two agents, we can define AA_Relr
as follows:

AA_Relr : A ↔ A ↔ . . . ↔ A (3’)

In Event-B modelling, it is more convenient to operate with a pair-wise definition
of relationship (3) rather than a general one (3’). Nevertheless, such a modelling
convenience does not prevent us from considering a general case as well.

Similarly to agent capabilities, the agent relationships are dynamic and might
change during the system execution. If this relation holds for several agents then
these agents might be or are currently engaged in a certain collaboration required to
provide a predefined system function.

We consider agent interactions to be the essential supporting mechanism of achiev-
ing system goals. Namely, to perform the required system functions, the system agents
should interact and collaborate with each other. Thus, in our work, we represent system
functions as collaborative activities of autonomous system agents. Next we present
a detailed formal analysis of component activities and component interactions while
providing a certain function and/or participating in a specific collaboration.

2.3 Agent interactions and system reconfigurability

Let us now focus on defining the essential properties of agent interactions in cooper-
ative activities. As a result, we will derive the constraints that should be imposed on
them to achieve resilience.

In multi-agent systems, we distinguish between two types of agent relationships:
static and dynamic. The static relationships are known at the system initialisation.
They do not change during the system execution. The dynamic relationships might
change during the system functioning. The dynamic relationships can be pending (i.e.,
incomplete) and resolved (i.e., completed). The pending relationships are often also
caused by a failure or disconnection of the agents previously involved in a relationship.
Moreover, an existing agent may initiate a new pending relationship with other agents.

Next we formulate a number of required properties that determine the rules for reg-
ulating correct interactions and collaborative agent activities in a multi-agent system.

Property 1 Let EAA be all interaction activities defined between agents and let EAI
be all individual agent activities. Moreover, for each agent a ∈ A, let Ea be a set of
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activities in which the agent a can be involved. Then

∀ a · a ∈ Active ∧ Ea 
= ∅ ⇒ Ea ⊆ EAA ∪ EAI

and

∀ a · a ∈ A ∧ a /∈ Active ∧ Ea 
= ∅ ⇒ Ea ⊆ EAI \ EAA.

This property defines agent interactions with respect to the agent health status. If the
agent is recovering from the failure and it is involved in some activities, these activities
are individual and not cooperative. Therefore, while modelling agent interactions, we
have to consider the agent status. However, there might be a situation, when while
participating in collaborative activity an agent might fail.

The next property concerns collaborative activities between the agents and how
these activities are linked with the inter-agent relationships.

Property 2 Let EAA be all the interactions in which active agents are involved. For
each collaborative activity ca ∈ EAA, let AA_Rel_Setca be a set of all the relationships
associated with this collaborative activity. Finally, for each collaborative activity
ca ∈ EAA, let A_ca be a set of all agents involved in it. Then, for each ca ∈ EAA,
AA_Relca ∈ AA_Rel_Setca, and any a1, a2 ∈ A_ca,

(a1 �→ a2) ∈ AA_Relca or (a2 �→ a1) ∈ AA_Relca

This property regulates the interaction activities between the agents—only the agents
that are linked by relationships can be involved into cooperative activities. In general,
some of the relationships might be pending.

Let us note that for the case, when more than two agents are to be involved in the
activity, this property can still be formulated in the same way by taking into account
the arity of the relationships AA_Relj.
Property 3. Let CA_g ∈ EAA be an agent collaborative activity associated with
the achievement of goal g ∈ G and GC_g be a required subset of agents capabilities
defined byGC_Rel. Moreover, let A_g be a set of all agents involved in a collaboration
for achieving goal g. Then for every capability cp ∈ GC_g

∃ a. a ∈ A_g ∧ a ∈ Active ∧ a �→ cp ∈ AC

This property describes the agent interaction activity required for goal fulfilment—
the agents, involved into the activity for the goal accomplishment should have the
required capabilities to achieve this goal.

In our work, we study reconfigurability as an essential mechanism of achieving
resilience of multi-agent systems. If under the current configuration the system is
not able to achieve a certain goal, it should perform a reconfiguration. As a result
of reconfiguration, an agent might receive additional responsibilities, i.e., it could
become involved into an execution of tasks that were not assigned to it initially.

We assume that agents are co-operative, i.e., they always accept the new responsibil-
ities. In this case, a new relationships between agents can be established to allow them
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to collaboratively contribute to goal achievement. At the same time, the agents are
unreliable, i.e., they might fail and cease performing their functions. This might also
trigger system reconfiguration. As a result, the responsibilities of the failed agents can
be re-allocated to the healthy ones. If an agent is healthy and idle, it can be deployed
to perform the functions of failed agents or it might also become engaged in an execu-
tion of some other task, e.g., to improve the system performance and/or increase the
likelihood of successful task completion.

The reconfiguration mechanisms ensure that the system progresses towards achiev-
ing its goals despite agent failures or becomes more performant by using its agents
more efficiently. Since reconfiguration is a powerful technique for achieving resilience,
we have proposed a general formalisation of the reconfigurability concept, by connect-
ing it with the system goals, agents, agent capabilities and their inter-relationships.
In this paper, we demonstrate how our generic formalisation can be supported by an
automated formal framework—Event-B, which we overview next.

3 Modelling and refinement in Event-B

Event-B is a state-based formal approach that promotes the correct-by-construction
development paradigm and formal verification by theorem proving. In Event-B, a
systemmodel is specified using the notion of an abstract state machine [1]. An abstract
statemachine encapsulates themodel state, represented as a collection of variables, and
defines operations on the state, i.e., it describes the dynamic behaviour of a modelled
system. The important system properties that should be preserved are defined asmodel
invariants. Usually a machine has the accompanying component, called context. A
context is the static part of amodel andmay include user-defined carrier sets, constants
and their properties (defined as model axioms).

The system dynamic behaviour is described by a collection of atomic events defined
in the machine part. Generally, an event has the following form:

evente =̂ any xe where Ge then Re end

Here evente is the unique name of the event, xe is the list of local variables, and Ge is
the event guard—a predicate over the model state. The body of an event is defined by a
multiple (possibly nondeterministic) assignment to the system variables. In Event-B,
this assignment is semantically defined as the next-state relation Re. The event guard
defines the conditions under which the event is enabled, i.e., its body can be executed.
If several events are enabled at the same time, any of them can be chosen for execution
nondeterministically.

Systemdevelopment in Event-B is based on a top-down refinement-based approach.
A development starts from an abstract specification that nondeterministically models
the most essential functional system behaviour. In a sequence of refinement steps, we
gradually reduce nondeterminism and introduce detailed design decisions. In partic-
ular, we can add new events, refine old events as well as replace abstract variables
by their concrete counterparts. The gluing invariants are used to link the abstract and
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concrete state variables. A correct refinement ensures that the properties of defined in
an abstract specification are also preserved in the concrete one.

The consistency of Event-B models—verification of model well-formedness,
invariant preservation as well as correctness of refinement steps—is demonstrated
by discharging the relevant proof obligations. For instance, to verify invariant preser-
vation, we should prove the following logical formula:

A(d, c), I (d, c, v), Ge(d, c, x, v), Re(d, c, x, v, v
′) � I (d, c, v′),

where A are the model axioms, I are the model invariants, d and c are the model
constants and sets respectively, x are the event’s local variables and v, v′ are the
variable values before and after event execution. The full definitions of all the proof
obligations are given in [1].

The Rodin platform [2] provides an automated integrated support for formal mod-
elling and verification in Event-B. The platform provides us with the facilities for
creating and editing models as well as model animation. Moreover, it also gener-
ates and tries to automatically prove the required proof obligations. When the proof
obligations cannot be discharged automatically, the user can attempt to prove them
interactively using a collection of available proof tactics.

4 Modelling agent interactions in Event-B

In this section, we demonstrate how the generic formalisation presented in Sect. 2 can
be instantiated within Event-B framework.

Event-B separates the static and dynamic parts of amodel, putting them into distinct
yet dependent components called a context and amachine. All the static notions of our
formalisation including the set of all possible goals, agents and capabilities (G, A and
C, respectively) aswell as different static structures defining various interdependencies
between the elements are defined in context. The latter also includes the (initial) values
of agent capabilities, the logical goal function over the required capabilities and the
initial agent relationships (AC_ini t , GC_Rel, AA_Rel_ini ti , correspondingly). We
introduce static notions as sets and constants of a model context and define their
properties as a number of context axioms.

The machine part of the Event-B specification defines system dynamic. Therefore,
in the machine part, we should represent all dynamic notions introduced in our for-
malisation, e.g., Active, AA_Reli , etc. They are modelled as the corresponding model
variables. The types of the variables as well as logical relations between the defined
notions are represented as model invariants and predicate expressions. Agent activi-
ties are modelled by the corresponding model events. Below we will discuss several
generic cases of agent activities and agent interactions typical for a multi-agent system
and show how they can be modelled in Event-B.

We start by defining a variable Goals_state that models the current state of the
system goals:

Goals_state ∈ G → ST AT ES,
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where ST AT ES = {incompl, compl}. The variable Goals_state obtains the value
compl when the main goal is achieved. Otherwise, it has the value incompl. Initially,
none of the goal is completed, i.e., the status of a goal is incompl. After a successful
accomplishment, the goals status changes to compl, i.e., Goals_state(g) = compl.

To abstractly model the process of achieving the goal, we define the event
Reaching_Goal. It might change the value of the variable Goals_state from incompl
to compl. The system continues its execution until all goals are reached. Note that
this event is parametrised - the parameter g designates the id of the goal in process of
getting achieved.

The anticipated status of the event indicates that we promise to prove the conver-
gence of this event, thus showing reachability of any system goals. The actual proof
of such convergence is postponed until some later refined model, which has enough
implementation details to prove the overall convergence based on a formulated variant
expression. Alternatively, we can rely on ProB, a model checker for Event-B, and ver-
ify goal reachability by formulating and checking the corresponding temporal logic
property for the considered system models.

Reaching_Goal status anticipated
any g, result
where g ∈ G

Goals_state(g) = incompl
result ∈ STATES

then Goals_state(g) := result
end

Next we model a simple case of agent local activities—joining and leaving the sys-
tem location (system environment). This abstraction is suitable for modelling agent
failures and introducing new agents into the system (e.g., to model an agent recovery
or replacement). In the machine part of Event-B specification, we define the corre-
sponding events Activation and Deactivation as presented below.

Activation =̂
any a
where a ∈ A ∧ a /∈ Active
then Active := Active ∪ {a}
. . .

end

Deactivation =̂
any a
where a ∈ Active ∧

∀ i . a /∈ dom(AA_Reli ) ∧
∀ i . a /∈ ran(AA_Reli ) . . .

then Active := Active \ {a}
. . .

end

They model simple cases when an agent a joins or leaves the system. Here we do not
put any specific restrictions on when such behaviour might occur, since it depends on
the specific system properties. In the event Deactivation, we only check that that an
agent should not be involved in any relationships with the other agents before leaving
the system.

The event InteractionActivity abstractly models a possible interaction between two
agents a1 and a1 in order to achieve the goal g. Here, in the event guard, we specify
conditions when this interaction can happen. While formalising these conditions, we
take into consideration the properties defined in our generic formalisation in Sect. 2.
In particular, we require that only active agents can interact with each other. Moreover,
each agent should also have specific capabilities to participate in the interaction asso-
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ciated with achieving the goal g. Here we describe a generic case of agent interaction
and do not specify which particular actions are performed upon this event execution.

InteractionActivity =̂
any a1, a2, c1, c2, g
where a1 ∈ Ag ∧ a2 ∈ Ag ∧ a1 
= a2 ∧

a1 ∈ Active ∧ a2 ∈ Active ∧
a1 �→ c1 ∈ AC ∧ a2 �→ c2 ∈ AC ∧
g ∈ G ∧ ran({g} � GC_Rel) = {c1, c2} ∧
((a1 �→ a2) ∈ AA_Rel_ca ∨ (a2 �→ a1) ∈ AA_Rel_ca) ∧ . . .

then . . .
end

An initiation of a new relationship between agents can be specified by the event
InitiateRelationshipca given below. In the event guards, we check that all the required
agents are active, eligible and ready to enter the relationship. Here the condition
Elig_ca(c1, c2) = T RUE abstractly models specific eligibility conditions of the
agents that should be checked before their interaction ca can be initiated.

InitiateRelationship =̂
any a1, a2, c1, c2
where a1 ∈ A ∧ a2 ∈ A ∧ a2 
= a2 ∧

a1 ∈ Active ∧ a1 ∈ Active ∧
a1 �→ c1 ∈ AC ∧ a2 �→ c2 ∈ AC∧
a1 �→ a2 /∈ AA_Rel_ca ∧
Elig_ca(c1, c2) = TRUE ∧ . . .

then AA_Rel_ca := AA_Rel_ca ∪ {a1 �→ a2}
AA_Rel_ca := AA_Rel_ca ∪ {a2 �→ a1}
. . .

end

Similarly, we can model collaborating activities involving any number of agents.
Next we will discuss how such agent interactions allow us to build different mech-

anisms to ensure system resilience.
Modelling Resilience Mechanisms in Multi-Agent Systems. To model different
resilience mechanisms in the context of multi-agent systems, we rely on the con-
cepts and properties discussed above. The resilience mechanisms can be introduced at
both—system and local (i.e., individual agent) levels. The system-level mechanisms
involve a number of agents, where the number depends on a scale of occurred fail-
ure or a change. We can distinguish between the structural resilience mechanisms
(i.e., forming the new collaborations) and the compensating resilience mechanisms
(i.e., introducing new agents or capabilities into the system). Small scale failures or
changes do not require system-level coordination and can be handled locally, i.e., by
an agent itself. For instance, a robot by itself can handle its internal transient failures
or mitigate an impact of an unexpected change, e.g., perform an obstacle avoidance
maneuver to avoid a collision with an unexpectedly appeared object.

To model possible loss of some agent capability (e.g., due to agent failure), we
define an event LoseCapability. As a result of an event execution, a capability c will
be lost. The RestoreCapability event models a simple case of agent reconfiguration
(as a restoring of the lost capability)

123



Modelling resilient collaborative multi-agent systems 545

LoseCapability =̂
any a, c
where a ∈ A ∧ a ∈ Active ∧

a �→ c ∈ AC ∧ . . .

then AC := AC \ {a �→ c}
end

RestoreCapability =̂
any a, c
where a ∈ A ∧ a �→ c ∈ AC_init∧

a �→ c /∈ AC ∧ . . .

then AC := AC ∪ {a �→ c}
end

A local resilient mechanism can be modelled in Event-B as the following generic
event LocalResilientMechanism given below. Upon detection a change in the system
or its environment, an agent performs the required remedy actions to tolerate this
disturbance. Here we should check that an agent is healthy, has required capabilities
and eligible to perform these actions.

LocalResilientMechanism =̂
any a1, c1, d_lm
where disturb_condition(d_lm) = T RUE

a1 ∈ A ∧ a1 ∈ Active ∧ a1 �→ c1 ∈ AC ∧
Elig_lm(c1) = TRUE ∧ . . .

then . . . // core agent functionality
end

The reconfiguration mechanism can also be supported by collaborative agent
behaviour, where agent collaborations are regulated by relationships between agents.
As we discussed before, we can specify an initiation of a new relationship between
agents by the event InitiateRelationship. However, when some agents of the initiated
relationship are still unknown (e.g., should still be selected), this situation can be
defined by the following event InitiatePendingRelationship.

InitiatePendingRelationship =̂
any a, c, c_p
where a ∈ A ∧ a ∈ Active ∧ a 
= a0 ∧

a �→ c ⊆ AC ∧ c_p ∈ C ∧
Elig_ca(c, c_p) = TRUE
a �→ a0 /∈ AA_Rel_Pending_ca ∧ . . .

then AA_Rel_Pending_ca := AA_Rel_Pending_ca ∪ {a �→ a0}
. . .
end

Here we use the pre-defined element a0 to designate a missing agent in the pending
relationship. In this event, an agent a initiates a new pending relationship, where the
place for a second agent of the particular type is currently vacant (i.e., is marked by
a0). The resulting pending relationships is added to the set of pending relationships
AA_Rel_Pendingd_ca.

The pending relationship is resolved, when the corresponding agent “joins” this
collaborative activity. The event AcceptRelationship abstractly models this situation.
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AcceptRelationship =̂
any a1, a2, c1, c2
where a1 ∈ Active ∧ a2 ∈ Active ∧

a1 �→ c1 ∈ AC ∧ a2 �→ c2 ∈ AC ∧
Elig_ca(c1, c2) = TRUE ∧
a1 �→ a0 ∈ AA_Rel_Pending_ca ∧ . . .

then AA_Rel_ca := AA_Rel_ca ∪ {a1 �→ a2}
AA_Rel_Pending_ca := AA_Rel_Pending_ca \ {a1 �→ a0}
. . .

end

Let us note, that in a similar way, we can model all collaborating activities involving
any number of agents.

In our work, we rely on the assumption that agents behave in a cooperative
way. Therefore, the reconfiguration mechanisms are enabled by a collaborative agent
behaviour, where agent collaborations are regulated by relationships between agents
as defined by properties 2 and 3 defined in Sect. 2. The system reconfiguration mech-
anisms can be based on a reallocation of the execution of certain functional tasks from
some components (e.g., failed) to the another (e.g., healthy) ones. Such a mechanism
guarantees system resilience in the presence of agent failures or other changes.

Next we will demonstrate an application of the proposed formal framework and
present a case study—a smart warehouse system. We will show how our generic for-
malisation presented in Sect. 2 and the Event-B modelling patterns can be instantiated
and used to model a resilient multi-robotic systems.

5 Autonomous resilient smart warehouse system

5.1 Case study description

A smart warehouse is a fully automated storage and shipment facility. It is equipped
with the autonomous robots that can transport labelled boxes (goods) between the
multi-level shelves and collection points. Since arrival and dispatch of the boxes is
outside of the scope of our study, we assume that the boxes just appear on the conveyor
belt when they arrive to the warehouse and should be transported to the shelves. In the
similar way, the boxes disappear from the conveyor belt when they are brought to it
for shipment.

Each box has a unique RFID tag attached to it.When a box arrives at the warehouse,
the warehouse management system (WMS) assigns it the place at which it should be
stored. Correspondingly, in its database WMS keeps track of box-place assignments.

Each robot is equipped with an extendable arm, which can pick up a box from a
shelf and put it on the robot’s storage space (located on its base). It can also take the
box from the robot’s base and put it on the shelf. The arm is equipped with the RFID
tag reader, i.e., it can check the RFID of the box that it handles.

Each robot has a unique ID known to WMS. The robot can communicate with
WMS. It receives the orders to bring the box from the corresponding place or fetch
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and bring it to the collection points. WMS sends the robot both the ID of a place and
RFID of the box. WMS also sends the routes to the robots.

The robot has a battery and a corresponding sensor that detects the level of the
battery charge. If robot’s battery reaches its critical value (but still enough to perform
some actions), the robot should stop the execution of the current task, move and leave
the box at the specific place, and then travel to a charging station.

If a robot requires to charge its battery, it first sends a request for charging to its
predefined (attached) station. If this station is able to charge this robot, it confirms
the request. However, due to a possible failure of a charging station or its overload,
the attached charging station can be changed. In this case, a robot will contact other
station in its proximity until some station agrees to provide it with charging.

A robot communicates with WMS when it fails to complete its operation due to
some reasons. It also should send a notification to WMS when it decides to abort its
current assignment and move to a charging station. In this case, WMS will reassign
robot’s task to the next robot.

Each robot is also equipped with a radar. It allows a robot to detect obstacles on
its way. It also recognizes whether the obstacles are moving or static and estimates a
distance to them. In general, WMS plans routing for all robots in such a way that the
obstacles are avoided. However, it applies to the obstacles known at the time of route
planning. Hence, if a box is accidentally dropped or some robot’s motor fails and the
robot stops then a moving robot can encounter an obstacle at an unexpected location.
In this situation, the robot should on its own, i.e., without notifying WMS, execute a
collision avoidance maneuver. Since such a maneuver might result in a deviation from
the planned route. Hence, after avoiding a collision with an obstacle, the robot should
also notify WMS, which should decide whether the route should be recalculated

Due to some unforeseen deviations while en-route, some robots might run into a
risk of collision. For instance, they might be moving towards each other and their
planned paths intersect. Such a situation should be handled by the collaborative robots
actions. The robots will follow a predefined procedure to determine the manoeuvres
to be performed in order to avoid the imminent collision. Such unforeseen situations
are handled by the robots locally, i.e., without coordination of WMS. After robots
perform the collision avoidance procedure, their routes will be recomputed by WMS.

The described warehouse system has a heterogeneous architecture and consists of
different types of agents (robots and charging stations). The possible changes in the
system and its operating environment include components failures (both robots and
charging stations), static and dynamic obstacles appearance as well as sudden robot’s
battery depletion. Thus to achieve resilience a system should stay operational despite
all such unpredictable changes.

To achieve overall goals, the components of the smart warehouse system should
behave cooperatively. However, heterogeneity of the robots and variety of possible
conditions pose a significant challenge in ensuring correctness of systembehaviour and
resilience. Hence, we will rely on formal Event-B modelling to derive a specification
of a resilient WMS.
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5.2 Event-B development of a smart warehouse system

Let us now overview the key modelling aspects of our Event-B development of a
smart warehouse system (SWS). The main focus of our development is a specification
of complex collaborative behaviour of agents in SWS. In particular, we focus on
modelling the collaborative behaviour of agents within battery charging procedure
and collision avoidance.

While modelling, we rely on our generic formalisation presented in Sect. 2 that
covers the notions of system agent, agent capabilities and statuses as well as agent
relationships. Moreover, we employ the Event-B refinement technique to gradually
unfold the system architecture and functionality. This allows us to represent the system
agents, model their local behaviour (both normal and abnormal) as well as introduce
agent collaborative interactions for ensuring system resilience.Wewill use the generic
development solutions discussed in Sect. 4.

Initial model: System Goal Modelling We start our development with an abstract
model, an excerpt fromwhich is shownbelow.Essentially, it representing the behaviour
of a smart warehouse system as a process of achieving the main goal—handling
requests for services, which arrive from the system responsible for the logistics. WMS
receives such requests and processes them. The actual execution of such requests is
handled by the robots.

Machine SWS_m1 refines SWS_m0
Sees SWS_c1
Variables requests, request_status
Invariants requests ⊆ REQUEST S ∧ request_status ∈ requests → ST ATUS ∧ . . .

Events

Initialisation =̂ …
RequestArrival =̂
any rq
where rq ∈ REQUESTS ∧

rq /∈ requests
then requests := requests ∪ {rq}

request_status(rq) := incompl
end

RequestService =̂
any rq, res
where rq ∈ requests∧
request_status(rq) = incompl ∧ res ∈ STATUS

then request_status(rq) := res
end

…

Modelling Agents and their Interdependencies In our first refinement, we introduce
system agents, define some relationships between them as well as model the main
agent activities.

In the context part of our Event-B specification, we represent system components
by a finite non-empty set of agents AGENTS and its partition to sets of ROBOTS and
CSTATIONS, modelling robots and charging stations correspondingly. This set might
contain the ids of all agents in the system.

In the machine part, we define the variable robots ⊆ ROBOTS to model the active
robot agents and the variable cstations ⊆ CSTATIONS to model the active charging
stations. By “active” we mean such robots and stations that are currently present in the
warehouse location and are functional. The events ActivateRobot, DeactivateRobot,
ActivateStation,DeactivateStationmodel joining and leaving warehouse location by
the system agents.

Each robot joining the system should be associated with a charging station. To
model this relationship, we introduce the variable Attached, which is defined as a total
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function associating the robots with the charging stations:

Attached ∈ robots → cstations.

Attached is a representation of one of possible relationships between system agents
discussed in Sect. 2. In the event ActivateRobot, we specify to which charging station
a new robot will be attached:

ActivateRobot =̂
any rb, cs
where rb ∈ ROBOTS ∧ rb /∈ robots ∧ cs ∈ cstations
then robots := robots ∪ {rb}

Attached := Attached ∪ {rb �→ cs}
end

Here the guard cs ∈ cstations ensures preservation of a specific instance of the
Property 1: only the active charging stations are assigned to the robots. The remaining
events model agents leaving a system in a similar way.

WMS issues orders—assigns the tasks to bring a box from/to a shelf position—to
robots. To assign such a task, WMS chooses an idle robot and requests its battery sta-
tus. ThenWMS either commands the robot to bring a box ormove to a certain charging
station. In the former case, WMS chooses another robot for the assignment. We model
this behaviour by abstract events RequestBatteryLevel and AssignRobotTask (given
below). While assigning a task, we ensure that a robot is idle and a task is not cur-
rently being performed by any other robot. Here we also check whether the current
battery level is sufficient to perform a task. The current battery level defines one of
the conditions of availability of the robot capability required to perform a task. We
use an abstract function b_min that returns battery level required for a task. Let us
note that in our case study, it is more convenient to model different agent capabilities
as the corresponding model variables instead of aggregating them into one theoretical
concept AC introduced in Sect. 2. While leaving the generic notion of agent capability
AC intact, such a modelling style improves readability of Event-B specification and
simplifies the proofs.

AssignRobotTask =̂
any rb, tk
where rb ∈ robots ∧ rb /∈ ran(Assigned_Task) ∧ task_status(tk) = incompl ∧

tk ∈ TASKS ∧ tk /∈ dom(Assigned_Tasks) ∧ batter y(rb) > b_min(tk)
then

Assigned_Tasks := Assigned_Tasks ∪ {tk �→ rb}
end

The dynamic system behaviour is represented by the process of achieving system
goals by decomposing them into tasks and assigning to the agents—goal assignment.
A task can be “assigned” to a robot, which will try to perform it:

Assigned_Tasks ∈ TASKS �� ROBOTS.

Here �� denotes a partial injection. The function is injective because we assume
that an agent can not perform more than one task simultaneously. Obviously, only
uncompleted task can be assigned to a robot for execution. This property is formulated
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as a model invariant:

∀ tk. tk ∈ dom(Assigned_Tasks) ⇒ Task_status(tk) = incompl.

The robot failures have impact on the whole behaviour of the warehouse system.
Even if a task has been assigned to a healthy robot, a task cannot be completed if
that robot fails during task execution or becomes incapable of completing its assigned
task due to, e.g., battery depletion. To model this behaviour, we define two events
RobotTaskSuccess and RobotTaskFailure, which respectively model successful and
unsuccessful execution of a task by the robot. If the robot fails to achieve the assigned
task, its task can be reassigned to another robot capable of achieving it.

A robot failure results in loosing some capability. Therefore, we rely on our defini-
tions of agent capabilities (1) and association of goals with capabilities (2) to decide
whether a failure prevents a robot from achieving its assigned task. Moreover, we rely
on the same definitions to select a robot capable of carrying the task, which should be
(re)-assigned.

Modelling Agent Interactions In next refinement steps, we model the agents inter-
actions required to contribute to overall goals achievement. While modelling such
interactions, we should introduce restrictions on the conditions under which these
activities can happen, e.g., only the agents that are linked by specific dynamic rela-
tionships can be involved in the corresponding interaction.

First, we discuss a collaborative behaviour between a robot and a charging station.
Let us consider a casewhen a robot needs to charge its battery. During a task execution,
a robot constantly monitors its battery level. When a robot detects that it is required
to charge the battery, it halts the current task and, if it carries a box, leaves a box in
a designated temporal storage area. Then a robot sends a request for charging to its
attached charging station. If this charging station can serve a robot (it is either free,
or can put a robot into a queue), it accepts the request from a robot. Otherwise, the
station rejects the request and the robot re-sends its request to another station. When
the charging station is confirmed, the robot moves to this station. After completing
charging, a robot notifies WMS and becomes ready to continue its service.

This scenario is an example of a collaborative activity between two agents—a
robot and a charging station. It can be modelled according to the generic events
InitiateRelationship andAcceptRelationship, InteractionActivity presented in Sect. 4
and relies on the definitions and properties of agent capabilities. Below the event
ChargingRequest models sending a request from a robot to its corresponding avail-
able charging station, while the event AcceptChargingRequest models
acceptance of a request by a charging station. Here we check capability of a station to
serve a robot by formulating conditions on a station availability (cs /∈ occupied) and
station capacity (capacity(cs) < max_num), for these events correspondingly.
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ChargingRequest =̂
any rb, cs
where rb ∈ robots ∧ cs ∈ cstations ∧ Attached(rb) = cs ∧

rb �→ cs /∈ RequestToStation ∧ cs /∈ occupied
then RequestToStation := RequestToStation ∪ {rb �→ cs}
end

AcceptChargingRequest =̂
any rb, cs
where rb ∈ robots ∧ cs ∈ cstations ∧ rb �→ cs ∈ RequestToStation ∧

capacity(cs) < max_num ∧ . . .

then RequestToStation := RequestToStation \ {rb �→ cs}
ChargingRel := ChargingRel ∪ {rb �→ cs}
capacity(cs) = capacity(cs) + 1

end

If the attached charging station is not able to serve a robot, it rejects a request.
In this case, the robot re-sends a request until another station accepts a request
for charging. These behaviour is represented by RejectChargingRequest and
ResendChargingRequest events. If all the stations are not able to serve a robot, a
robot notifies WMS about the current situation. In this case, WMS will resolve this
situation (e.g., WMS will “force” some charging station to put a robot in a queue).

Collaborative Collision Avoidance Interactions Next we focus on modelling of the
robot cooperation, which is required to avoid a possible collision.

While moving around a warehouse location, a robot monitors an appearance of
obstacles on its way. As soon as a robot’s radar detects an object on its way and
recognises whether it is moving or static, a robot stops its movement. Then the robot
performs the corresponding collision avoidance procedure, which depends on whether
the obstacle is static or moving. Next we discus the case when the detected obstacle
is moving, i.e., it is another robot.

When a robot rb1 detects a possible collision with a dynamic obstacle—another
robot, rb2, it initiates a collision avoidance routine. It tries to establish a communi-
cation with the robot rb2 that is also a subject to a collision. A robot rb1 initiates
a new relationship by sending a request for collision avoidance (as modelled by the
event RequestToAvoidCollision). Here the condition CloseProximity(rb1) = rb2
checks if both robots are linked by a relationship “close proximity” as regulated by
Property 2.

As soon as a robot rb2 accepts this request, the robots will agree on the next steps
to be performed (depending on where the robots are). Collision avoidance follows
a protocol to determine the maneuvers to perform in order to avoid the imminent
collision (for brevity, we omit its detailed modelling). After a danger of collision is
removed, the robots notify WMS and continue executing their tasks.
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RequestToAvoidCollision =̂
any rb1, rb2
where rb1 ∈ robots ∧ rb2 ∈ robots ∧ CloseProximity(rb1) = rb2 ∧

rb1 �→ rb2 /∈ CollisionAvoidanceRequest∧
ca_module(rb1) = T RUE ∧ ca_module(rb2) = T RUE ∧ . . .

then CollisionAvoidanceRequest := CollisionAvoidanceRequest ∪ {rb1 �→ rb2}
end

AcceptRequestToAvoidCollision =̂
any rb1, rb2
where rb1 ∈ robots ∧ rb2 ∈ robots ∧ rb1 �→ rb2 ∈ CollisionAvoidanceRequest ∧

ca_module(rb1) = T RUE ∧ ca_module(rb2) = T RUE ∧ . . .

then CollisionAvoidanceRequest := CollisionAvoidanceRequest \ {rb1 �→ rb2}
CollisionAvoidance := CollisionAvoidance ∪ {rb1 �→ rb2}

end

In case a robot rb1 that initiates a collision avoidance relationships does not get a
reply from another robot rb2, it will notify WMS about this situation. WMS will try
to communicatewith the robot rb2, and rb1 willwait for nextWMScontrol commands.
Let us note, that in this case, we have also adopted the modelling patterns defined by
the generic events InitiateRelationship and AcceptRelationship, InteractionActivity
presented in Sect. 4.

Let us note that agent interactions and cooperative activities in the smart warehouse
system are strongly dependant on communication. Communication is a critical aspect
of ensuring system resilience. The robots communicate with each other to avoid pos-
sible collisions. Moreover, the robots communicate with the charging stations in order
to charge their batteries and continue tasks. Finally, the reliable communication is
required for the robots to receive the task assignments from WMS, report about task
completion and their status or deviations in executing the assigned tasks. In this paper,
since we focused on modelling resilience mechanisms relying on agent collaboration,
we assumed that the communication is reliable. However, in our previous work [27],
we have also studied the problem of unreliable communication and formally specified
a communication protocol that ensures correct functioning of a multi-robotic system
in presence of message losses and agent disconnections.

In our formal development, we have specified a number of collaborative activi-
ties, which the agents perform to achieve the system goals. The collaborations are
established dynamically and their status changes when the state of the system or the
agents changes. Event-B allowed us to formally define and verify inter-tangled agent
interactions at different levels of abstraction. We have demonstrated the collaborative
activities that are carried at the system level as well locally. Overall, the formal devel-
opment in Event-B has resulted in building a clean and well-structured architecture of
a multi-agent system.

6 Conclusions and future work

6.1 Conclusions

In thiswork,wehave presented a formal approach to the development of resilientmulti-
agent systems.We have introduced a generic formalisation of the concept of a dynamic
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reconfiguration based on the notions of agent capabilities and collaborations. Such a
formalisation has facilitated defining the specification patterns for modelling resilient
multi-agent systems in the formal modelling and verification framework—Event-B.
In this paper, we focused on the formal analysis of dynamic system reconfiguration
as the main mechanism for achieving system resilience. We have shown that the
dynamic reconfiguration can be performed at different architectural levels. The system
level reconfiguration requires a coordination between several agents, while a local
reconfiguration can be performed by an individual agent.

We have demonstrated the use of our approach by a case study—a formal specifica-
tion of a smart warehouse system. We have shown how to rigorously define different
reconfiguration mechanisms required to achieve resilience. Formal modelling and
refinement have facilitated the process of specifying complex reconfiguration proce-
dures at different levels of abstraction and formally verifying correctness of agent
interactions not only in nominal conditions, but also in presence of failures or dynam-
ically emerging unpredicted conditions.

In this work, we have relied on formal modeling and verification in Event-B. A
system specification in Event-B is derived via a number of correctness-preserving
refinement steps. In this paper, we used refinement to unfold system architecture
and model reconfiguration mechanisms at different architectural levels. A gradual
introduction of specification details helped us to derive the specifications of com-
plex reconfiguration mechanisms in a systematic way. By incrementally increasing
complexity of the introduced resilience mechanisms, we were able to systematically
model intertangled agent interactions as well as represent both system-level and local
reconfiguration mechanisms within a single system specification.

Event-B has a mature automated tool support—the Rodin platform. The plat-
form has provided us with an integrated modelling and verification environment.
Since Event-B adopts the proof-based approach to verification, in our modelling,
we were not constrained by the state-space of the system. Hence, we could model
non-deterministically occurring failures or changes and specify agents behaviour and
collaboration in different situations. As a result, we were able to verify whether the
introduced reconfiguration mechanisms allow the system to achieve its goals, i.e.,
ensure resilience. We believe that this is a promising direction in formal modelling
and verification of multi-agent systems due to its scalability both in terms of the num-
ber of the agents and reconfiguration scenarios. The automated tool support—Rodin
platform—automatically generated required proof obligations and discharged major-
ity of them automatically.

The majority of the approaches for verifying properties of multi-agent systems rely
on model checking. Model checking supports an explicit verification of goal reach-
ability using a temporal logic representation of the reachability property. However,
since it relies on checking all possible state transitions, to avoid a state explosion, it
would also require to reduce the number of agents as well as modelled failures or
deviations. Moreover, it would be hard to represent the architectural hierarchy of the
resilience mechanisms, which would make reasoning about resilience less straightfor-
ward. In our work, goal reachability is modelled implicitly, i.e., by representing the
fact, that all the tasks required to achieve the goal are either executed or executable,
i.e., there are agents, which have the required capabilities to carry them. However,
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in out approach we were free from the restrictions imposed by the model checking
approach. Hence, we believe that our approach is beneficial for modelling complex
resilient multi-agent systems with a large number of heterogenous agents, which is
typical, e.g., for multi-robotic applications.

In this paper, we have taken a logic (qualitative) view on analysing system resilience
and focused on development and verification of different reconfiguration mechanisms
and agent collaboration. As a future work, it would be interesting to combine the pro-
posed approachwith quantitative stochastic reasoning [25]. Thiswould enable not only
design but also the assessment of different reconfiguration strategies as well as differ-
ent system resilience attributes. Another interesting research direction, is to define a
richer set of patterns modelling different forms of collaboration and reconfiguration.

7 Related work

A multi-agent system represents a popular paradigm for modelling complex and dis-
tributed systems. An overview of the literature on multi-agent systems (MAS) [28]
reveals a significant amount of research devoted to different agent organisation con-
cepts, agent specification languages and platforms, modelling and verification of the
agent behaviour, etc. Various methodologies and tools have been proposed for design,
development and verification ofMAS: AUML [4], Gaia [26], MaSE [8], ADELFE [5],
Tropos [7], etc. However these approaches are limited to provide rigorous reasoning
about agent behaviour as well as agent interactions. In our workwe attempt to formally
model each individual agent as well as the dynamic behaviour of the overall system.
Moreover, employed Event-Bmodelling method was capable of rigorously describing
all the essential aspects of collaborative behaviour in MAS.

Similar to our work, the authors in [10] propose a set of general principles from
which MAS may be designed (in particular, for capturing the organisational structure
of MAS). However, our formalisation covers a more wide range of aspects of MAS
and agent behaviour (agents capabilities, statuses, relationships, interactions and col-
laborative activities).

The work [12] presents the cooperative motion and task planning scheme for MAS.
The presented approach is applicable to MAS where the agents have independently
assigned local tasks. In contrast, in our work we consider cooperative agent behaviour,
where an agent might take responsibility for a specific task or participate in a collab-
oration depending on its available capabilities.

Reconfiguration in MAS is studied also in work [22], where a framework for
development, verification and execution of MAS is presented. In this work, the recon-
figuration is triggered as soon as real-time requirements are not satisfied (e.g., a certain
deadline for task accomplishment is expired). In contrast, in our approach, reconfig-
uration is triggered as soon as changes in system and its environment violate safety
issues associatedwith a system behaviour or prevent a system from achieving its goals.

System adaptation based on the assume-guarantee concept has been studied inwork
[14]. Inverardi et al. propose a framework that allows the developers to efficiently
define under which conditions adaptation can be performed by still preserving the
desired system invariant properties. The framework also allows the designers to split
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the system into parts that can be substituted. The special conditions are formulated
and has to be proven at run-time to guaranteeing the correctness of adaptation. In our
work, the reconfiguration mechanisms are already defined at development phase and
are incorporated into the system architecture. And, in the case of failures or changes,
the system is able to reconfigure by changing interdependencies among agents, as well
as between agents and goals.

The work [29] introduce a meta-model of MAS that aims at defining the key con-
cepts and interdependencies between them that should be addressed by a formalmodel.
The authors also demonstrate how such a meta-model can facilitate construction of a
formal model in Z. However, in our work the used refinement technique and associated
automated verification tool support of Event-B provide us with a more scalable basis
for constructing complex and detailed system specifications.

Fault tolerant aspects ofMAS inEvent-Bhave been undertaken byBall andButler in
[3]. They present a number of informally described patterns that allow the developers to
design fault tolerance mechanisms into formal models. In our approach fault tolerance
mechanism becomes a part of actions for ensuring resilience of MAS. Moreover, we
have formalised a more advanced fault tolerance scheme that relies on agent dynamic
reconfiguration to guarantee system resilience and goals achievement.

In this work we focused on providing the logical reasoning of the relationships
between agents and their interactions. However, we still have abstracted away from
some features that could be interesting to study in the future. As a possible future
direction, it would be interesting to combine the presented approach with the resilient-
explicit goal-oriented refinement process that we proposed in [17]. In this work, the
goal-oriented framework provided us with a suitable basis for reasoning about recon-
figurability. Combined view would allow us to define reconfigurability as an ability of
agents to redistribute their responsibilities via correct interactions and collaborations
to ensure goal reachability. The resulting formal systematisation can be used then as
generic guidelines for formal development of reconfigurable systems.
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