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Abstract. The CAP Theorem shows that (strong) Consistency, Avail-
ability, and Partition tolerance are impossible to be ensured together.
Causal consistency is one of the weak consistency models that can be
implemented to ensure availability and partition tolerance in distributed
systems. In this work, we propose a tool to check automatically the con-
formance of distributed/concurrent systems executions to causal consis-
tency models. Our approach consists in reducing the problem of checking
if an execution is causally consistent to solving Datalog queries. The re-
duction is based on complete characterizations of the executions violating
causal consistency in terms of the existence of cycles in suitably defined
relations between the operations occurring in these executions. We have
implemented the reduction in a testing tool for distributed databases,
and carried out several experiments on real case studies, showing the
efficiency of the suggested approach.
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1 Introduction

Causal consistency [21] is one of the most implemented models for distributed
systems. Contrary to strong consistency [18] (Linearizability [19] and Sequen-
tial Consistency [20]), causal consistency can be implemented in the presence of
faults while ensuring availability. Several implementations of different variants
of causal consistency (such as causal convergence[23] and causal memory [7, 24])
have been developed i.e.,[8, 12, 13, 22, 25, 26]. However, the development of such
implementations that meet both consistency requirements and availability and
performance requirements is an extremely hard and error prone task. Hence,
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developing efficient approaches to check the correctness of executions w.r.t con-
sistency models such as causal consistency is crucial. This paper presents an
approach and a tool for checking automatically the conformance of the compu-
tations of a system to causal consistency. More precisely, we address the problem
of, given a computation, checking its conformance to causal consistency. We con-
sider this problem for three variants of causal consistency that are used in prac-
tice. Solving this problem constitutes the cornerstone for developing dynamic
verification and testing algorithms for causal consistency.
Bouajjani et al. [9] studied the complexity of checking causal consistency for a
given computation and showed that it is polynomial time. In addition, they for-
malized the different variations of causal consistency and proposed a reduction
of this problem to the occurrence of a finite number of small ”bad-patterns” in
the computations (i.e., some small sets of events occurring in the computations
in some particular order). In this paper, we build on that work in order to define
a practical approach and a tool for checking causal consistency, and to apply
this tool to real-life case studies. Our approach consists basically in reducing the
problem of detecting the existence of bad patterns defined in [9] in computa-
tions to the problem of solving a Datalog queries. The fact that solving Datalog
queries is polynomial time and that our reduction is polynomial in the size of
the computation, allows to solve the conformance checking for causal consistency
in polynomial time (𝑂(𝑛3)). We have implemented our approach in an efficient
testing tool for distributed systems, and carried out several experiments on real
distributed databases, showing the efficiency and performance of this approach.

The rest of this paper is as follows, Section 2 presents preliminaries that
include the used notations and the system model. Section 3 is dedicated to
defining the causal consistency models. Section 3.2 recalls the characterization
of causal consistency violations introduced in [9]. Section 5 presents our reduction
of the problem of conformance checking for causal consistency to the problem of
solving Datalog queries. Section 6 describes our testing tool, the case studies we
have considered, and the experimental results we obtained. Section 7 presents
related work, and finally conclusions are drown in Section 8.

2 Preliminaries

Notations. Given a set 𝑂 and a relation ℛ ⊆ 𝑂 × 𝑂, we use the notation
(𝑜1,𝑜2) ∈ ℛ to denote the fact that 𝑜1 and 𝑜2 are related by ℛ. If ℛ is an order,
it denotes the fact that 𝑜1 precedes 𝑜2 in this order. The transitive closure of ℛ
is denoted by ℛ+, which is the composition of one or multiple copies of ℛ

Let 𝑂′ be a subset of 𝑂. Then ℛ|𝑂′ is the relation ℛ projected on the set 𝑂′,
that is {(𝑜1, 𝑜2) ∈ ℛ | 𝑜1, 𝑜2 ∈ 𝑂′}. The set 𝑂′ ⊆ 𝑂 is said to be downward-closed
w.r.t a relation ℛ if ∀𝑜1, 𝑜2, if 𝑜2 ∈ 𝑂′ and (𝑜1, 𝑜2) ∈ ℛ then 𝑜1 ∈ 𝑂′ as well.
A relation ℛ ⊆ 𝑂 ×𝑂 is a strict partial order if it is transitive and irreflexive.
Given a strict partial order ℛ over 𝑂, a poset is a pair (𝑂,ℛ). Notice here
that we consider the strict version of posets (not the ones where the underlying
partial order is weak, i.e. reflexive, transitive and antisymmetric. Given a set 𝛴,
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a poset (𝑂,ℛ), and a labeling function ℓ : 𝑂 → 𝛴, the 𝛴 labeled poset 𝜌 is a
tuple (𝑂,ℛ, ℓ).

We say that 𝜌′ is a prefix of 𝜌 if there exists a downward closed set 𝐴 ⊆ 𝑂
w.r.t. relation ℛ such that 𝜌′ = (𝐴,ℛ, ℓ). If the relation ℛ is a strict total order,
we say that a (resp., labeled) sequential poset (sequence for short) is a (resp.,
labeled) poset. The concatenation of two sequential posets 𝑒 and 𝑒′ is denote by
𝑒.𝑒′.

Consider a set of methods M from a domain D. For 𝑚 ∈ M and arg , rv ∈ D,
and 𝑜 ∈ 𝑂, ℓ(𝑜) = (𝑚, arg , rv) means that operation 𝑜 is an invocation of 𝑚 with
input arg which returns rv . The label ℓ(𝑜) is sometimes denoted 𝑚(arg, rv). Let
𝜌 = (𝑂,ℛ, ℓ) be a M × D × D labeled poset and 𝑂′ ⊆ 𝑂. We denote by 𝜌{𝑂′}
the labeled poset where we only keep the return values of the operations in 𝑂′.
Formally, 𝜌{𝑂′} is the (M × D) ∪ (M × D × D) labeled poset (𝑂,ℛ, ℓ′) where
for all 𝑜 ∈ 𝑂′, ℓ′(𝑜) = ℓ(𝑜), and for all 𝑜 ∈ 𝑂 ∖ 𝑂′, if ℓ(𝑜) = (𝑚, arg , rv), then
ℓ′(𝑜) = (𝑚, arg). Now, we introduce a relation on labeled posets, denoted ⪯. Let
𝜌 = (𝑂,ℛ, ℓ) and 𝜌′ = (𝑂,ℛ′, ℓ′) be two posets labeled by (M×D)∪(M×D×D)
(the return values of some operations in 𝑂 might not be specified). The notation
𝜌′ ⪯ 𝜌 means that 𝜌′ has less order and label constraints on the set 𝑂. Formally,
𝜌′ ⪯ 𝜌 if ℛ′ ⊆ ℛ and for all operation 𝑜 ∈ 𝑂, and for all 𝑚 ∈ M, arg , rv ∈ D,
ℓ(𝑜) = ℓ′(𝑜), or ℓ(𝑜) = (𝑚, arg , rv) implies ℓ′(𝑜) = (𝑚, arg).

System model. We consider a distributed system model in which a system
is composed of several processes (sites) connected over a network. Each process
performs operations on objects (variables) Var = {𝑥, 𝑦, . . .}. These objects are
called replicated objects and their state is replicated at all processes. Clients in-
teract with the system by performing operations. Assuming an unspecified set of
values Val and a set of operation identifiers IdO. We define the set of operations
as Op = {read𝑖(𝑥, 𝑣),write𝑖(𝑥, 𝑣) : 𝑖 ∈ IdO, 𝑥 ∈ Var, 𝑣 ∈ Val}. Where read𝑖(𝑥, 𝑣) is
a read operation reading a value 𝑣 from a variable 𝑥 and write𝑖(𝑥, 𝑣) is a write
operation writing a value 𝑣 on a variable 𝑥. The set of read, resp., write, opera-
tions in a set of operations 𝑂 is R(𝑂), resp., W(𝑂). The variable accessed by an
operation 𝑜 is denoted by var(𝑜).
Histories. We consider an abstract notion of an execution called history which
includes write and read operations. The operations performed by the same pro-
cess are ordered by a program order po. We assume that histories include a
write-read relation that matches each read operation to the write operation writ-
ten its return value.
Formally, a history ⟨𝑂, po,wr⟩ is a set of read or write operations 𝑂 along with
a partial program order po and a write-read relation wr ⊆ W(𝑂) × R(𝑂), such
that if (write(𝑥, 𝑣), read(𝑥′, 𝑣′)) ∈ wr, then 𝑥 = 𝑥′ and 𝑣 = 𝑣′. For 𝑜1, 𝑜2 ∈ 𝑂,
(𝑜1, 𝑜2) ∈ po means that 𝑜1, 𝑜2 were issued by the same process and 𝑜1 was sub-
mitted before 𝑜2. We mention that the write-read relation can only be defined
for differentiated histories.
Differentiated histories. A history ⟨𝑂, po,wr⟩ is differentiated if each value
is written at most once, i.e., for all write operations write(𝑥, 𝑣) and write(𝑥, 𝑣′),
𝑣 ̸= 𝑣′.
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Data Independence. An implementation is data-independent if its behavior
does not depend on the handled values. We consider in this paper implementa-
tions that are data-independent which is a natural assumption that corresponds
to a wide range of existing implementations. Under this assumption, it is good
enough to consider differentiated histories [9]. Thus, all histories in this paper
are differentiated.

In addition, we assume that each history contains a write operation writing
the initial value (the value 0) of variable 𝑥, for each variable 𝑥. These write
operations precede all other operations in po.
Specification. The consistency of a replicated object is defined w.r.t. some
specification, determining the correct behaviors of that object in a sequential
setting. In this work, we consider the read/write memory for which the specifi-
cation 𝑆𝑅𝑊 is inductively defined as the smallest set of sequences closed under
the following rules (x ∈ Var and v ∈ Val):

1. 𝜀 ∈ 𝑆𝑅𝑊 ,
2. if 𝜌 ∈ 𝑆𝑅𝑊 , then 𝜌.write(𝑥, 𝑣) ∈ 𝑆𝑅𝑊 ,
3. if 𝜌 ∈ 𝑆𝑅𝑊 contains no write on 𝑥, then 𝜌.read(𝑥, 0) ∈ 𝑆𝑅𝑊 ,
4. if 𝜌 ∈ 𝑆𝑅𝑊 and the last write in 𝜌 on variable 𝑥 is write(𝑥, 𝑣), then 𝜌.read(𝑥, 𝑣) ∈

𝑆𝑅𝑊 .

3 Causal Consistency

3.1 Causal Consistency definitions

Causal consistency [21] is one of the most used models for replicated objects. It
guarantees that, if two operations 𝑜1 and 𝑜2 are causally related (some process
is aware of 𝑜1 when executing 𝑜2), then 𝑜1 should be executed before 𝑜2 in all
processes. Operations that are not causally related may be seen in different orders
by different processes. We present in the following three variations of causal
consistency, weak causal consistency, causal convergence and causal memory.
We use the same definitions as in [9].

Weak causal consistency The weakest variation of causal consistency is called
weak causal consistency (CC, for short). A history is CC if there exists a causal
order that explains the return value of all operations in the history [9]. Formally,

Definition 1. A history ℎ satisfies CC w.r.t a specification 𝑆 if there exists a
strict partial order, called causal order, co ⊆ 𝑂×𝑂, such that, for all operations
𝑜 ∈ 𝑂 in ℎ, there exists a specification sequence 𝜌𝑜 ∈ 𝑆 such that axioms AxCausal
and AxCausalValue hold (see 1).

Axiom AxCausal states that the causal order should at least include the pro-
gram order. Axiom AxCausalValue states that, for each operation 𝑜 ∈ 𝑂, a valid
sequence of the specification 𝑆 can be obtained by sequentializing the causal
history of 𝑜 i.e., all operations that precede 𝑜 in the causal order. In addition,
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AxCausal po ⊆ co
AxArb co ⊆ arb
AxCausalValue CausalHist(𝑜){𝑜} ⪯ 𝜌𝑜
AxCausalSeq CausalHist(𝑜){POPast(𝑜)} ⪯ 𝜌𝑜
AxCausalArb CausalArb(𝑜){𝑜} ⪯ 𝜌𝑜
where:
CausalHist(𝑜) = (CausalPast(𝑜), co, ℓ)
CausalArb(𝑜) = (CausalPast(𝑜), arb, ℓ)
CausalPast(𝑜) = {𝑜′ ∈ 𝑂 | (𝑜′, 𝑜) ∈ co*}
POPast(𝑜) = {𝑜′ ∈ 𝑂 | (𝑜′, 𝑜) ∈ po*}

Table 1: Axioms used in the causal consistency definitions.

this sequentialization must also preserve the constraints provided by the causal
order.

Formally, the causal past of 𝑜, CausalPast(𝑜), is the set of operations that
precede 𝑜 in the causal order. The causal history of 𝑜, CausalHist(𝑜), is the
restriction of the causal order to the operations in its causal past CausalPast(𝑜).
The notation CausalHist(𝑜){𝑜} means that only the return value of operation 𝑜
is kept. The axiom AxCausalValue uses CausalHist(𝑜){𝑜} because a process is not
required to be consistent with the values it has returned in the past or the values
returned by the other processes.

The notations CausalHist(𝑜){𝑜} ⪯ 𝜌𝑜 means that CausalHist(𝑜){𝑜} can be
sequentialized to a sequence 𝜌𝑜 in the specification. We will formally define these
last two notations in the next sections.

For a better understanding of this model, consider the following examples.

Example 1. The history 1d is CC, we can consider that write(𝑥, 1) is not causally-
related to write(𝑥, 2). Therefore, 𝑝2 can execute them in any order.

Example 2. The history 1e is not CC. The reason is that, a causal order that
explains the return values of all operations in the history cannot be found. In-
tuitively, since read(𝑦, 1) reads the value from write(𝑦, 1), in any causal order,
write(𝑦, 1) should precede read(𝑦, 1). By transitivity of the causal order and be-
cause any causal order should include the program order, write(𝑥, 1) precedes
write(𝑥, 2) in the causal order (write(𝑥, 1) and write(𝑥, 2) are causally related).
However, process 𝑝3 inverse this order. This is a contradiction with the informal
definition of CC which requires that every process should see causally related
operations in the same order.

Causal convergence Causal convergence (CCv, for short) is stronger than CC.
It ensures that, as long as no new updates are submitted, all processes even-
tually converge towards the same state. In addition of seeing causally related
operations in the same order (CC), causal convergence uses a total order over
all the operations in a history to agree on how to order operations which are not
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𝑝1:
write(𝑧, 1)
write(𝑥, 1)
write(𝑦, 1)

𝑝2:
write(𝑥, 2)
read(𝑧, 0)
read(𝑦, 1)
read(𝑥, 2)

(a) CCv but not CM

𝑝1:
write(𝑥, 1)
read(𝑥, 2)

𝑝2:
write(𝑥, 2)
read(𝑥, 1)

(b) CM but not CCv

𝑝1:
write(𝑥, 1)
read(𝑦, 0)
write(𝑦, 1)
read(𝑥, 1)

𝑝2:
write(𝑥, 2)
read(𝑦, 0)
write(𝑦, 2)
read(𝑥, 2)

(c) CC , CCv and CM

𝑝1:
write(𝑥, 1)

𝑝2:
write(𝑥, 2)
read(𝑥, 1)
read(𝑥, 2)

(d) CC but not CCv nor CM

𝑝1:
write(𝑥, 1)
write(𝑦, 1)

𝑝2:
read(𝑦, 1)
write(𝑥, 2)

𝑝3:
read(𝑥, 2)
read(𝑥, 1)

(e) not CC (nor CCv, nor CM)

Fig. 1: Histories illustrating the differences between the causal consistency mod-
els CC, CCv, and CM.

causally related[9]. This order is called the arbitration order and denoted by arb.
Similarly to the causal order, the arbitration order is existentially quantified in
the CCv definition. Formally,

Definition 2. A history is CCv w.r.t a specification 𝑆 if there exist a strict
partial order co ⊆ 𝑂 × 𝑂 and a strict total order arb ⊆ 𝑂 × 𝑂 such that, for
each operation 𝑜 ∈ 𝑂 in ℎ, there exists a specification sequence 𝜌𝑜 ∈ 𝑆 such that
the axioms AxCausal, AxArb, and AxCausalArb hold.

Axiom AxArb states that the arbitration order arb should at least include the
causal order co. Axiom AxCausalArb states that, sequentializing the operations
that are in the causal past of 𝑜 to explain the return value of an operation 𝑜,
should respect the arbitration order arb.

We now present two examples, one which satisfies CCv and another one which
violates it.

Example 3. The history 1a is CCv, we can set an arbitration order in which
write(𝑥, 1) is ordered before write(𝑥, 2).

Example 4. The history 1b is not CCv. In order to read read(𝑥, 2), write(𝑥, 1)
must be ordered before write(𝑥, 2) in the arbitration order. On the other hand,
to read read(𝑥, 1), write(𝑥, 2) must be ordered before write(𝑥, 1) in the arbitration
order, that is not possible.
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Causal memory The third model we consider is causal memory (CM, for short)
that is also stronger than CC. It guarantees that each process should observe
concurrent operations in the same order. In addition, this order should be main-
tained throughout its whole execution, but it can differ from one process to
another [9]. Formally,

Definition 3. A history ℎ is CM w.r.t. a specification 𝑆 if there exists a strict
partial order co ⊆ 𝑂×𝑂 such that, for each operation 𝑜 ∈ 𝑂 in ℎ, there exists a
specification sequence 𝜌𝑜 ∈ 𝑆 such that axioms AxCausal and AxCausalSeq hold.

Compared to CC, CM requires that each process should be consistent with
the return values it has returned in the past. However, a process is not required
to be consistent with respect to the return values provided by other processes.
Therefore, AxCausalSeq states:

CausalHist(𝑜){POPast(𝑜)} ⪯ 𝜌𝑜

where CausalHist(𝑜){POPast(𝑜)} is the causal history where we only keep the re-
turn values of the operations that precede 𝑜 in the program order (in POPast(𝑜)).

As we noticed above, CC is weaker that CCv and CM. For instance, the history
in Figure 1d is CC but not CCv nor CM. It is CC, we can consider that write(𝑥, 1)
is not causally-related to write(𝑥, 2). On the other hand, for reading the value 1
the process 𝑝2 decides to order write(𝑥, 2) before write(𝑥, 1), then it changes this
order to read the value 2. This is not allowed under CM nor under CCv.
Both CCv and CM require that each process should observe concurrent operations
in the same order. In CM this order can differ from one process to another. It
seems that this intuitive description implies that CCv is stronger than CM but
these two models are actually incomparable. The following examples illustrate
the differences between these models.

Example 5. For instance, the history in Figure 1b is CM, but not CCv. It is not
CCv because reading the value 1 from 𝑥 in the 𝑝1 implies that write(𝑥, 1) is
ordered after write(𝑥, 2) while reading the value 2 from 𝑥 in 𝑝2 implies that it
write(𝑥, 2) is ordered after write(𝑥, 1). This is allowed by CM as different processes
can observe concurrent write operations in different orders.

Example 6. The history in Figure 1a is CCv but not CM. CCv requires that con-
current operations should be observed in the same order by all processes. Thus, a
possible order for concurrent write operations write(𝑥, 1) and write(𝑥, 2) is to or-
der write(𝑥, 2) after write(𝑥, 1). Under CM, in order to read read(𝑧, 0), write(𝑥, 1)
should be ordered after write(𝑥, 2) while to read 2 from 𝑥, write(𝑥, 2) must be
ordered after write(𝑥, 1) (write(𝑥, 1) must have been observed because 𝑝2 reads
1 from 𝑦 and the writes on 𝑥 and 𝑦 are causally-related).

The Figure 2 summarizes the relationships between the causal consistency
models presented in this section.
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Fig. 2: Relationships between causal consistency models. Directed arrows denote
the “weaker-than” relation while dashed lines connect incomparable models.

3.2 Causal consistency violations

Now, we will see, for each definition of causal consistency, how to characterize
histories that are not conform to causal consistency through the presence of
some specific sets of operations. In [9], computations that are violations of CC,
CCv or CM are characterized by the occurrence of a finite number of particular
(small) sets of ordered events, called bad-patterns. In this section, we recall the
bad-patterns corresponding to each model and their definitions (Table 2 and 3).

CC Bad-patterns. We now give the CC bad-patterns as defined in[9]. These
bad-patterns are defined using the relation of causality co which is given by the
program order po or the write-read relation wr or any transitive composition of
these relations i.e., co = (po ∪ wr)+.

Lemma 1. ([9]) A history is CC if it does not contain any of the bad-patterns
CyclicCO, WriteCOInitRead, ThinAirRead and WriteCORead.

Example 7. The history in Figure 1e contains the bad-patternWriteCORead. The
write(𝑥, 1) is causally ordered before write(𝑥, 2) by the transitivity. On the other
hand, the process 𝑝3, read(𝑥, 1) from write(𝑥, 1) (wr(write(𝑥, 1),read(𝑥, 1))). The
read read(𝑥, 1) is also causally-related to write(𝑥, 2) by transitivity. The history
in Figure 1c does not contain any of the bad-patterns, so it is CC , CCv and CM.

CCv bad-patterns. As we have seen before, CCv is stronger than CC. There-
fore, CCv excludes all the CC bad-patterns we have seen above (CyclicCO,
WriteCOInitRead, ThinAirRead and WriteCORead). In addition, CCv excludes
another bad pattern called CyclicCF, defined in terms of a conflict relation cf.
Intuitively, two writes 𝑤1 and 𝑤2 on the same variable are in conflict, if 𝑤1 is
causally-related to a read taking its value from 𝑤2. Formally, cf is defined as

(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ cf iff (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ co and

(write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr, for some read(𝑥, 𝑣′)

Then,

Lemma 2. ([9]) A history is CCv if it is CC and does not contain the bad-pattern
CyclicCF.

Example 8. The History in Figure 1b is not CCv as it contains the bad-pattern
CyclicCF. In order to read read(𝑥, 2), write(𝑥, 2) must precedes write(𝑥, 2) in the
conflict order. On the other hand, to read read(𝑥, 1), write(𝑥, 2) must be ordered
before write(𝑥, 1) in the conflict order. Thus, we get a cycle in cf.
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CC CCv CM

CyclicCO CyclicCO CyclicCO

WriteCOInitRead WriteCOInitRead WriteCOInitRead

ThinAirRead ThinAirRead ThinAirRead

WriteCORead WriteCORead WriteCORead

CyclicCF WriteHBInitRead

CyclicHB

Table 2: Bad-patterns for each causal consistency model

CyclicCO the causality relation co is cylic
WriteCOInitRead a read(𝑥, 0) is causally preceded by a write(𝑥, 𝑣) (i.e.,

(write(𝑥, 𝑣)), read(𝑥, 0) ∈ co) such that v ̸= 0
ThinAirRead there is a read(𝑥, 𝑣) operation that reads a value v such

that v ̸= 0 that it is never written before i.e., it can not
be related to any write by a wr relation.

WriteCORead there exist write operations 𝑤1, 𝑤2 such that var(𝑤1) =
var(𝑤2) and a read operation 𝑟1 such that wr(𝑤1, 𝑟1). In
addition, (𝑤1, 𝑤2) ∈ co and (𝑤2, 𝑟1) ∈ co.

WriteHBInitRead there exist a read(𝑥, 0) and a write(𝑥, 𝑣) (v ̸= 0) such that
(write(𝑥, 𝑣), read(𝑥, 0)) ∈ hb𝑜 for some operation o, with
(𝑟, 𝑜) ∈ po*.

CyclicHB the hb𝑜 relation is cyclic for some operation o
CyclicCF the union of cf and co (cf ∪ co) is cyclic

Table 3: Bad-patterns definitions

CM bad-Patterns. As we have seen above, CM is also stronger than CC.
Therefore, CM excludes all the CC bad-patterns (CyclicCO, WriteCOInitRead,
ThinAirRead and WriteCORead). In addition, CM excludes two additional bad-
patterns (WriteHBInitRead and CyclicHB), defined using a happened-before
relation per operation hb𝑜. Formally, hb𝑜 is defined as follows.

Definition 4. Let h=⟨𝑂, po,wr⟩ be a history. For every operation 𝑜 in ℎ, let
hb𝑜 be the smallest transitive relation such that:

1. co|CausalPast(𝑜) ⊆ hb𝑜, which means that if two operations are causally re-
lated and each one is causally related to 𝑜, then they are related by hb𝑜 i.e.,
(𝑜1, 𝑜2) ∈ hb𝑜 if (𝑜1, 𝑜2) ∈ co, (𝑜1, 𝑜) ∈ co and (𝑜2, 𝑜) ∈ co* (where co* is the
reflexive closure of co), and

2. two writes 𝑤1 and 𝑤2 are related by hb𝑜 if 𝑤1 is hb𝑜-related to a read taking
its value from 𝑤2 and that read is done by the same thread executing 𝑜 and
before 𝑜, i.e., (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ hb𝑜 if (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ hb𝑜,
(write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr and (read(𝑥, 𝑣′), 𝑜) ∈ po* for some
read(𝑥, 𝑣′).

Then,
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Lemma 3. ([9]) A history is CM if it is CC and does not contain any of the
bad-patterns WriteHBInitRead and CyclicHB.

Example 9. 1. The history 1a contains the bad-pattern WriteHBInitRead so
it is not CM. Let’s consider ℎ𝑏 = hbread(𝑥,2). We have (write(𝑧, 1),write(𝑥, 1))
∈ po and (write(𝑥, 1), write(𝑥, 2)) ∈ ℎ𝑏 ((write(𝑥, 1),read(𝑥, 2) ∈ co implies
(write(𝑥, 1),write(𝑥, 2) ∈ co) and (write(𝑥, 2),read(𝑧, 0) ∈ po), thus by transi-
tivity we have (write(𝑧, 1),read(𝑧, 0) ∈ ℎ𝑏.

2. The history in Figure 1c does not contain any of the bad-patterns, so it is
CC , CCv and CM.

4 An improved characterization of CM

The proposed characterization of CM in [9] requires computing the hb𝑜 relation
for all operations and then check for CM bad-patterns. Let’s call this approach
CM 1. Now, we will show that it is enough to check the CM-bad patterns for only
a small set of operations (for only last operation in each process). We propose in
the following a succinct but equivalent approach for checking CM. We show that
it improves the verification runtime (Section 6). Let’s call this new approach
CM 2.

To prove the equivalence between the two approaches, we have to prove some
intermediate results. First, we define hb𝑖𝑜 to denote a controlled saturated version
of hb𝑜.

Definition 5. Let h=⟨𝑂, po,wr⟩ be a history. For every operation 𝑜 in ℎ,

1. let hb0𝑜 be the relation such that if two operations are causally related and each
one is causally related to 𝑜, then they are related by hb0𝑜 i.e., (𝑜1, 𝑜2) ∈ hb𝑜
if and only if (𝑜1, 𝑜2) ∈ co, (𝑜1, 𝑜) ∈ co and (𝑜2, 𝑜) ∈ co* (where co* is the
reflexive closure of co),

2. let hb𝑖𝑜 for 𝑖 > 0 be the transitive relation if two writes 𝑤1 and 𝑤2 are related
by hb𝑖𝑜 if 𝑤1 is (∪𝑗<𝑖hb

𝑗
𝑜)+ (transitive closure of all the previous hb𝑗𝑜) related

to a read taking its value from 𝑤2 and that read is done by the same thread
executing 𝑜 and before 𝑜, i.e., (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ hb𝑖𝑜 if and only
if (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ (∪𝑗<𝑖hb

𝑗
𝑜)+, (write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr and

(read(𝑥, 𝑣′), 𝑜) ∈ po* for some read(𝑥, 𝑣′).

Theorem 1. For all 𝑜, hb𝑜 = (∪𝑖≥0hb
𝑖
𝑜)+

Proof. By construction, (∪𝑖≥0hb
𝑖
𝑜)+ satisfies definition 4. Because hb𝑜 is the

smallest one, hb𝑜 ⊆ (∪𝑖≥0hb
𝑖
𝑜)+. Also, by construction, all the relations in

(∪𝑖≥0hb
𝑖
𝑜)+ must be present in hb𝑜 because they are constructed statically from

co and wr. So hb𝑜 ⊇ (∪≥hb
𝑖
𝑜)+.

Now, we prove that hb𝑜 is included in hb𝑜′ if 𝑜 is executed before 𝑜′ in a
same thread. Then, checking hb𝑜 acyclicity of po-maximal operations is enough
to decide for all operations. To prove this, we use the hb𝑖𝑜 definition.
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Lemma 4. If (𝑜, 𝑜′) ∈ po then hb𝑖𝑜 ⊆ hb𝑖𝑜′ for 𝑖 ≥ 0

Proof. We will prove by induction on 𝑖.

– Base case. 𝑖 = 0. Since (𝑜, 𝑜′) ∈ po ⊆ co, (𝑜1, 𝑜) ∈ co and (𝑜2, 𝑜) ∈ co*

implies, (𝑜1, 𝑜
′) ∈ co and (𝑜2, 𝑜

′) ∈ co*. So all the hb0𝑜 ⊆ hb0𝑜′ .
– Inductive step. If there exists two writes write(𝑥, 𝑣),write(𝑥, 𝑣′) and a read

read(𝑥, 𝑣′) with (write(𝑥, 𝑣), read(𝑥, 𝑣′)) ∈ (∪𝑗<𝑖hb
𝑗
𝑜)+,

(write(𝑥, 𝑣′), read(𝑥, 𝑣′)) ∈ wr and (read(𝑥, 𝑣′), 𝑜) ∈ po* to force
(write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ hb𝑖𝑜 relation, then it is also true that,
(write(𝑥, 𝑣), read(𝑥, 𝑣′) ∈ (∪𝑗<𝑖hb

𝑗
𝑜′)

+ (induction hypothesis) and

(read(𝑥, 𝑣′), 𝑜′) ∈ po*. So (write(𝑥, 𝑣),write(𝑥, 𝑣′)) ∈ hb𝑖𝑜′ is forced as well.
Thus, hb𝑖𝑜 ⊆ hb𝑖𝑜′ .

Corollary 1. If (𝑜, 𝑜′) ∈ po then hb𝑜 ⊆ hb𝑜′ .

Proof. Direct consequence of theorem 1 and lemma 4.

Finally, we can prove the equivalence between the two CM verification ap-
proaches. Both of the approaches requires the history to be CC. So, we just need
to do it for the acyclicity of hb𝑜 and for the WriteHBInitRead bad-pattern.

CM 1 requires hb𝑜 for all 𝑜 to be acyclic, whereas CM 2 requires hb𝑜 for a
subset of operations 𝑜 (po-maximal operations) to be acyclic. So trivially CM 1
implies CM 2.

For the other direction, we use corollary 1. If (𝑜, 𝑜′) ∈ po then hb𝑜 ⊆ hb𝑜′ .
Hence, a cycle in hb𝑜 for some 𝑜 (if 𝑜 is po-maximal operation, then we are done)
will be also present in hb𝑜′ for the po-maximal 𝑜′ after 𝑜 because (𝑜, 𝑜′) ∈ po.

Now, we will prove that it is enough to check the WriteHBInitRead bad-
pattern for only po-maximal operations as well.

Consider two operations 𝑜1 and 𝑜2 in a history ℎ such that (𝑜1, 𝑜2) ∈ po.
Suppose that there exists a bad-pattern WriteHBInitRead for 𝑜1 i.e., there exist
a read(𝑥, 0) and a write(𝑥, 𝑣) (v ̸= 0) such that (write(𝑥, 𝑣), read(𝑥, 0)) ∈ hb𝑜1 ,
with (𝑟, 𝑜1) ∈ po*. Since (𝑜1, 𝑜2) ∈ po and using the corollary 1, we have hb𝑜1 ∈
hb𝑜2 , then (write(𝑥, 𝑣), read(𝑥, 0)) ∈ hb𝑜2 and (𝑟, 𝑜2) ∈ po* (because of (𝑟, 𝑜1) ∈
po*). Therefore, the bad-pattern WriteHBInitRead exists for 𝑜2 as well.

Then,

Theorem 2. CM 1 and CM 2 are equivalent.

Notice that CM 2 is characterized by the same CM bad-patterns described
above, it is just that the hb𝑜 is only computed for each po-maximal operation o
in the history not for all operations (see next section).

5 Reduction to Datalog queries solving

In this section, we show our reduction of the problem of checking whether a
given computation is a CC, CCv or CM violation to the problem of Datalog queries
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solving. Datalog is a logic programming language that does not allow functions as
predicate arguments. The advantage of using Datalog is that it provides a high
level language for naturally defining constraints on relations and that solving
Datalog queries is polynomial time [28].

5.1 Datalog

A rule in datalog is a statement of the following form:

𝑟1(𝑣1) :- 𝑟2(𝑣2), ..., 𝑟𝑖(𝑣𝑖)

Where i≥ 1, 𝑟𝑖 are the names of predicates (relations) and 𝑣𝑖 are arguments. A
Datalog program is a finite set of Datalog rules over the same schema [6]. The
LHS is called the rule head and represents the outcome of the query, while the
RHS is called the rule body.

Example 10. For instance, this Datalog program computes the transitivity clo-
sure of a given graph.

trans(X,Y) :- edge(X,Y).

trans(X,Y) :- trans(X,Z), trans(Z,Y).

Where the fact edge(a,b) means that there exists a direct edge from a to b.

In the literature, there are three definitions for the semantics of Datalog pro-
grams, model theoretic, proof-theoretic and fixpoint semantics [6]. In this paper,
we have considered the fix-point semantics.

Fix-point semantics. This approach is based on the fix-point theory. Given
a function 𝑓(), its fix-point is an element 𝑒 from its domain which is mapped
by the function 𝑓 to itself i.e., 𝑓(𝑒) = 𝑒. Each Datalog program has an associ-
ated operator called immediate consequence operator. Applying repeatedly this
operator on existing facts generates new facts until getting a fixed point.

5.2 Histories Encoding

In our approach, extracted relations from a history (po, wr...) are represented
as predicates called facts, while the algorithm for fixed point computation is
formulated as Datalog recursive relations called inference rules.
We first introduce all the facts. For instance, consider the fact po(a,b) which
represents the program order from the operation a to the operation b (similarly
po(b,c)),

po(a,b).

po(b,c).

Now, we define the necessary relations (axioms) for our approach.

– rd(X), X is a read operation
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– wrt(X), X is a write operation
– po(X,Y), X precedes Y in the po order.
– wr(X,Y), Y reads the value from a write operation X (wr relation)
– sv(X,Y), the operations X and Y accessed to the same variable.

Then, we define the inference rules used to generate derived relations. For in-
stance, the following rule states that the causal relation co is transitive.

co(X,Z) :- co(X,Y), co(Y,Z).

5.3 Bad-patterns Encoding

We have expressed all the bad-patterns as Datalog inference rules, except
ThinAirRead that we verify externally as it contains a universal quantification
over all operations. There exist two kinds of bad-patterns. The first type is
related to the existence of a cycle in a relation. For instance, the bad-pattern
CyclicCO that can be expressed as

:- co(X,Y), co(Y,X).

Intuitively, this means that there exist no operations X and Y such that X
precedes Y in the causal order and Y also precedes X in the causal order. Since
co is transitive, we can simply write it as

:- co(X,X).

The second type is related to the occurrence of some operations in some partic-
ular order. For instance, WriteCORead can be expressed as follows

:- co(X,Y), co(Y,Z), wr(X,Z), wrt(X), wrt(Y), rd(Z), sv(X,Y), sv(Y,Z).

Intuitively, this means that there exist no write operations X and Y on the same
variable and a read operation Z which takes the value from X such that X pre-
cedes Y in the causal order and Y precedes Z in the causal order.

CC bad-patterns encoding. In addition of the CyclicCO bad-pattern we have
seen above, we will see how the other CC bad-patterns are encoded. Consider
the following example which presents the Datalog program corresponding to an
execution.

Example 11. This example represents the history 1b Datalog program for check-
ing CC:

% Facts

wrt("w(x,1,id0)").

po("w(x,1,id0)","r(x,2,id1)").

sv("r(x,2,id1)","w(x,1,id0)").

sv("w(x,2,id2)","w(x,1,id0)").
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sv("r(x,1,id3)","w(x,1,id0)").

rd("r(x,2,id1)").

sv("w(x,1,id0)","r(x,2,id1)").

wr("w(x,2,id2)","r(x,2,id1)").

sv("w(x,2,id2)","r(x,2,id1)").

sv("r(x,1,id3)","r(x,2,id1)").

wrt("w(x,2,id2)").

sv("w(x,1,id0)","w(x,2,id2)").

sv("r(x,2,id1)","w(x,2,id2)").

po("w(x,2,id2)","r(x,1,id3)").

sv("r(x,1,id3)","w(x,2,id2)").

rd("r(x,1,id3)").

wr("w(x,1,id0)","r(x,1,id3)").

sv("w(x,1,id0)","r(x,1,id3)").

sv("r(x,2,id1)","r(x,1,id3)").

sv("w(x,2,id2)","r(x,1,id3)").

initread("r(a,0,ida)").

% Inference rules

co(X,Y) :- po(X,Y).

co(X,Y) :- wr(X,Y).

co(X,Z) :- co(X,Y), co(Y,Z). % Transitivity

% CC bad-patterns

:- co(X,X). % CyclicCO

:- co(X,Y), wrt(X), initread(Y), sv(X,Y). % WriteCOInitRead

:- co(X,Y), co(Y,Z), wr(X,Z), wrt(X), wrt(Y), rd(Z), sv(X,Y), sv(Y,Z).

% WriteCORead

Notice that, since the bad pattern WriteCOInitRead includes a predicate ini-
tread(Y), we add the initread(”r(a,0,ida)”) to the programs that do not contain
a read which reads the initial value.

The result of running this Datalog program using the online clingo version
(https://potassco.org/clingo/run/) is shown in the following:

clingo version 5.5.0

Reading from stdin

Solving...

Answer: 1

po("w(x,1,id0)","r(x,2,id1)") po("w(x,2,id2)","r(x,1,id3)") co("w(x,1,id0

)","r(x,2,id1)") co("w(x,2,id2)","r(x,1,id3)") co("w(x,2,id2)","r(x

,2,id1)") co("w(x,1,id0)","r(x,1,id3)") wr("w(x,2,id2)","r(x,2,id1)")

wr("w(x,1,id0)","r(x,1,id3)") sv("r(x,2,id1)","w(x,1,id0)") sv("w(x

,2,id2)","w(x,1,id0)") sv("r(x,1,id3)","w(x,1,id0)") sv("w(x,1,id0)",

"r(x,2,id1)") sv("w(x,2,id2)","r(x,2,id1)") sv("r(x,1,id3)","r(x,2,

id1)") sv("w(x,1,id0)","w(x,2,id2)") sv("r(x,2,id1)","w(x,2,id2)") sv

("r(x,1,id3)","w(x,2,id2)") sv("w(x,1,id0)","r(x,1,id3)") sv("r(x,2,

id1)","r(x,1,id3)") sv("w(x,2,id2)","r(x,1,id3)") initread("r(a,0,ida

)") wrt("w(x,1,id0)") wrt("w(x,2,id2)") rd("r(x,2,id1)") rd("r(x,1,

id3)")

SATISFIABLE
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Models : 1

Calls : 1

Time : 0.008s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Now, let’s see how CCv and CM bad-patterns are encoded. Since the CCv/CM
bad-patterns include CC bad-patterns, each CCv/CM Datalog program should
contain CC bad-patterns which we have already seen above in addition of some
other rules we will see in the next sections.

CCv bad-patterns encoding. The CCv bad-patterns are encoded as follows:

% CCv bad-patterns

cf(X,Y) :- co(X,Z), wr(Y,Z), wrt(X), sv(X,Y), sv(X,Z). %Conflict order CF

cf(X,Y) :- cf(X,Z), cf(Z,Y). %Transitivity

cfco(X,Y) :- co(X,Y). %cfco= CF U CO, cfco is the union of cf and co.

cfco(X,Y) :- cf(X,Y). %cfco= CF U CO

%CCv bad-pattern

:- cfco(X,Y), cfco(Y,X). %CyclicCF CF U CO

Let’s consider an example of CCv Datalog programs. As we have seen, the
example 1b is not CCv so the following Datalog program for checking CCv is
not satisfiable.

% Facts

wrt("w(x,1,id0)").

po("w(x,1,id0)","r(x,2,id1)").

sv("r(x,2,id1)","w(x,1,id0)").

sv("w(x,2,id2)","w(x,1,id0)").

sv("r(x,1,id3)","w(x,1,id0)").

rd("r(x,2,id1)").

sv("w(x,1,id0)","r(x,2,id1)").

wr("w(x,2,id2)","r(x,2,id1)").

sv("w(x,2,id2)","r(x,2,id1)").

sv("r(x,1,id3)","r(x,2,id1)").

wrt("w(x,2,id2)").

sv("w(x,1,id0)","w(x,2,id2)").

sv("r(x,2,id1)","w(x,2,id2)").

po("w(x,2,id2)","r(x,1,id3)").

sv("r(x,1,id3)","w(x,2,id2)").

rd("r(x,1,id3)").

wr("w(x,1,id0)","r(x,1,id3)").

sv("w(x,1,id0)","r(x,1,id3)").

sv("r(x,2,id1)","r(x,1,id3)").

sv("w(x,2,id2)","r(x,1,id3)").

initread("r(a,0,ida)").

% CC inference rules

co(X,Y) :- po(X,Y).
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co(X,Y) :- wr(X,Y).

co(X,Z) :- co(X,Y), co(Y,Z). % Transitivity

% CC bad-patterns

:- co(X,X). % CyclicCO

:- co(X,Y), wrt(X), initread(Y), sv(X,Y). % WriteCOInitRead

:- co(X,Y), co(Y,Z), wr(X,Z), wrt(X), wrt(Y), rd(Z), sv(X,Y), sv(Y,Z).

% WriteCORead

% CCv inference rules

cf(X,Y) :- co(X,Z), wr(Y,Z), wrt(X), sv(X,Y), sv(X,Z). %Conflict order CF

cf(X,Y) :- cf(X,Z), cf(Z,Y). %Transitivity

cfco(X,Y) :- co(X,Y). %cfco= CF U CO, cfco is the union of cf and co.

cfco(X,Y) :- cf(X,Y). %cfco= CF U CO

%CCv bad-pattern

:- cfco(X,Y), cfco(Y,X). %CyclicCF CF U CO

clingo version 5.5.0

Reading from stdin

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 0.009s

CPU Time : 0.000s

CM bad-patterns encoding. The CM bad-patterns are encoded as follows:

%CM inference rules

hb(X,O,O) :- co(X,O). %hbo initialized to causal order

hb(X,Y,O) :- hb(Y,O,O), co(X,Y).

hb(X,Y,O) :- hb(X,Z,O), po(Z,O), wr(Y,Z), wrt(X), sv(X,Y).% hbo

definition

hb(X,Y,O) :- hb(X,Z,O), wr(Y,Z), wrt(X), sv(X,Y). % hbo definition

hb(X,Z,O) :- hb(X,Y,O), hb(Y,Z,O). %Transitivity

%CM bad-patterns

:- hb(X,Y,O), wrt(X), sv(X,Y), po(Y,O), initread(Y). %WriteHBInitRead

:- hb(X,Y,O), hb(Y,X,O). %CyclicHB

As we have mentioned in the section 5, CM 1 and CM 2 are characterized
by the same CM bad-patterns described above. The only difference is that for the
CM 2, we have added a function which identifies the po-maximal operation in
each thread. We replace then the operation ”𝑂” in the CM bad-patterns above
by these identified operations (last operation in each thread) instead of replacing
it by all read/write operations in the history (CM 1).

For a better understanding, consider the instantiation of the CM bad-patterns
for CM 1 and CM 2.
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– For CM 1: We replace ”𝑂” by all operations in the history.

%CM inference rules

hb(X,w(x,1,id0),w(x,1,id0)) :- co(X,w(x,1,id0)).

hb(X,Y,w(x,1,id0)) :- hb(Y,w(x,1,id0),w(x,1,id0)), co(X,Y).

hb(X,Y,w(x,1,id0)) :- hb(X,Z,w(x,1,id0)), po(Z,w(x,1,id0)), wr(Y,Z), wrt(

X), sv(X,Y).

hb(X,Y,w(x,1,id0)) :- hb(X,Z,w(x,1,id0)), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,w(x,1,id0)) :- hb(X,Y,w(x,1,id0)), hb(Y,Z,w(x,1,id0)).

%CM bad-patterns

:- hb(X,Y,w(x,1,id0)), wrt(X), sv(X,Y), po(Y,w(x,1,id0)), initread(Y).

:- hb(X,Y,w(x,1,id0)), hb(Y,X,w(x,1,id0)).

%CM inference rules

hb(X,w(x,2,id2),w(x,2,id2)) :- co(X,w(x,2,id2)).

hb(X,Y,w(x,2,id2)) :- hb(Y,w(x,2,id2),w(x,2,id2)), co(X,Y).

hb(X,Y,w(x,2,id2)) :- hb(X,Z,w(x,2,id2)), po(Z,w(x,2,id2)), wr(Y,Z), wrt(

X), sv(X,Y).

hb(X,Y,w(x,2,id2)) :- hb(X,Z,w(x,2,id2)), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,w(x,2,id2)) :- hb(X,Y,w(x,2,id2)), hb(Y,Z,w(x,2,id2)).

%CM bad-patterns

:- hb(X,Y,w(x,2,id2)), wrt(X), sv(X,Y), po(Y,w(x,2,id2)), initread(Y).

:- hb(X,Y,w(x,2,id2)), hb(Y,X,w(x,2,id2)).

%CM inference rules

hb(X,"r(x,2,id1)","r(x,2,id1)") :- co(X,"r(x,2,id1)").

hb(X,Y,"r(x,2,id1)") :- hb(Y,"r(x,2,id1)","r(x,2,id1)"), co(X,Y).

hb(X,Y,"r(x,2,id1)") :- hb(X,Z,"r(x,2,id1)"), po(Z,"r(x,2,id1)"), wr(Y,Z)

, wrt(X), sv(X,Y).

hb(X,Y,"r(x,2,id1)") :- hb(X,Z,"r(x,2,id1)"), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,"r(x,2,id1)") :- hb(X,Y,"r(x,2,id1)"), hb(Y,Z,"r(x,2,id1)").

%CM bad-patterns

:- hb(X,Y,"r(x,2,id1)"), wrt(X), sv(X,Y), po(Y,"r(x,2,id1)"), initread(Y)

.

:- hb(X,Y,"r(x,2,id1)"), hb(Y,X,"r(x,2,id1)").

%CM inference rules

hb(X,"r(x,1,id3)","r(x,1,id3)") :- co(X,"r(x,1,id3)").

hb(X,Y,"r(x,1,id3)") :- hb(Y,"r(x,1,id3)","r(x,1,id3)"), co(X,Y).

hb(X,Y,"r(x,1,id3)") :- hb(X,Z,"r(x,1,id3)"), po(Z,"r(x,1,id3)"), wr(Y,Z)

, wrt(X), sv(X,Y).

hb(X,Y,"r(x,1,id3)") :- hb(X,Z,"r(x,1,id3)"), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,"r(x,1,id3)") :- hb(X,Y,"r(x,1,id3)"), hb(Y,Z,"r(x,1,id3)").

%CM bad-patterns

:- hb(X,Y,"r(x,1,id3)"), wrt(X), sv(X,Y), po(Y,"r(x,1,id3)"), initread(Y)

.

:- hb(X,Y,"r(x,1,id3)"), hb(Y,X,"r(x,1,id3)").
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– For CM 2: We replace ”𝑂” by the last operation in each process in the
history.

%CM inference rules

hb(X,"r(x,2,id1)","r(x,2,id1)") :- co(X,"r(x,2,id1)").

hb(X,Y,"r(x,2,id1)") :- hb(Y,"r(x,2,id1)","r(x,2,id1)"), co(X,Y).

hb(X,Y,"r(x,2,id1)") :- hb(X,Z,"r(x,2,id1)"), po(Z,"r(x,2,id1)"), wr(Y,Z)

, wrt(X), sv(X,Y).

hb(X,Y,"r(x,2,id1)") :- hb(X,Z,"r(x,2,id1)"), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,"r(x,2,id1)") :- hb(X,Y,"r(x,2,id1)"), hb(Y,Z,"r(x,2,id1)").

%CM bad-patterns

:- hb(X,Y,"r(x,2,id1)"), wrt(X), sv(X,Y), po(Y,"r(x,2,id1)"), initread(Y)

.

:- hb(X,Y,"r(x,2,id1)"), hb(Y,X,"r(x,2,id1)").

%CM inference rules

hb(X,"r(x,1,id3)","r(x,1,id3)") :- co(X,"r(x,1,id3)").

hb(X,Y,"r(x,1,id3)") :- hb(Y,"r(x,1,id3)","r(x,1,id3)"), co(X,Y).

hb(X,Y,"r(x,1,id3)") :- hb(X,Z,"r(x,1,id3)"), po(Z,"r(x,1,id3)"), wr(Y,Z)

, wrt(X), sv(X,Y).

hb(X,Y,"r(x,1,id3)") :- hb(X,Z,"r(x,1,id3)"), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,"r(x,1,id3)") :- hb(X,Y,"r(x,1,id3)"), hb(Y,Z,"r(x,1,id3)").

%CM bad-patterns

:- hb(X,Y,"r(x,1,id3)"), wrt(X), sv(X,Y), po(Y,"r(x,1,id3)"), initread(Y)

.

:- hb(X,Y,"r(x,1,id3)"), hb(Y,X,"r(x,1,id3)").

Now let’s consider the whole Datalog programs and their running results.

– For CM 1:

% Facts

wrt("w(x,1,id0)").

po("w(x,1,id0)","r(x,2,id1)").

sv("r(x,2,id1)","w(x,1,id0)").

sv("w(x,2,id2)","w(x,1,id0)").

sv("r(x,1,id3)","w(x,1,id0)").

rd("r(x,2,id1)").

sv("w(x,1,id0)","r(x,2,id1)").

wr("w(x,2,id2)","r(x,2,id1)").

sv("w(x,2,id2)","r(x,2,id1)").

sv("r(x,1,id3)","r(x,2,id1)").

wrt("w(x,2,id2)").

sv("w(x,1,id0)","w(x,2,id2)").

sv("r(x,2,id1)","w(x,2,id2)").

po("w(x,2,id2)","r(x,1,id3)").

sv("r(x,1,id3)","w(x,2,id2)").

rd("r(x,1,id3)").

wr("w(x,1,id0)","r(x,1,id3)").

sv("w(x,1,id0)","r(x,1,id3)").
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sv("r(x,2,id1)","r(x,1,id3)").

sv("w(x,2,id2)","r(x,1,id3)").

initread("r(a,0,ida)").

% Inference rules

co(X,Y) :- po(X,Y).

co(X,Y) :- wr(X,Y).

co(X,Z) :- co(X,Y), co(Y,Z). % Transitivity

% CC bad-patterns

:- co(X,X). % CyclicCO

:- co(X,Y), wrt(X), initread(Y), sv(X,Y). % WriteCOInitRead

:- co(X,Y), co(Y,Z), wr(X,Z), wrt(X), wrt(Y), rd(Z), sv(X,Y), sv(Y,Z).

% WriteCORead

%CM inference rules

hb(X,w(x,1,id0),w(x,1,id0)) :- co(X,w(x,1,id0)).

hb(X,Y,w(x,1,id0)) :- hb(Y,w(x,1,id0),w(x,1,id0)), co(X,Y).

hb(X,Y,w(x,1,id0)) :- hb(X,Z,w(x,1,id0)), po(Z,w(x,1,id0)), wr(Y,Z), wrt(

X), sv(X,Y).

hb(X,Y,w(x,1,id0)) :- hb(X,Z,w(x,1,id0)), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,w(x,1,id0)) :- hb(X,Y,w(x,1,id0)), hb(Y,Z,w(x,1,id0)).

%CM bad-patterns

:- hb(X,Y,w(x,1,id0)), wrt(X), sv(X,Y), po(Y,w(x,1,id0)), initread(Y).

:- hb(X,Y,w(x,1,id0)), hb(Y,X,w(x,1,id0)).

% CM inference rules

hb(X,w(x,2,id2),w(x,2,id2)) :- co(X,w(x,2,id2)).

hb(X,Y,w(x,2,id2)) :- hb(Y,w(x,2,id2),w(x,2,id2)), co(X,Y).

hb(X,Y,w(x,2,id2)) :- hb(X,Z,w(x,2,id2)), po(Z,w(x,2,id2)), wr(Y,Z), wrt(

X), sv(X,Y).

hb(X,Y,w(x,2,id2)) :- hb(X,Z,w(x,2,id2)), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,w(x,2,id2)) :- hb(X,Y,w(x,2,id2)), hb(Y,Z,w(x,2,id2)).

%CM bad-patterns

:- hb(X,Y,w(x,2,id2)), wrt(X), sv(X,Y), po(Y,w(x,2,id2)), initread(Y).

:- hb(X,Y,w(x,2,id2)), hb(Y,X,w(x,2,id2)).

% CM inference rules

hb(X,"r(x,2,id1)","r(x,2,id1)") :- co(X,"r(x,2,id1)").

hb(X,Y,"r(x,2,id1)") :- hb(Y,"r(x,2,id1)","r(x,2,id1)"), co(X,Y).

hb(X,Y,"r(x,2,id1)") :- hb(X,Z,"r(x,2,id1)"), po(Z,"r(x,2,id1)"), wr(Y,Z)

, wrt(X), sv(X,Y).

hb(X,Y,"r(x,2,id1)") :- hb(X,Z,"r(x,2,id1)"), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,"r(x,2,id1)") :- hb(X,Y,"r(x,2,id1)"), hb(Y,Z,"r(x,2,id1)").

%CM bad-patterns

:- hb(X,Y,"r(x,2,id1)"), wrt(X), sv(X,Y), po(Y,"r(x,2,id1)"), initread(Y)

.

:- hb(X,Y,"r(x,2,id1)"), hb(Y,X,"r(x,2,id1)").

% CM inference rules

hb(X,"r(x,1,id3)","r(x,1,id3)") :- co(X,"r(x,1,id3)").

hb(X,Y,"r(x,1,id3)") :- hb(Y,"r(x,1,id3)","r(x,1,id3)"), co(X,Y).

hb(X,Y,"r(x,1,id3)") :- hb(X,Z,"r(x,1,id3)"), po(Z,"r(x,1,id3)"), wr(Y,Z)

, wrt(X), sv(X,Y).
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hb(X,Y,"r(x,1,id3)") :- hb(X,Z,"r(x,1,id3)"), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,"r(x,1,id3)") :- hb(X,Y,"r(x,1,id3)"), hb(Y,Z,"r(x,1,id3)").

%CM bad-patterns

:- hb(X,Y,"r(x,1,id3)"), wrt(X), sv(X,Y), po(Y,"r(x,1,id3)"), initread(Y)

.

:- hb(X,Y,"r(x,1,id3)"), hb(Y,X,"r(x,1,id3)").

clingo version 5.5.0

Reading from stdin

Solving...

Answer: 1

po("w(x,1,id0)","r(x,2,id1)") po("w(x,2,id2)","r(x,1,id3)") co("w(x,1,id0

)","r(x,2,id1)") co("w(x,2,id2)","r(x,1,id3)") co("w(x,2,id2)","r(x

,2,id1)") co("w(x,1,id0)","r(x,1,id3)") wr("w(x,2,id2)","r(x,2,id1)")

wr("w(x,1,id0)","r(x,1,id3)") sv("r(x,2,id1)","w(x,1,id0)") sv("w(x

,2,id2)","w(x,1,id0)") sv("r(x,1,id3)","w(x,1,id0)") sv("w(x,1,id0)",

"r(x,2,id1)") sv("w(x,2,id2)","r(x,2,id1)") sv("r(x,1,id3)","r(x,2,

id1)") sv("w(x,1,id0)","w(x,2,id2)") sv("r(x,2,id1)","w(x,2,id2)") sv

("r(x,1,id3)","w(x,2,id2)") sv("w(x,1,id0)","r(x,1,id3)") sv("r(x,2,

id1)","r(x,1,id3)") sv("w(x,2,id2)","r(x,1,id3)") initread("r(a,0,ida

)") wrt("w(x,1,id0)") wrt("w(x,2,id2)") rd("r(x,2,id1)") rd("r(x,1,

id3)") hb("w(x,2,id2)","r(x,1,id3)","r(x,1,id3)") hb("w(x,1,id0)","r(

x,1,id3)","r(x,1,id3)") hb("w(x,2,id2)","w(x,1,id0)","r(x,1,id3)") hb

("w(x,1,id0)","r(x,2,id1)","r(x,2,id1)") hb("w(x,2,id2)","r(x,2,id1)"

,"r(x,2,id1)") hb("w(x,1,id0)","w(x,2,id2)","r(x,2,id1)")

SATISFIABLE

Models : 1

Calls : 1

Time : 0.029s

CPU Time : 0.000s

– For CM 2:

% Facts

wrt("w(x,1,id0)").

po("w(x,1,id0)","r(x,2,id1)").

sv("r(x,2,id1)","w(x,1,id0)").

sv("w(x,2,id2)","w(x,1,id0)").

sv("r(x,1,id3)","w(x,1,id0)").

rd("r(x,2,id1)").

sv("w(x,1,id0)","r(x,2,id1)").

wr("w(x,2,id2)","r(x,2,id1)").

sv("w(x,2,id2)","r(x,2,id1)").

sv("r(x,1,id3)","r(x,2,id1)").

wrt("w(x,2,id2)").

sv("w(x,1,id0)","w(x,2,id2)").

sv("r(x,2,id1)","w(x,2,id2)").

po("w(x,2,id2)","r(x,1,id3)").
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sv("r(x,1,id3)","w(x,2,id2)").

rd("r(x,1,id3)").

wr("w(x,1,id0)","r(x,1,id3)").

sv("w(x,1,id0)","r(x,1,id3)").

sv("r(x,2,id1)","r(x,1,id3)").

sv("w(x,2,id2)","r(x,1,id3)").

initread("r(a,0,ida)").

% CC inference rules

co(X,Y) :- po(X,Y).

co(X,Y) :- wr(X,Y).

co(X,Z) :- co(X,Y), co(Y,Z). % Transitivity

% CC bad-patterns

:- co(X,X). % CyclicCO

:- co(X,Y), wrt(X), initread(Y), sv(X,Y). % WriteCOInitRead

:- co(X,Y), co(Y,Z), wr(X,Z), wrt(X), wrt(Y), rd(Z), sv(X,Y), sv(Y,Z).

% WriteCORead

% CM inference rules

hb(X,"r(x,2,id1)","r(x,2,id1)") :- co(X,"r(x,2,id1)").

hb(X,Y,"r(x,2,id1)") :- hb(Y,"r(x,2,id1)","r(x,2,id1)"), co(X,Y).

hb(X,Y,"r(x,2,id1)") :- hb(X,Z,"r(x,2,id1)"), po(Z,"r(x,2,id1)"), wr(Y,Z)

, wrt(X), sv(X,Y).

hb(X,Y,"r(x,2,id1)") :- hb(X,Z,"r(x,2,id1)"), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,"r(x,2,id1)") :- hb(X,Y,"r(x,2,id1)"), hb(Y,Z,"r(x,2,id1)").

%CM bad-patterns

:- hb(X,Y,"r(x,2,id1)"), wrt(X), sv(X,Y), po(Y,"r(x,2,id1)"), initread(Y)

.

:- hb(X,Y,"r(x,2,id1)"), hb(Y,X,"r(x,2,id1)").

% CM inference rules

hb(X,"r(x,1,id3)","r(x,1,id3)") :- co(X,"r(x,1,id3)").

hb(X,Y,"r(x,1,id3)") :- hb(Y,"r(x,1,id3)","r(x,1,id3)"), co(X,Y).

hb(X,Y,"r(x,1,id3)") :- hb(X,Z,"r(x,1,id3)"), po(Z,"r(x,1,id3)"), wr(Y,Z)

, wrt(X), sv(X,Y).

hb(X,Y,"r(x,1,id3)") :- hb(X,Z,"r(x,1,id3)"), wr(Y,Z), wrt(X), sv(X,Y).

hb(X,Z,"r(x,1,id3)") :- hb(X,Y,"r(x,1,id3)"), hb(Y,Z,"r(x,1,id3)").

%CM bad-patterns

:- hb(X,Y,"r(x,1,id3)"), wrt(X), sv(X,Y), po(Y,"r(x,1,id3)"), initread(Y)

.

:- hb(X,Y,"r(x,1,id3)"), hb(Y,X,"r(x,1,id3)").

clingo version 5.5.0

Reading from stdin

Solving...

Answer: 1

po("w(x,1,id0)","r(x,2,id1)") po("w(x,2,id2)","r(x,1,id3)") co("w(x,1,id0

)","r(x,2,id1)") co("w(x,2,id2)","r(x,1,id3)") co("w(x,2,id2)","r(x

,2,id1)") co("w(x,1,id0)","r(x,1,id3)") wr("w(x,2,id2)","r(x,2,id1)")

wr("w(x,1,id0)","r(x,1,id3)") sv("r(x,2,id1)","w(x,1,id0)") sv("w(x



22 Rachid Zennou et al.

,2,id2)","w(x,1,id0)") sv("r(x,1,id3)","w(x,1,id0)") sv("w(x,1,id0)",

"r(x,2,id1)") sv("w(x,2,id2)","r(x,2,id1)") sv("r(x,1,id3)","r(x,2,

id1)") sv("w(x,1,id0)","w(x,2,id2)") sv("r(x,2,id1)","w(x,2,id2)") sv

("r(x,1,id3)","w(x,2,id2)") sv("w(x,1,id0)","r(x,1,id3)") sv("r(x,2,

id1)","r(x,1,id3)") sv("w(x,2,id2)","r(x,1,id3)") initread("r(a,0,ida

)") wrt("w(x,1,id0)") wrt("w(x,2,id2)") rd("r(x,2,id1)") rd("r(x,1,

id3)") hb("w(x,2,id2)","r(x,1,id3)","r(x,1,id3)") hb("w(x,1,id0)","r(

x,1,id3)","r(x,1,id3)") hb("w(x,2,id2)","w(x,1,id0)","r(x,1,id3)") hb

("w(x,1,id0)","r(x,2,id1)","r(x,2,id1)") hb("w(x,2,id2)","r(x,2,id1)"

,"r(x,2,id1)") hb("w(x,1,id0)","w(x,2,id2)","r(x,2,id1)")

SATISFIABLE

Models : 1

Calls : 1

Time : 0.011s

CPU Time : 0.000s

As we have mentioned before, our new approach (CM 2) computes the hb𝑜
relation for a small set of operations (po-maximal operations) compared to CM -
1. As can be seen above, the size of the Datalog program was considerably
reduced when we use CM 2 for a small history. Let alone long histories that
contains hundreds of operations. This will be seen in the experimental results
(Section 6).

5.4 A procedure for checking Causal Consistency

Let’s name the procedure which implements the reduction we have seen in the
previous section REDUC-to-DATALOG. This procedure takes as input the his-
tory ℎ and the causal consistency model ℳ to check, and returns the correspond-
ing Datalog program 𝒟. Then, we call another procedure named DATALOG-
SOLVER which verifies whether 𝒟 is SATISFIABLE or not.

Input: A history ℎ = ⟨𝑂, po,wr⟩ and a causal consistency model M
Output: SAT iff ℎ satisfies M

1 REDUC-to-DATALOG(h,M)
2 if DATALOG-SOLVER(REDUC-to-DATALOG(h,M)) then
3 return true ;
4 else
5 return false ;
6 end

Algorithm 1: Checking Causal Consistency.

Theorem 3. Algorithm 1 returns true iff the input history ℎ satisfies the causal
consistency model M.
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The correctness of this theorem is ensured by the fact that our reduction is a
simple and direct encoding of bad patterns to Datalog and these bad-patterns
were proven in [9] to capture exactly the causal consistency violations.

5.5 Complexity

The complexity of a Datalog program is 𝒪(𝑛𝑘) [29], where n is the number of
constants in the input data, and k is the maximum number of variables in a
clause. As we have seen in the previous section, given a history ⟨𝑂, po,wr⟩, the
maximum number of variables in a rule in our Datalog programs is 3, thus the
complexity of our approach is 𝒪(𝑛3), where n is the size of the computation (the
number of operations). Our approach’s complexity is better than the one defined
in [9] in which the complexity of checking CC, CCv and CM was shown to be
𝒪(𝑛5).

6 Experimental Evaluation

We have investigated the efficiency and scalability of our tool (named CausalC-
Checker) by applying it to two real-life distributed transactional databases,
CockroachDB [1] and Galera [2].

Fig. 3: The General architecture of the histories checking procedure

Histories generation: The Figure 3 presents the general architecture of
the used testing procedure in the next experiments. Histories are generated us-
ing random clients with the parameters, the number of sessions, the number of
transactions per session, the number of events per transaction (in this paper,
we consider one event per transaction), and the number of variables. A client is
generated by the generator of histories (Algorithm 2) by choosing randomly the
type of operation (read or write) in each transaction, the variable and a value for
write operations. That constitutes non executed histories that are the histories
which do not contain the return values of read operations. Each client performs a
session, communicates with the database cluster by executing operations (read-
/write) and gets the return values for read operations. The recorded histories
are called executed histories in the Figure 3. We ensure that all histories are
differentiated. These histories are the input of our CausalC-Checker.

6.1 Case study 1: CockroachDB.

We have used the highly available and strongly consistent distributed database
CockroachDB [1] (v2.1.0) that is built on a transactional strongly-consistent key-
value store, so it is expected to be causally consistent. Considering one operation
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Input: nClient, nTransaction, nEvent, nVariable
Output: A non executed history

1 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒← ∅;
2 foreach 𝑣 ∈ 1..nVariable do
3 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒(𝑣)← 0;
4 end
5 history← ∅;
6 foreach 1..nClient do
7 Client← ∅;
8 foreach 1..nTransaction do
9 Transaction← ∅;

10 foreach 1..nEvent do
11 Event← 𝑛𝑒𝑤(Event);
12 Event.𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛← 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑐ℎ𝑜𝑜𝑠𝑒({Read,Write});
13 Event.𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒← 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑐ℎ𝑜𝑜𝑠𝑒({1..nVariable});
14 if Event.𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = Write then
15 Event.𝑣𝑎𝑙𝑢𝑒← 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒(Event.𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) + 1;
16 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒(Event.𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)← 𝑙𝑎𝑠𝑡𝑊𝑟𝑖𝑡𝑒(Event.𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒) + 1;

17 end
18 Transaction.𝑝𝑢𝑠ℎ(Event);

19 end
20 Client.𝑝𝑢𝑠ℎ(Transaction);

21 end
22 history.𝑝𝑢𝑠ℎ(Client);

23 end
24 return history;

Algorithm 2: The histories generator algorithm

per transaction lead to our model.
We have examined the effect of the number of operations on runtime for a fixed

number of processes (4 processes) and the effect of the number of processes.
We have tested 200 histories for each configuration and calculated the average
runtime.

We have checked CC, CCv and CM, using its two definitions CM 1 and CM 2,
for all generated histories. Figure 4 shows the results. The graphs 4a, 4c, 4e and
4g show the runtime while increasing the number of operations from 100 to 600,
in augmentations of 100 (with a fixed number of processes, 4 processes). The
graphs 4b , 4d, 4f and 4h report the runtime when increasing the number of
processes from 2 to 6, in augmentations of 1. For each number of processes 𝑥 we
have considered 50𝑥 operations, so increasing the number of processes increases
the number of operations in the history as well.

The graph 4a resp., 4b shows a comparaison between CC, CCv, CM 1 and
CM 2 verification runtimes while varying the number of operations resp., the
number of processes. The graph 4c resp., 4d, presents the running time of CM 2

verification compared to CC and CCv verification running time. The graph 4e
resp., graph 4g , shows the evolution of CC and CCv verification resp., CM 1

and CM 2 verification, runtime while increasing the number of operations. The
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(a) Checking Causal Consistency while
varying the number of operations.

(b) Checking Causal Consistency while
varying the number of processes.

(c) Checking CC, CCv and CM 2 while
varying the number of operations.

(d) Checking CC, CCv and CM 2 while
varying the number of processes.

(e) Checking CC and CCv while varying
the number of operations.

(f) Checking CC and CCv while varying
the number of processes.

(g) Comparing CM 1 and CM 2 run-
times while varying the number of op-
erations.

(h) Comparing CM 1 and CM 2 run-
times while varying the number of pro-
cesses.

Fig. 4: Checking Causal Consistency for CockreachDB histories.
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graph 4f resp., graph 4h, shows the evolution of CC and CCv verification resp.,
CM 1 and CM 2 verification, runtime while increasing the number of processes.

Our approach is more efficient in the case of CC and CCv verification compared
to the CM 1 case (graphs 4a and 4b). The figure 4c resp., 4d, is a zoom on CC,
CCv and CM 2 of figure 4a resp., 4b. It shows that the CM 2 improves the running
time but costs more compared to CC and CCv as well. The figure 4e resp., 4f, is a
zoom on CC and CCv of figure 4a resp., 4b. It shows that CC and CCv verification
are very efficient and terminates in less than 11.6 seconds for all histories we have
tested. As we have noticed above, the results shown in 4g and 4h show that
CM 2 has better performance, by factors of 8 times in the case of 600 operations.
As expected, all the tested histories were valid w.r.t. all the considered causal
consistency models.

6.2 Case study 2: Galera.

(a) Checking Causal Consistency while
varying the number of operations.

(b) Checking CC, CCv and CM 2 while
varying the number of operations.

(c) Checking CC and CCv while varying
the number of operations.

(d) Comparing CM 2 and CC violations
runtimes while varying the number of
operations.

Fig. 5: Checking Causal Consistency for Galera histories.

We have also used the cluster called Galera [2] (v3.20). Galera Cluster is a
database cluster based on synchronous replication and Oracle’s InnoDB/MySQL.
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It is expected to implement Snapshot isolation when transactions are processed
in separated nodes.
Similarly to the first case study, we have studied the evolution of runtime while
increasing the number of operations from 100 to 600, in augmentations of 100.
We have verified 200 histories for each number of operations and compute the
runtime average.

The graphs in Figure 5 show the impact of increasing the number of opera-
tions on runtime while fixing the number of processes (4 processes). The graph
5a shows the comparaison of CC, CCv, CM 1 and CM 2 verification runtimes. The
graph 5b presents a zoom on graph 5a in order to compare CM 2 to CC and CCv.
The graph 5c reports the evolution of CC and CCv verification runtime. Finally,
the graph 5d presents a comparison between CC and CM 2 running times.

Similarly to the CockroachDB case study, our approach is more efficient in
the case of CC and CCv either while increasing the number of operations or
processes. The graph 5a shows that our new definition CM 2 outperforms CM 1,
but still less efficient compared to CC and CCv (graph 5b).

Our approach allows capturing violations on the Galera database. We have
found that 1.25% of the tested Galera histories violate causal consistency, that
confirms the bugs submitted on Github[3]. We mention that 73.3% of the de-
tected CM violations are also CC violations. The suggested approach scales well
and detects violations on the used version of Galera DB.

The experiments show that our approach is efficient for both verification of
valid computations and detection of violations, especially in the case of CC and
CCv. The gap between CC (CCv) and CM 1 runtimes reported in the graphs 4a, 4b
and 5a is due to the fact that in CM 1 we compute the hb𝑜 relation and check
the bad-patterns for each operation. This gap is reduced using the new definition
CM 2 (graphs 4a, 4b and 5a) in which we compute the hb𝑜 relation and check
the bad-patterns for only the last operation of each thread.

7 Related Work

Several works have considered the problem of checking strong consistency models
such as Linearizability and Sequential consistency (SC) [4, 5, 11, 14, 16, 17, 27, 30].
Our recent works [33, 31] address the problem of verifying SC and TSO (Total
store ordering) gradually by using several variants of causal consistency (and
other weak consistency models) including the ones we have considered in this
work. However, few have addressed the problem of checking weak consistency
models. Emmi and Enea [15] propose an algorithm to optimize the consistency
checking based on the notion of minimal-visibility. However, their work relies
on some specific relaxations in those criteria, leading to the naive enumeration
in the context of strong consistency models such as SC and TSO. Bouajjani et
al. [10] presents a formalization of eventual consistency for replicated objects
and reduces the problem of checking eventual consistency to reachability and
model checking problems.
Bouajjani et al. [9] considers the problem of checking causal consistency. They
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present the formalization of the different variations of causal consistency(CC, CCv
and CM) we use in this work and a complete characterization of the violations
of those models. In addition, they show that checking if an execution satisfies
one of those models is polynomial time (𝒪(𝑛5)). However, this work does not
propose any implementation. Our work presents an implementation based on a
reduction to Datalog queries solving which improves the complexity from 𝒪(𝑛5)
to 𝒪(𝑛3).

8 Conclusion

We have presented a tool for checking automatically that given computations
of a system are causally consistent. Our procedure for solving this conformance
problem is based on implementing the theoretical approach introduced in [9]
where causal consistency violations are characterized in terms of the occurrence
of some particular bad-patterns. We build on this work by reducing the prob-
lem of detecting the existence of these patterns in computations to the problem
of solving Datalog queries. We have applied our algorithm to two real-life case
studies. The experimental results show that in the case of CC and CCv our ap-
proach is efficient and scalable. In the CM case, the cost grows polynomially but
much faster than in the case of CC and CCv. In order to improve the CM checking
performance, an optimized definition (CM 2) of the original definition [9] has
been proposed. Our experimental results show that this new definition reduce
considerably the cost of CM verification It reduces the CM verification runtime by
more than 7 times (for histories with 600 operations). However, this optimized
CM definition still less efficient compared to CC and CCv. Nevertheless, it turned
out that interestingly, most of the CM violations (73.3%) that we found are in
fact CC violations, and therefore can be caught using a more efficient procedure
in which one can start by verifying CC first.
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