Skip to main content
Log in

Towards big services: a synergy between service computing and parallel programming

  • Regular Paper
  • Published:
Computing Aims and scope Submit manuscript

Abstract

Over the last years, cloud computing has emerged as a natural choice to host, manage, and provide various kinds of virtualized resources (e.g., software, business processes, databases, platforms, mobile and social applications, etc.) as on-demand services. This “servicelization” across various domains has produced a huge volume of data, leading to the emergence of a new service model, called big service. This latter consists of the encapsulation, abstraction and the processing of big data, allowing then to hide their complexity. However, this promising approach still lacks management facilities and tools. Indeed, due to the highly dynamic and uncertain nature of their hosting cloud environments, big services together with their accessed data need continuous management operations, so that to maintain a moderate state and high quality of their execution. In this context, frameworks for designing, composing, executing and managing big services become a major need. The purpose of this paper is to provide an understanding of the new emerging big service model from the lifecycle management phases’ point of view. We also study the role of big data frameworks and multi-cloud strategies in the provisioning of big services. A research road map on this topic will be summarized at the end of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://www.alibabacloud.com/blog/maxcompute-2-0-evolution-of-alibabas-big-data-service_231835.

  2. https://cloud.oracle.com/opc/paas/datasheets/BDCS-Datasheet.pdf.

  3. https://hadoop.apache.org/.

  4. https://spark.apache.org/.

  5. https://storm.apache.org/.

  6. https://flink.apache.org/.

  7. http://samza.apache.org/.

  8. https://hive.apache.org/.

  9. https://incubator.apache.org/clutch/heron.html.

  10. https://www.serf.io.

  11. https://oozie.apache.org.

  12. https://airflow.apache.org/.

  13. https://kafka.apache.org/.

  14. https://samoa.incubator.apache.org.

  15. https://www.qubole.com/.

  16. https://azure.microsoft.com/en-in/services/hdinsight/.

  17. https://www.ibm.com/analytics/us/en/business/insight-cloud-services/.

  18. https://azure.microsoft.com/en-us/services/machine-learning/.

  19. https://cloud.google.com/products/ai/.

  20. https://aws.amazon.com/machine-learning/.

  21. https://developers.google.com/knowledge-graph.

  22. https://sentry.apache.org.

  23. https://ranger.apache.org

  24. http://metron.apache.org.

References

  1. Zheng Z, Zhu J, Lyu MR (2013) Service-generated big data and big data-as-a-service: an overview. In: IEEE international congress on big data. IEEE 2013, pp 403–410

  2. Carey MJ, Onose N, Petropoulos M (2012) Data services. Commun ACM 55(6):86–97

    Article  Google Scholar 

  3. Xu X, Sheng QZ, Zhang L-J, Fan Y, Dustdar S (2015) From big data to big service. Computer 48(7):80–83

    Article  Google Scholar 

  4. Kitchenham B (2004) Procedures for performing systematic reviews. Keele UK Keele University 33(2004):1–26

    Google Scholar 

  5. Chen CP, Zhang C-Y (2014) Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf Sci 275:314–347

    Article  Google Scholar 

  6. Tsai C-W, Lai C-F, Chao H-C, Vasilakos AV (2015) Big data analytics: a survey. J Big Data 2(1):21

    Article  Google Scholar 

  7. Inoubli W, Aridhi S, Mezni H, Maddouri M, Nguifo EM (2018) An experimental survey on big data frameworks. Future Gener Comput Syst 86:546–564. https://doi.org/10.1016/j.future.2018.04.032

    Article  Google Scholar 

  8. Bouguettaya A, Singh M, Huhns M, Sheng QZ, Dong H, Yu Q, Neiat AG, Mistry S, Benatallah B, Medjahed B et al (2017) A service computing manifesto: the next 10 years. Commun ACM 60(4):64–72

    Article  Google Scholar 

  9. Wang G, Liu M (2019) Dynamic trust model based on service recommendation in big data. Comput Mater Contin 58:845–857

    Article  Google Scholar 

  10. Yang Y, Xu J, Xu Z, Zhou P, Qiu T (2020) Quantile context-aware social IoT service big data recommendation with D2D communication. IEEE Internet Things J 7:5533–5548

    Article  Google Scholar 

  11. Wang S, Su W, Zhu X, Zhang H (2013) A Hadoop-based approach for efficient web service management. Int J Web Grid Serv 9(1):18–34

    Article  Google Scholar 

  12. Hossain MS, Moniruzzaman M, Muhammad G, Ghoneim A, Alamri A (2016) Big data-driven service composition using parallel clustered particle swarm optimization in mobile environment. IEEE Trans Serv Comput 9(5):806–817

    Article  Google Scholar 

  13. Jamil HM, Rivero CR (2017) A novel model for distributed big data service composition using stratified functional graph matching. In: Proceedings of the 7th international conference on web intelligence, mining and semantics. ACM, p 34

  14. White T (2009) Hadoop: the definitive guide, 1st edn. O’Reilly Media Inc, Sebastopol

  15. Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM 51(1):107–113

    Article  Google Scholar 

  16. Christensen R, Wang L, Li F, Yi K, Tang J, Villa N, Storm, (2015) Storm: spatio-temporal online reasoning and management of large spatio-temporal data, In: Proceedings of the 2015 ACM SIGMOD international conference on management of data, SIGMOD ’15, ACM, New York, NY, USA, pp 1111–1116. https://doi.org/10.1145/2723372.2735373

  17. Noghabi SA, Paramasivam K, Pan Y, Ramesh N, Bringhurst J, Gupta I, Campbell RH (2017) Samza: stateful scalable stream processing at linkedin. Proc VLDB Endow 10(12):1634–1645. https://doi.org/10.14778/3137765.3137770

    Article  Google Scholar 

  18. Garg N (2013) Kafka Apache. Packt Publishing, Birmingham

    Google Scholar 

  19. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J, Venkataraman S, Franklin MJ, Ghodsi A, Gonzalez J, Shenker S, Stoica I (2016) Apache spark: a unified engine for big data processing. Commun ACM 59(11):56–65. https://doi.org/10.1145/2934664

    Article  Google Scholar 

  20. Friedman E, Tzoumas K (2016) Introduction to Apache flink: stream processing for real time and beyond, 1st edn. O’Reilly Media Inc, Sebastopol

  21. Xinhua E, Han J, Wang Y, Liu L (2013). Big data-as-a-service: definition and architecture. In: 2013 15th IEEE international conference on communication technology, pp 738–742. https://doi.org/10.1109/ICCT.2013.6820472

  22. Zheng Z, Zhu J, Lyu MR (2013) Service-generated big data and big data-as-a-service: an overview. In: Proceedings of the 2013 IEEE international congress on big data, BIGDATACONGRESS ’13. IEEE Computer Society, Washington, DC, USA, pp 403–410. https://doi.org/10.1109/BigData.Congress.2013.60

  23. Ding J, Kang X, Hu X-H, Gudivada V (2017) Building a deep learning classifier for enhancing a biomedical big data service. In: 2017 IEEE international conference on services computing (SCC). IEEE, pp 140–147

  24. Taherkordi A, Eliassen F, Horn G (2017) From IoT big data to IoT big services. In: Proceedings of the symposium on applied computing. ACM, pp 485–491

  25. Xu X, Motta G, Wang X, Tu Z, Xu H (2016) A new paradigm of software service engineering in the era of big data and big service. arXiv preprint arXiv:1608.08342

  26. Jatoth C, Gangadharan G, Fiore U, Buyya R (2018) QoS-aware big service composition using mapreduce based evolutionary algorithm with guided mutation. Futur Gener Comput Syst 86:1008–1018

    Article  Google Scholar 

  27. Shehu U, Safdar G, Epiphaniou G (2015) Towards network-aware composition of big data services in the cloud. J Adv Comput Sci Appl. https://doi.org/10.14569/IJACSA.2015.061002

    Article  Google Scholar 

  28. Chae BK (2015) Big data and it-enabled services: ecosystem and coevolution. It Prof 17(2):20–25

    Article  Google Scholar 

  29. Yin J, Tang Y, Lo W, Wu Z (2016) From big data to great services. In: IEEE international congress on big data (BigData Congress). IEEE, pp 165–172

  30. Wang X, Yang LT, Feng J, Chen X, Deen MJ (2016) A tensor-based big service framework for enhanced living environments. IEEE Cloud Comput 3(6):36–43

    Article  Google Scholar 

  31. Huang L, Zhao Q, Li Y, Wang S, Sun L, Chou W (2017) Reliable and efficient big service selection. Inf Syst Front 19(6):1273–1282

    Article  Google Scholar 

  32. Liang H, Ding B, Du Y, Li F (2021) Parallel optimization of QoS-aware big service processes with discovery of skyline services. Future Gener Comput Syst 125:496–514

    Article  Google Scholar 

  33. Bhaskar B, Jatoth C, Gangadharan G, Fiore U (2020) A mapreduce-based modified grey wolf optimizer for QoS-aware big service composition. Concurr Comput Pract Exp 32(8):e5351

    Article  Google Scholar 

  34. Lee S, Park H, Shin Y (2012) Cloud computing availability: multi-clouds for big data service. In: International conference on hybrid information technology. Springer, pp 799–806

  35. Ding J, Zhang D, Hu X-H (2016) A framework for ensuring the quality of a big data service. In: 2016 IEEE international conference on services computing (SCC). IEEE, pp 82–89

  36. Yang LT, Wang X, Chen X, Wang L, Ranjan R, Chen X, Deen MJ (2020) A multi-order distributed HOSVD with its incremental computing for big services in cyber-physical-social systems. IEEE Trans Big Data 6:666–678

    Article  Google Scholar 

  37. Liu M, Tu Z, Xu X, Wang Z (2020) A data-driven approach for constructing multilayer network-based service ecosystem models. arXiv preprint arXiv:2004.10383

  38. Li D, Wu J, Deng Z, Chen Z, Xu Y (2017) QoS-based service selection method for big data service composition. In: 2017 IEEE international conference on computational science and engineering (CSE) and IEEE international conference on embedded and ubiquitous computing (EUC). IEEE, vol 1, pp 436–443

  39. Min X, Xu X, Liu Z, Chu D, Wang Z (2018) An approach to resource and QoS-aware services optimal composition in the big service and internet of things. IEEE Access 6:39895–39906

    Article  Google Scholar 

  40. Kathiravelu P (2017) Software-defined inter-cloud composition of big services

  41. Sellami M, Mezni H, Hacid MS (2020) On the use of big data frameworks for big service composition. Netw Comput Appl 1:102732

    Article  Google Scholar 

  42. Gharbi M, Mezni H (2020) Towards big services composition. Web and Grid Services 1

  43. Dutta A, Jatoth C, Gangadharan G, Fiore U (2021) QoS-aware big service composition using distributed co-evolutionary algorithm. Concurr Comput Pract Exp

  44. Wang H, Wang L, Yu Q, Zheng Z (2016) Learning the evolution regularities for big service-oriented online reliability prediction. IEEE Trans Serv Comput 1:1

    Google Scholar 

  45. Alkalbani A, Shenoy A, Hussain FK, Hussain OK, Xiang Y (2015) Design and implementation of the hadoop-based crawler for saas service discovery, In: 2015 IEEE 29th international conference on advanced information networking and applications (AINA). IEEE, pp 785–790

  46. Liu J, Xiong Q, Shi W, Shi X, Wang K (2016) Evaluating the importance of nodes in complex networks. Phys A Stat Mech Appl 452:209–219. https://doi.org/10.1016/j.physa.2016.02.049

    Article  Google Scholar 

  47. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G, Pregel (2010) Pregel: a system for large-scale graph processing. In: Proceedings of the 2010 ACM SIGMOD international conference on management of data, SIGMOD ’10, ACM, New York, NY, USA, pp 135–146. https://doi.org/10.1145/1807167.1807184

  48. Low Y, Bickson D, Gonzalez J, Guestrin C, Kyrola A, Hellerstein JM (2012) Distributed GraphLab: a framework for machine learning and data mining in the cloud. Proc VLDB Endow 5(8):716–727. https://doi.org/10.14778/2212351.2212354

    Article  Google Scholar 

  49. Shao B, Wang H, Li Y (2013) Trinity: a distributed graph engine on a memory cloud. In: Proceedings of the 2013 ACM SIGMOD international conference on management of data, SIGMOD ’13, ACM, New York, NY, USA, pp 505–516. https://doi.org/10.1145/2463676.2467799

  50. Albertoni R, Isaac A (2016) Data on the web best practices: data quality vocabulary. W3C working group 19

  51. Thota S (2017) Big data quality. Springer, Cham, pp 1–5. https://doi.org/10.1007/978-3-319-32001-4_240-1

    Book  Google Scholar 

  52. Zaveri A, Rula A, Maurino A, Pietrobon R, Lehmann J, Auer S (2016) Quality assessment for linked data: a survey. Semant Web 7(1):63–93

    Article  Google Scholar 

  53. Taleb I, El Kassabi HT, Serhani MA, Dssouli R, Bouhaddioui C (2016) Big data quality: a quality dimensions evaluation. In: International IEEE conferences on ubiquitous intelligence & computing, advanced and trusted computing, scalable computing and communications, cloud and big data computing, internet of people, and smart world congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld). IEEE, pp 759–765

  54. Chen X, Jia S, Xiang Y (2019) A review: knowledge reasoning over knowledge graph. Expert Syst Appl 141:112948

    Article  Google Scholar 

  55. Ji S, Pan S, Cambria E, Marttinen P, Yu PS (2021) A survey on knowledge graphs: representation, acquisition and applications. arXiv preprint arXiv:2002.00388

  56. Kantarcioglu M, Ferrari E (2019) Research challenges at the intersection of big data, security and privacy. Front Big Data 2:1

    Article  Google Scholar 

  57. Benjelloun F-Z, Lahcen AA (2019) Big data security: challenges, recommendations and solutions. In: Web services: concepts, methodologies, tools, and applications. IGI Global, pp 25–38

  58. Kimani K, Oduol V, Langat K (2019) Cyber security challenges for IoT-based smart grid networks. Int J Crit Infrastruct Prot 25:36–49

    Article  Google Scholar 

  59. Landset S, Khoshgoftaar TM, Richter AN, Hasanin T (2015) A survey of open source tools for machine learning with big data in the Hadoop ecosystem. J Big Data 2(1):24

    Article  Google Scholar 

  60. Zhou L, Pan S, Wang J, Vasilakos AV (2017) Machine learning on big data: opportunities and challenges. Neurocomputing 237:350–361

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haithem Mezni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezni, H., Sellami, M., Aridhi, S. et al. Towards big services: a synergy between service computing and parallel programming. Computing 103, 2479–2519 (2021). https://doi.org/10.1007/s00607-021-00999-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-021-00999-7

Keywords

Navigation