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Abstract

In conventional model-oriented formal refinement, the
abstract model is supposed to capture all the properties of
interest in the system, in an as-clutter-free-as-possible
manner. Subsequently, the refinement process guides
development inexorably towards a faithful implementa-
tion. However refinement says nothing about how to
obtain the abstract model in the first place. In reality
developers experiment with prototype models and their
refinements until a workable arrangement is discovered.

Retrenchment is a formal technique intended to capture
some of the informal approach to a refinable abstract
model in a formal manner that will integrate with refine-
ment. This is in order that the benefits of a formal ap-
proach can migrate further up the development hierarchy.
The basic ideas of retrenchment are presented, and a sim-
ple telephone system feature interaction case study is elab-
orated. This illustrates not only how retrenchment can re-
late incompatible and partial models to a more definitive
consolidated model during the development of the con-
tracted specification, but also that the same formalism is
applicable in a reengineering context, where the subse-
quent evolution of a system may be partly incompatible
with earlier design decisions. The case study illustrates
how the natural method of composing retrenchments can
give results that are too liberal in certain cases, and
stronger laws of composition are derived for systems pos-
sessing suitable properties. It is shown that the methodol-
ogy can encompass more ad hoc and custom built tech-
niques such as Zave’s layered feature engineering ap-
proach to applications exhibiting a feature oriented
architecture (such as telephony).

1. Introduction

Formal refinement, in its various guises, has a long and dis-
tinguished history. From the early papers [Wirth (1971),
Dijkstra (1972), Hoare (1972)], it has developed into a

large and vibrant field of research. A comprehensive su
vey would be out of place here, but modern accounts in t
spirit of the original work can be found in [de Roever an
Engelhardt (1998), Back and von Wright (1998)]. In all o
these the assumption is that oneknows alreadywhat the ab-
stract model is, and all one has to do is to refine it to a su
able lower level model, gaining a high degree of assuran
for the development thereby.

But the reality is, that in most software development, th
correct abstract model is by no means obvious at the out
Anecdotal evidence1 suggests that this is not only true
where one would expect it, namely in the development
large and complex real world critical applications, (unde
taken using a formal approach because of the belief in
assurance obtainable, or because legislation mandates
but is even present in the behind the scenes aspects of
development of small textbook or research examples,
which some experimentation is often required before
model that will satisfactorily refine to the desired concre
one is arrived at. (And that last sentence exhibits an und
tone that is quite deliberate, because it is frequently tr
that at the outset one has a firmer idea of what the concr
model looks like than the abstract one, and one reverse
gineers the latter from the concrete one to some degre
The upshot of this is that formal approaches, of the conve
tionally understood kind, do not help much in the creatio
of an abstract model that can be contracted to with con
dence for further development. Not that they ever claim
to, but in the ‘oversold and underused’ [6] atmosphere th
has often surrounded debate about formal techniques in
past, it is easy to imagine that they might have done.

Retrenchment [Banach and Poppleton (1998), Bana
and Poppleton (2000a), Banach and Poppleton (1999),
nach and Poppleton (2001)], is a technique that aims to h
address this issue by providing a formalism in which th
demanding proof obligations (POs) of refinement a
weakened, so that models not refineable to the ultima
concrete system, but nevertheless considered useful, ca
1. Several private communications.
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incorporated into the development in a formal manner.
This is not to say that every misconception and blunder that
led to the correct abstraction ought to be recorded in some
sort of retrenchment audit trail, but that asanitisedac-
count2 of the construction of the abstract model from pre-
liminary but incomplete3 precursorsthat are considered
convincing by the domain experts is of benefit.

The stress on the acquiescence of domain experts is vi-
tal. To seek to impose from the outside, an alien develop-
ment discipline on an already well established engineering
mileu is doomed to failure. Yet a naive effort to impose re-
finement as a software development technique can result in
exactly that. To be able to successfuly discharge the refine-
ment POs can force a development to adopt a structure sur-
prisingly unlike what one might imagine at the outset, es-
pecially when interfacing with physical models. Further-
more engineers with an established track record of
successful development are seldom sympathetic to the sug-
gestion that all their familiar working practices must sud-
denly be abandoned in favour of a way of working forced
implicitly by the rigidity of the refinement POs.

Retrenchment is a technique that seeks not to disturb
well entrenched engineering habits, by allowing models to
be developed in a manner more in tune with engineering in-
tuitions. Yet it aims to do so in a manner that can ultimately
be integrated with refinement. To do so, the POs of re-
trenchment must be less exigent than those of refinement,
but neverthless have a structure that is close enough to
those of the refinement POs to make the reconciliation fea-
sible; we will see the details below. Above all, it is vital
that the mathematics of the formalism be the servant and
not the master during the development activity.

The development route that retrenchment opens up now
appears as follows. In the initial stages of requirements
definition and specification design, many preliminary and
partial models are built. Some of these may well prove,

upon experimentation and further reflection, to be misgui
ed. They can be discarded. Other models will, perhaps
ter some modifications, contain a sensible account of a
pects of the desired behaviour of the intended system. U
fortunately, it is quite likely that not all of these sensibl
models will be compatible with each other, in that bein
concerned with only part of the desired behaviour, an
above all with clarity and intuitive perspicuity, not all of the
complexities of how the part focused on interacts with ot
er parts will have been ironed out. Nor indeed should o
expect it to have been. One must understand first the bro
intentions before narrowing down on the finer details; d
tails moreover that may only be of concern in limited spe
cial cases. On a formal level, the incompatibility we spea
of usually manifests itself in the impossibility of accomo
dating the various models we speak of in a single refin
ment based development. Retrenchment, being more f
giving of this kind of incompatibility, offers the possibility
of retrenching from such a collection of models to a mo
complicated model that properly takes into account all th
requirements, and that can serve both as the basis of a c
tract between customer and supplier, and as the basis
subsequent refinement based implementation. We call t
latter model the contracted model.

The reflective process involved in reconciling the in
compatible partial models with the contracted mode
which is partially captured in the retrenchment relation
and proof obligations between these models, strength
the confidence that the right contracted model has been
cided upon, an activity that would otherwise be complete
informal. At worst, this is simply because itis a reflective
process.Anykind of reconsideration of such design dec
sions from a novel standpoint is bound to be helpful
some degree, simply because two perspectives are alw
better than one. At best, the engineering of the POs of t
retrenchments will have brought into sharp focus the mo
important issues that need to be clarified in firming up th
contracted model. One side effect of retrenchment is
provide a formal framework within which such considera
tions can exist.

What we have just described may be called the utopi
view of the utility of retrenchment. However there is an
other scenario in which retrenchment may yet come to
accepted as even more useful than in the utopian sen
Suppose we have a developed system, with perhaps so
hundreds of millions of installed instances. Technology a
vances, and it suddenly becomes feasible to enhance
original conception of the system in a multitude of ways
Now, the original system must serve as a sensible precur
in the design of the enhanced system, but not because it
merely conceived as a convenient staging post on the w
to the more elaborate design, but because it is there de
to, and no development of the enhanced system can t

2. Taking some liberties with language, we mean not only ‘made sani-
tary’ but ‘made sane’.
3. Some comment on the word ‘incomplete’ is in order. We mean here
incomplete in the sense that some of the functional requirements of the
system are deliberately being ignored in order to better understand and
define the ones being focused on; we call thisrequirement incomplete-
ness. In other places incompleteness is intended to refer to the lack of
viability of a model to serve as a system description in its own right from
a user’s perspective (irrespective of the totality of requirements that ulti-
mately needs to be captured). In such cases the incompleteness refers to
the lack within the model of any defined system response to at least some
of what ought to be regarded as legitimate user demands or inputs to the
system; we call thismodel incompleteness; another way of describing
this would belack of input readiness. Such scenarios usually arise when
there is an intention to fill in the missing pieces during later refinements:
these later refinements can be of such a nature that they are incompatible
for technical reasons with natural completions of the abstract model in its
own right, thus provoking the incompleteness of the abstract model in the
first place (since a suitable extension of an adroitly designed but incom-
plete abstract model will usually yield a valid refinement).
2
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place without taking due account of the installed system
base. The original system is of course a precursor of the
upgraded one because it preceded it chronologically, but
the intent is no longer that it is in some sense subservient to
the development of the newer one. In such situations it is
almost inevitable that the new system will not be a straight-
forward refinement of the old one, and the added flexibility
of retrenchment proves much more convenient. The pre-
ceding remarks apply with full force in the case of teleph-
ony, a case study that forms a thread running through the
rest of the paper.

The rest of this paper is now structured as follows. The
next section introduces our notation for systems, and gives
a toy example. In Section 3 we develop a very primitive tel-
ephone system model, together with two independent en-
hancements, call forwarding and call hold. Section 4 re-
views the basic ideas of retrenchment in the context of the
earlier system notations and toy example. Since there are
areas of incompatibility between the primitive telephone
system model and the two enhancements (features) intro-
duced, retrenchment is needed to describe the relationships
between the primitive model and the enhanced models;
Section 5 covers this. Section 6 considers how the two fea-
tures may be combined: again there are areas of incompat-
ibility when both features can be triggered. It is shown that
given a design decision about how to resolve the incompat-
ibility, retrenchments can relate the two features to the re-
sulting final model. Section 7 considers the two composi-
tions of the two features along the two routes from the orig-
inal model to the final model, and compares these to a
retrenchment description of a one step derivation. It is
shown that the compositions give safe overestimates for
what is permitted due to the proof technique used. This at-
tests to the solidity of the retrenchment technique. Section
8 describes two stronger laws of composition for retrench-
ments that overcome the overgenerous provisions of the
standard composition. While the first of these is still too
weak to cover what takes place in the present case study,
the second is better suited to doing so. This illustrates that
when disjunctions play a prominent role in a derivation (as
they notably do in applications of retrenchment), we should
both take care to interpret the results in an appropriate man-
ner, and note that small changes in other parts of the system
can significantly affect the said interpretation.

In Section 9 we bring into the discussion Zave’s layered
feature engineering approach, which proposes an architec-
tural methodology for dealing with feature interactions.
This acts as a spur to reexamine our case study from a lay-
ered feature engineering perspective, and the feature mod-
els for this approach are described in Section 10. Section
11 considers the retrenchments between the layers of this
approach and relates them to the ones introduced earlier,
thus closing the loop. Section 12 concludes. In an Appen-

dix we describe how an alternative development of the ca
study based on refinement might run. The pros and cons
the refinement and retrenchment based approaches
compared, and we illustrate how the routes available to
via refinement all suffer from undesirable aspects. The
discussions are offlined so as not to disturb the retrenc
ment oriented flow of ideas in the main body of the paper

All through the paper, in constructing formal models
we make use of a Z-like notation for standard discre
mathematics notions. Mostly this should be self explan
tory, but we introduce a couple of possibly less familiar no
tations here.

Let Rbe a relation fromX to Y, a set of (x, y) pairs with
x ∈ X, y ∈ Y.  Then its domain and range are:

dom(R) = {x ∈ X | ∃ y ∈ Y, (x, y) ∈ R}
rng(R) = {y ∈ Y | ∃ x ∈ X, (x, y) ∈ R} (1.1)

If X = Y then the field ofR is:

fld(R) = dom(R) ∪ rng(R) (1.2)

The domain and range subtraction operators<−| and |−> are
defined by:

A <−| R = {(x, y) ∈ R | x ∉ A}
R |−> B = {(x, y) ∈ R | y ∉ B} (1.3)

and the domain and range override operators<+ and+> are
defined by:

R <+ S = S∪ {(x, y) ∈ R | x ∉ dom(S)}
R +> S = R ∪ {(x, y) ∈ S | y ∉ rng(R)} (1.4)

X —› Y denotes the total functions fromX to Y; X ›—› Y the
total injections, andX ›+—› Y the partial injections, etc. For
a relationR, R+ denotes the transitive closure ofR. Other
notations are introduced in situ.

2. System Descriptions

In this paper we will strive to describe systems in the sim
plest way possible consistent with the mathematical pre
sion necessary for resolving the technical issues we have
mind. Accordingly we work in a pure transition system
framework. In this context, a system will be described
the following manner.

The system will possess a set of operations,Ops with
typical elementm, (and among the various operations ther
will be a distinguished initialisation operationInit). A typ-
ical operationm will act on a current (or before-) stateu,
in a manner that depends on the current inputi, and will ac-
complish a state transformation yielding a new (or after
stateu′, producing an output valueo. The valuesu andu′
will be drawn from a state spaceU common to all opera-
tions, while the input spaces and output spacesIm andOm
can in principle vary from operation to operation, as is in
dicated by the notation. The transitions of the system (ar
ing from some operationm) can therefore be writtenu -(i,
3
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m, o)-› u′. The totality of such transitions makes up the
transition or step relation form, which we writestpm, or
stpm(u, i, u′, o) when we want to display the variables in-
volved.

We consider a toy example before moving on to the
many more substantial systems contained in the rest of the
paper. Aside from the initialisationInit, our system has one
further operationUp. We haveU = {0, 3}, and IUp = ∅ =
OUp. Init setsu to 0, andUp is given by 0 -(ε, UpA, ε)-› 3,
whereε is the empty input and output; this is the only step
in stpUp. This completes the description of the toy exam-
ple, the only transition of which is illustrated in the top ar-
row of Fig. 1. We will return to this example in Section 4
to give an equally toy illustration of retrenchment.

3. Features in a Simple Telephony Model

We will illustrate the potential for retrenchment to capture
the evolution of an integrated specification from incom-
plete and contradictory prior models, using elements of
feature interaction in telephone systems as a case study.
There is now a substantial literature on this topic, eg. [Cal-
der and Magill (2000), Kimbler (1999)], since the naive
combination of novel services on top of the plain old tel-
ephone system (POTS) model can be problematic. Since
our primary aim is to illustrate the utility of retrenchment
and not to advance the state of the art in telephony, our
models will be oversimplified in the extreme. Still, they
will make the intended points well enough. In this section
we start with the simplest modelPHONE, and then con-
sider the addition of call forward and call hold facilities, a
well known situation in which the naive combination of ex-
tra services does not work.

PHONE: In this system the state space is just the set of ac-
tive calls, captured in the state variablecalls, which is a par-
tial injection on the set of available phonesNUM, and in
which the domain and range of the active calls relation do
not intersect; and withcalls initialised empty. (In POTS the
same handset cannot be both the instigator of a phone call
and the receiver of a phone call at the same time).

calls : NUM ›+—› NUM  where
dom(calls) ∩ rng(calls) = ∅ (3.1)

There are just two operations,connectn and breakn, the
former to dial numberi from phonen, and the latter to dis-
connect phonen. We define free(n) ≡ n ∉ fld(calls) ≡ ¬
busy(n).

calls -(i, connectn, o)-› calls′  where
free(n) ∧
if free(i) ∧ (n ≠ i)
theno = OK ∧ calls′ = calls ∪ {n |→ i}
elseo = NO ∧ calls′ = calls (3.2)

calls -(breakn)-› calls′  where

busy(n) ∧ calls′ = {n} <−| calls |−> { n} (3.3)

Note that (naively speaking) you cannot make a call from
handset already engaged in a phone call, so that freen)
must be a precondition in (3.2); i.e. it is asserted in the de
inition of connectn. However the outcome of a connection
attempt made from a free handset depends on the stat
the destination handset; therefore free(i) is a guard in a con-
ditional.

In POTS you can’t be having a telephone conversati
with yourself on the same handset. Now whereas in re
life when you pick up a phone and dial your own numbe
you hear the engaged tone, theconnectn model in (3.2) is
only sensitive to the state of the calling handsetat the in-
stant immediately before the handset is lifted, at which
point we have just said that it must be free — therefore
our crude model, we must include the (n ≠ i) term in the
guard to ensure the invariant in (3.1) is preserved. For si
plicity, this tactic for dealing with the ‘calling oneself’ sce-
nario is maintained for all the models in this paper.

From this very basic model we now construct enhanc
services one at a time.  First call forwarding.

PHONECF: In this system the state space is the set of a
tive calls as before, plus a tablefortab, of call forwarding
data, the latter being a partial injection on the phones who
transitive closure is acyclic, and also initialised empty:

fortab : NUM ›+—› NUM  where
fortab+ ∩ idNUM = ∅ (3.4)

Two new operationsregforCF,n(i) and delforn manipulate
the table. The former inserts forwarding destinations in th
table, the latter removes them.

Note that for simplicity we do not mention parts of the
state (i.e. here the part described by the state variablecalls)
left unaltered by an operation: this is theprogrammingcon-
vention on update of state values, in contrast to thelogical
convention for defining relations, which takes it that an
variables not explicitly constrained can be assigned ar
trary values from the appropriate domain. The logical co
vention is certainly more widely used when defining rela
tions, but in this paper we stress that for economy, we w
adhere to the programming convention when defining tra
sition steps, despite the slightly nonstandard nature of t
definitions which result. To avoid confusion, we will high
light the relevant facts again at particularly critical points.

Note thatregforCF,nmerely (and silently) overwrites any
existing information in the table if it is safe to do so. Thi
is certainly a rather naive model.

fortab -(i, regforCF,n)-› fortab′  where
if (fortab <+ { n |→ i}) + ∩ idNUM = ∅
thenfortab′ = fortab <+ { n |→ i}
elsefortab′ = fortab (3.5)

fortab -(delforCF,n)-› fortab′  where
4
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fortab′ = {n} <−| fortab (3.6)

In the presence of this new service, theconnectn andbreakn
operations must be reexamined, as the behaviour required
of them potentially changes due to the new functionality we
are building. Theconnectn operation may be reengineered
thus:

calls -(i, connectCF,n, o)-› calls′  where
free(n) ∧
if free(i) ∧ (n ≠ i)
theno = OK ∧ calls′ = calls ∪ {n |→ i}
else if busy(i) ∧ i ∈ dom(fortab) ∧

fortab+(i) = z ∧ free(z) ∧ (z ≠ n)
theno = OK ∧ calls′ = calls ∪ {n |→ z}
elseo = NO ∧ calls′ = calls (3.7)

while thebreakn operation, it turns out, is unaltered:

breakCF,n = breakn (3.8)

This completes call forwarding. Now we turn our attention
to call holding.

PHONECH: In this system the state space is the set of ac-
tive calls, plus a tableholtab, of call holding data, the latter
being a subset of the phones, initialised empty:

holtab⊆ NUM (3.9)

Two operations insert and remove elements of this subset.
Again for simplicity the operations work silently, giving no
feedback.

holtab -(regholCH,n)-› holtab′  where
holtab′ = holtab∪ {n} (3.10)

holtab -(delholCH,n)-› holtab′  where
holtab′ = holtab – {n} (3.11)

With this service,connectn andbreakn need reexamination
once more, for the same reason as above. Theconnectn op-
eration simulates rather primitively the infuriating feed-
back obtainable from most holding services; however there
is no attempt made to accurately model the resolution of a
hold when the call recipient becomes free:

calls -(i, connectCH,n, o)-› calls′  where
free(n) ∧
if free(i) ∧ (n ≠ i)
theno = OK ∧ calls′ = calls ∪ {n |→ i}
else if busy(i) ∧ i ∈ holtab
theno= (“Our advisor is busy. Please hold.”)100∧

calls′ = calls
elseo = NO ∧ calls′ = calls (3.12)

The breakn operation is unaltered as before:

breakCH,n = breakn (3.13)

which completes the call holding model.
Before going on to consider feature interaction, it is ap-

propriate to ask how the two enhanced modelsPHONECF

andPHONECH, are related toPHONE. The natural ex-
pectation might be that they would in some sense be refin
ments ofPHONE, but this turns out not to be the case. Th
reason is that the simplePHONE system prescribes a spe
cific response for the busy(i) case, this being given by the
clauseso = NO ∧ calls′ = calls, a naive model of the en-
gaged tone. This is in turn necessitated by the desire
make thePHONE system model complete, as it would
need to be if thePHONE system is to be considered a via
ble specification in its own right. Under the same busy(i)
conditions, when suitable supplementary conditions ho
the two enhanced models prescribe different and incomp
ible behaviour: inPHONECF a connection can be made to
the forward location should there be one and it happens
be free, while inPHONECH an irritating message drones
on interminably should the destination phone be one f
which holding is configured. This means that the enhanc
models cannot be viewed as straightforward extensions
thePHONE model. But in some sense this would have t
be the case if the relationships betweenPHONE and the
enhanced systems were to be refinements.

In the Appendix we outline how one can approach th
kind of development via refinement, most particulary as
illustrates the fact that in order to do so we must start wi
a different formulation of the primitive modelPHONE.
We examine two possible starting models,PHONE' and
PHONE′′, and we see that in both cases these versions
PHONE are incomplete. In the case ofPHONE′ it is a
straightforward case of model incompleteness, a proble
forestalled in thePHONE model which specifies that if the
desired number is not available then a well defined defa
behaviour is required. (In particular, thePHONE model
does not give the designer unfettered licence to refine
busy(i) case down to completely arbitrary behaviour, a
doesPHONE′.) In the case ofPHONE′′, where an unre-
stricted set of possible connection outcomes in the busyi)
case is permitted, with the intention that refinement
PHONECF subsequently narrows it down to a more speci
ic subset, we have requirements incompleteness, since s
uncontrolled connection behaviour can never reflect a re
istic user level requirement. (Again, thePHONE model
does not give the designer licence to make an arbitrary co
nection in the busy(i) case.)

So the Appendix shows thatPHONE models refinable
to PHONECF or PHONECH display traits that are prob-
lematic from the requirements perspective. We curtail fu
ther discussion at this juncture, positing firstly tha
PHONEas described captures completely the natural fun
tional requirements of the POTS model of this paper, a
secondly that (as we are about to illustrate) there is no d
ficulty in casting the relationships between thePHONE
model and the enhanced models as retrenchments. But
we must say what retrenchment is.
5
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4. Retrenchment

Retrenchment is a relationship between two systems of the
kind we have been dealing with. These will be the
abridgedsystem, expressing an idealised but self consist-
ent view of some part of the desired system, and thecom-
pletedsystem, that takes all of (or at least more of) the nec-
essary details into account.4

At the abridged level, we have a system as we described
in Section 2, namely a set of operationsOpsA with typical
elementmA, and state space, input spaces, and output spac-
esU, ImA

, OmA
, respectively. The transition relations for ty-

ical operationsmA arestpmA
(u, i, u′, o). Note that we have

acquired an extra subscriptA to unambiguously indicate the
abridged system where necessary.

At the completed level we have an entirely analogous
setup. This time the operation name set, state, input and
output spaces areOpsC, V, JmC

, PmC
, respectively, with

valuesmC, v, j, p, and similar conventions as before, except
noting that we write the operation name set and operation
names subscripted withC, eg. mC. We assume each
abridged level operationmA, has a corresponding complet-
ed level operationmC, but there may also be other complet-
ed level operations, so that there is an injection from the set
OpsA to OpsC, which associatesmA with mC.

We now turn to the relationship between the two levels,
which consists of several pieces. Firstly we have the rela-
tionship between abridged and completed state spaces,
which is given by the retrieve relationG(u, v). Next we de-
mand that the two initialisation operationsInitA and InitC
at abridged and completed levels, establishesG in corre-
sponding after-states (as usual, the free variables are as-
sumed implicitly universally quantified):

InitC(v′) ⇒  (∃ u′ • InitA(u′) ∧ G(u′, v′)) (4.1)

Turning to the transition relation for a typical operationmA,
beyond the retrieve relationG, we have a within relation
Pm(i, j, u, v), and concedes relationCm(u′, v′, o, p; i, j, u, v).
The punctuation indicates thatCm is mainly concerned
with after-values, but may refer to before-values too where
necessary. These are combined into the retrenchment PO
for steps, which says that for each suchmA:

G(u, v) ∧ Pm(i, j, u, v) ∧ stpmC
(v, j, v′, p) ⇒

(∃ u′, o • stpmA
(u, i, u′, o) ∧

(G(u′, v′) ∨ Cm(u′, v′, o, p; i, j, u, v))) (4.2)

This PO affords considerable flexibility in relating different
levels of abstraction, see [7, 8, 9, 10] for a discussion.

We return to our previous toy example for a brief illus-
tration. We have seen that the abridged level is given byIn-
itA, and one further operationUpA, with U = {0, 3}, IUpA

=
∅ = OUpA

; and such thatInitA setsu to 0, andUpA is given

by the one and only transition 0 -(ε, UpA, ε)-› 3. At the
completed level we haveInitC, andUpC. The state space is
V = {0, 3, X}, and JUpC

= ∅, PUpC
= {Done, Error}. InitC

setsv to 0, andstpUpC
has two transitions {0 -(ε, UpC,

Done)-› 3, 0 -(ε, UpC, Error)-› X}. The nontrivial steps of
both systems are illustrated in Fig. 1.

The retrieve relation is given by the inclusion ofU into
V i.e. equality of abridged and completed values, and t
within relation forUp is U × V (i.e. we have a trivial within
relation, where we also remove the empty input spaces

There is some scope for choosing the concedes relat
CUp.  The smallest possibility is:

C1 = {(u′, v′, p) | u′ = 3∧ v′ = X ∧ p = Error} (4.3)

while other possibilities include:

C2 = {(u′, v′, p) | (v′ = X ∧ p = Error) ∨
(v′ = u′ ∧ p = Done)} (4.4)

C3 = {(u′, v′, p) | (p = Error ⇒ v′ = X) ∧
(p = Done⇒ v′ = u′)} (4.5)

Note thatC2 = C3 because of the smallness of the spaces
volved. These different possibilities indicate some of wh
can be expressed using retrenchment in a more synta
cally based framework, in particular that what goes into th
concedes relation is at least partly a question ofdesign, and
of the relative importance of various issues as perceived
developers. It is easy to check that the PO (4.2) holds
each of theCi’s. With this under our belts, we turn to the re
trenchments of our case study.

5. Retrenchments for the Telephony Systems

Turning to the retrenchments between the systems of S
tion 3, in each instance we first say which model is th
abridged one and which the completed one, and then
give the retrieve relation between the state spaces, and
within and concedes relations for each operation of t
abridged model.

PHONE to PHONECF: We set up the data for the re-
trenchment as follows, withPHONEas the abridged model
andPHONECF as the completed model:

GCF(u, v) = (u = calls ∧ v = (calls, fortab)) (5.1)
4. Most presentations of retrenchment speak of anabstractand acon-
crete system, in the spirit of moving towards an implementation.

0 3(ε, UpA, ε)

0 3(ε, UpC, Done)

X(ε, UpC, Error)

Fig. 1

0
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PCF,connectn(i, j, u, v) = (i = j) (5.2)

CCF,connectn(u′, v′, o, p; i, j, u, v) =
(busy(j) ∧ j ∈ dom(fortab) ∧
fortab+(j) = z ∧ free(z) ∧ (z ≠ n) ∧
u′ = u ∧ v′ = (calls ∪ {n |→ z}, fortab) ∧
o = NO ∧ p = OK) (5.3)

PCF,breakn(u, v) = true (5.4)

CCF,breakn(u′, v′; u, v) = false (5.5)

Showing that the POs of retrenchment hold for these data is
easy. The initialisation PO (4.1) is trivial given that all the
sets in the states of both models are initialised empty. Also
the operation PO (4.2) is easy given that the only case
where the actions ofconnectn andconnectCF,ndiffer is pre-
cisely the case documented in the concedes relation (5.3).
The two break operations are identical leading to trivial
within and concedes relations.

PHONE to PHONECH: The abridged model isPHONE
as before andPHONECH is now the completed model:

GCH(u, v) = (u = calls ∧ v = (calls, holtab)) (5.6)

PCH,connectn(i, j, u, v) = (i = j) (5.7)

CCH,connectn(u′, v′, o, p; i, j, u, v) =
(busy(j) ∧ j ∈ holtab∧ u′ = u ∧ v′ = v ∧
o = NO ∧ p = (“Our … hold.”)100) (5.8)

PCH,breakn(u, v) = true (5.9)

CCH,breakn(u′, v′; u, v) = false (5.10)

The POs are as straightforward as previously, and for the
same reasons.

6. Feature Interaction in Telephony

Having built our basic system, and having separately con-
sidered the call forwarding and call holding optional en-
hancements, we now consider combining the two features.
Any combination is based on the assumption that thecalls
state component and the input and output spaces of the two
variants of theconnectn and breakn operations are to be
identified insofar as possible. (This precludes construc-
tions that incorporate say twocalls state components and
then implement call forwarding in one, and call holding in
the other. Formally this might work up to a point, but in
practice such solutions are not useful models of the real
world.) In any event, we stress that whatever method of
combining the two features is used, it will require a design
decision, and will not just rest on the mechanical applica-
tion of some standard piece of formalism.

PHONECF/CH: The state space iscalls as before, plus ta-
bles of call forwarding and call holding data:

( calls : NUM ›+—› NUM ,
fortab : NUM ›+—› NUM ,

holtab⊆ NUM )
where

dom(calls) ∩ rng(calls) = ∅ ∧
fortab+ ∩ idNUM = ∅ (6.1)

The auxiliary operations to manage the two tables are u
changed:

regforCF/CH,n = regforCF,n
delforCF/CH,n = delforCF,n
regholCF/CH,n = regholCH,n
delholCF/CH,n = delholCH,n (6.2)

(The equalities above are to be understood according to
programming convention on values, namely that anythin
not mentioned is to be left unchanged.) The break ope
tions are also unaltered:

breakCF/CH,n = breakCF,n = breakCH,n = breakn (6.3)

The interest lies of course in theconnectCF/CH,n(i) opera-
tion. Our design is guided by the following principles
Firstly, if the conditions for neither service enhanceme
hold, then the system should behave like the plainPHONE
service. Secondly, if the conditions for exactly one of th
service enhancements hold, then the system should beh
according to that enhancement. The third case, when
conditions for both the call forwarding and call hold en
hancements are valid, requires a more intrusive design
cision. We determine that in this case, the caller shou
have a choice between the two alternatives. To keep thin
as simple as previously, we do not model the interactio
with the caller or the resolution of a hold situation ver
faithfully, modelling it by issuing a particular message a
the output, in line with the unsophisticated nature of all th
models in this paper.

calls -(i, connectCF/CH,n, o)-› calls′  where
free(n) ∧
if free(i) ∧ (n ≠ i)
theno = OK ∧ calls′ = calls ∪ {n |→ i}
else if busy(i) ∧ i ∉ holtab∧ i ∈ dom(fortab) ∧

fortab+(i) = z ∧ free(z) ∧ (z ≠ n)
theno = OK ∧ calls′ = calls ∪ {n |→ z}
else if busy(i) ∧ i ∈ holtab∧

(i ∉ dom(fortab) ∨ (i ∈ dom(fortab) ∧
(busy(fortab+(i)) ∨ (z = n))))

theno= (“Our advisor is busy. Please hold.”)100∧
calls′ = calls

else if busy(i) ∧ i ∈ holtab∧ i ∈ dom(fortab) ∧
fortab+(i) = z ∧ free(z) ∧ (z ≠ n)

theno = (“Our advisor is busy. Please press 1
to speak to the janitor.”)∧ calls′ = calls

elseo = NO ∧ calls′ = calls (6.4)

It is clearly plausible to infer immediately that refinement
will not hold either between thePHONECF and
7
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PHONECF/CH models, or between thePHONECH and
PHONECF/CH models; reasons for this are as discussed
earlier.

Despite this, we show that retrenchment can give a good
account of the situation, due to the more flexible proof ob-
ligations that characterise it.

PHONECF to PHONECF/CH: In contrast to the two re-
trenchments given previously, this timePHONECF is the
abridged model andPHONECF/CH is the completed mod-
el, illustrating how in a development hierarchy, what is re-
garded as concrete at one point, becomes abstract when one
focuses lower down. (This is just as appropriate for the
piecewise development of a specification from preliminary
models as it is when developing an implementation from an
already agreed specification.)

GCF›CH(u, v) = (u = (calls, fortab) ∧
v = (calls, fortab, holtab)) (6.5)

PCF›CH,connectn(i, j, u, v) = (i = j) (6.6)

CCF›CH,connectn(u′, v′, o, p; i, j, u, v) =
(busy(j) ∧ j ∈ holtab∧

(((j ∉ dom(fortab) ∨ (j ∈ dom(fortab) ∧
(busy(fortab+(j)) ∨ (z = n)))) ∧
u′ = u ∧ v′ = v ∧ o = NO ∧
p = (“Our … hold.”)100) ∨
(j ∈ dom(fortab) ∧ fortab+(j) = z ∧ free(z) ∧
(z ≠ n) ∧ u′ = (calls ∪ {n |→ z}, fortab) ∧
v′ = v ∧ o = OK ∧
p = (“Our … janitor.”)))) (6.7)

PCF›CH,breakn(u, v) = true (6.8)

CCF›CH,breakn(u′, v′; u, v) = false (6.9)

PCF›CH,regforn(i, j, u, v) = (i = j) (6.10)

CCF›CH,regforn(u′, v′; i, j, u, v) = false (6.11)

PCF›CH,delforn(u, v) = true (6.12)

CCF›CH,delforn(u′, v′; u, v) = false (6.13)

It is clear that the relvant POs hold. Initialisation is trivial
as usual, and the operation POs are trivial for all but the
connectn operation. In the latter case it is easy to see that in
the cases where the abridged and completed models differ,
the differences are adequately documented in the concedes
clause.

PHONECH to PHONECF/CH: Here the abridged model is
PHONECH andPHONECF/CH plays the part of the com-
pleted model.

GCH›CF(u, v) = (u = (calls, holtab) ∧
v = (calls, fortab, holtab)) (6.14)

PCH›CF,connectn(i, j, u, v) = (i = j) (6.15)

CCH›CF,connectn(u′, v′, o, p; i, j, u, v) =
(busy(j) ∧ j ∈ dom(fortab) ∧

fortab+(j) = z ∧ free(z) ∧ (z ≠ n) ∧
((j ∉ holtab∧ u′ = u ∧ o = NO ∧ p = OK ∧
v′ = (calls ∪ {n |→ z}, fortab, holtab)) ∨
(j ∈ holtab∧ u′ = u ∧ v′ = v ∧
o = (“Our … hold.”)100∧
p = (“Our … janitor.”)))) (6.16)

PCH›CF,breakn(u, v) = true (6.17)

CCH›CF,breakn(u′, v′; u, v) = false (6.18)

PCF›CH,regholn(u, v) = true (6.19)

CCF›CH,regholn(u′, v′; u, v) = false (6.20)

PCF›CH,delholn(u, v) = true (6.21)

CCF›CH,delholn(u′, v′; u, v) = false (6.22)

The POs are as straightforward as previously.
We note that in both of these retrenchments, the co

cedes clause for theconnectn operation has to cater for two
exceptional conditions. In the case of theCF›CH retrench-
ment, when holding is available, the two actions for whe
forwarding is available or not are both incompatible wit
the provisions of thePHONECF model, while in the
CH›CF retrenchment, when forwarding is available the tw
actions for when holding is available or not are both incom
patible with the provisions of thePHONECH model. Aside
from these nontrivial cases, we have a greater proliferati
of essentially trivial operation POs, arising from the fac
thatPHONECF andPHONECH have management opera
tions for the forward and hold tables respectively, and the
are also present in identical fashion inPHONECF/CH.

7. Compositions of Retrenchments and a
Direct Retrenchment Design

Given that we have two routes to get from the simple mod
PHONE to the final modelPHONECF/CH, the first via
PHONECF and the second viaPHONECH, we can exam-
ine the compositions of the relevant pairs of retrenchmen
and compare them, both to each other and to a one step
trenchment which derives the final design from the origin
simplePHONE system.

For the formulation of retrenchment used in this pape
the method of composing retrenchments is examined in d
tail in [10].  For brevity we just sketch the results.

Suppose we have at top level a system given by variab
u, i, u′, o (for a typical operation). At intermediate leve
suppose the variables arev, j, v′, p (for the corresponding
operation). And at lowest level suppose the variables arew,
k, w′, q (for an operation corresponding to an intermedia
level operation with variablesv, j, v′, p). Suppose a re-
trenchment is given from top level to intermediate leve
with retrieve relationG(u, v), and for a top level operation
m, the within and concedes relations arePm(i, j, u, v),
Cm(u′, v′, o, p; i, j, u, v). Suppose there is also a retrench
8
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ment from intermediate level to lowest level whose retrieve
relation isH(v, w), and such that for intermediate level op-
erationm, the within and concedes relations areQm(j, k, v,
w), Dm(v′, w′, p, q; j, k, v, w). In such a case there is a re-
trenchment from the top level to the lowest level, for which
the retrieve relation is:

K(u, w) = (∃ v • G(u, v) ∧ H(v, w)) (7.1)

and for which the within and concedes relations for a top
level operationm are:

Rm(i, k, u, w) =
(∃ v, j • G(u, v) ∧ H(v, w) ∧

Pm(i, j, u, v) ∧ Qm(j, k, v, w)) (7.2)

Em(u′, w′, o, q; i, k, u, w) =
(∃ v′, p, v, j •

(G(u′, v′) ∧ Dm(v′, w′, p, q; j, k, v, w)) ∨
(Cm(u′, v′, o, p; i, j, u, v) ∧ H(v′, w′)) ∨
(Cm(u′, v′, o, p; i, j, u, v) ∧

Dm(v′, w′, p, q; j, k, v, w))) (7.3)

This result is confirmed by straightforward predicate cal-
culus as follows. On the basis of the assumed retrench-
ments and the valdity of their POs, we assume we are given
u, i andw, k related by (7.1) and (7.2), and a lowest level
stepw -(k, m, q)-› w′. We extract from (7.1) and (7.2) the
conjunction of the antecedents for the individual POs, and
apply them in turn to derive intermediate and highest level
steps, and thence the conjunction of the consequents for the
individual POs. Some predicate calculus now manipulates
this conjunction into the disjunction of (7.1) and (7.3), con-
firming that (7.1)-(7.3) indeed define a valid retrenchment.

We will now calculate the composed quantities (7.1)-
(7.3) for the two retrenchment routes fromPHONE to
PHONECF/CH. In both cases we only need to check for the
top level operationsconnectn andbreakn because the other
operations at the intermediate level get filtered out of the
composed retrenchment.

For clarity, we will simplify the results as much as pos-
sible. This includes for example eliminating clauses if they
arise anyway from other parts of the PO for the composed
retrenchment, or are obvious logical consequences of such
parts. Thus we strive not so much for the literal results of
(7.1)-(7.3) as for answers that areequivalent to them within
the context of their intended use, i.e. equivalent under the
hypotheses that the antecedents of the PO are true, and that
a suitable abridged level step has been infered from them.

We start with the route viaPHONECF, getting a re-
trenchment whose data,K, R, E, we label withCF›CH.
Starting with the retrieve relation, we plug (5.1) and a suit-
ably relabelled (6.5) into (7.1) and get:

KCF›CH(u, w) = (u = calls ∧
w = (calls, fortab, holtab)) (7.4)

Moving to connectn and the within relation, we likewise
plug (5.1) and (5.2) and a suitably relabelled (6.5) and (6.
into (7.2). We note that as far as the use of the resulting
lation in the operation PO is concerned, we can discard
termG(u, v) ∧ H(v, w) which arises via (7.2) sincePCF,con-

nectn(i, j, u, v) andQCF›CH,connectn(j, k, v, w) are independent
of the state variablesu, v, w, andKCF›CH(u, w) is one of the
PO antecedents anyway. Thus we get:

RCF›CH,connectn(i, k, u, w) = (i = k) (7.5)

Similarly, for the concedes relation, we plug (5.1) and (5.
and a suitably relabelled (6.5) and (6.7) into (7.3). Afte
some simplification and further manipulation which we ex
plain below we get the following, where the individua
clauses are labelled for ease of identification later:

ECF›CH,connectn(u′, w′, o, q; i, k, u, w) = (busy(k) ∧
[1] ((k ∉ holtab∧ k ∈ dom(fortab) ∧ fortab+(k) = z∧

free(z) ∧ (z ≠ n) ∧ u′ = u ∧ o = NO ∧ q = OK ∧
w′ = (calls ∪ {n |→ z}, fortab, holtab)) ∨

[2] (k ∈ holtab∧ k ∈ dom(fortab) ∧ fortab+(k) = z ∧
free(z) ∧ (z ≠ n) ∧ u′ = u ∧ o = NO ∧ q = OK ∧
w′ = (calls ∪ {n |→ z}, fortab, holtab)) ∨

[3] (k ∈ holtab∧ (k ∉ dom(fortab) ∨
(k ∈ dom(fortab) ∧ fortab+(k) = z ∧
(busy(z) ∨ (z = n)))) ∧
u′ = u ∧ w′ = w ∧ o = NO ∧
q = (“Our … hold.”)100) ∨

[4] (k ∈ holtab∧ k ∈ dom(fortab) ∧ fortab+(k) = z ∧
free(z) ∧ (z≠ n) ∧ u′ = calls∪ { n |→ z} ∧ w′ = w ∧
o = OK ∧ q = (“Our … janitor.”)) ∨

[5] (k ∈ holtab∧ k ∈ dom(fortab) ∧ fortab+(k) = z ∧
free(z) ∧ (z ≠ n) ∧ u′ = u ∧ w′ = w ∧ o = NO ∧
q = (“Our … janitor.”)))) (7.6)

In deriving (7.6), in line with our remarks above, we fully
exploited the environment furnished by the context of th
intended use of the concedes clause, which consists of
antecedents of the composed retrenchment PO. These s
thati = j, j = k hold, and allow us to exploit the properties o
G andH, removing the existential quantifications∃ v′, v, j
via the one point rule. Also we identified intermediate lev
outputs with higher or lower level outputs as appropriate
the clauses containingG or H, allowing us to eliminate the
∃ p quantification too. This goes slightly beyond what i
expressed in the generic operation PO because outputs
discussed only in the concedes clause.5

Now disjuncts[1] and [2] of (7.6) come from theC∧H
term in (7.3). We note that[2] is an artifact in that it applies
to a situation in which both forwarding and holding ar
configured, and prescribes an outcome incompatible w
our design decision in (6.4). This phenomenon is attribu
able to the insensitivity ofH to the means by which the state
it is mapping was arrived at, i.e. it allows forwarding be
9
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overriden it. This in turn is a byproduct of the proof tech-
nique used to establish the soundness of the composed re-
trenchment, which calculates a composed concedes rela-
tion which is safe if possibly overgenerous, purely on the
basis of Boolean algebra, and without regard to the under-
lying behaviour of the composed systems. We look at this
issue more closely in the next section.

In like manner[3] and[4] come fromG∧D, with [4] being
an artifact which also applies when forwarding and holding
are configured, but this time stipulating a different incom-
patible outcome to[2]. Finally [5] comes fromC∧D, which
generates two disjuncts fromD; however one of them re-
duces tofalse.

The other operation figuring in the retrenchment is
breakn for which we find, uninterestingly:

RCF›CH,breakn(u, w) = true (7.7)

ECF›CH,breakn(u′, w′; u, w) = false (7.8)

Now we can turn our attention to the alternative route to
PHONECF/CH via PHONECH. Going through the same
procedure we get a retrenchment labelled withCH›CF.

The retrieve relation is as before:

KCH›CF(u, w) = (u = calls ∧
w = (calls, fortab, holtab)) (7.9)

Similarly, for connectn, using the same techniques as in
(7.5), we obtain the within relation:

RCH›CF,connectn(i, k, u, w) = (i = k) (7.10)

To obtain the concedes relation, we manipulate (5.6) and
(5.8) and a suitably relabelled (6.14) and (6.16) into:

ECH›CF,connectn(u′, w′, o, q; i, k, u, w) = (busy(k) ∧
[1] ((k ∈ holtab∧ (k ∉ dom(fortab) ∨

(k ∈ dom(fortab) ∧ fortab+(k) = z ∧
(busy(z) ∨ (z = n)))) ∧
u′ = u ∧ w′ = w ∧ o = NO ∧
q = (“Our … hold.”)100) ∨

[2] (k ∈ holtab∧ k ∈ dom(fortab) ∧ fortab+(k) = z ∧
free(z) ∧ (z ≠ n) ∧ u′ = u ∧ w′ = w ∧ o = NO ∧
q = (“Our … hold.”)100) ∨

[3] (k ∈ holtab∧ k ∈ dom(fortab) ∧ fortab+(k) = z ∧

free(z) ∧ (z ≠ n) ∧
u′ = u ∧ w′ = w ∧ o = (“Our … hold.”)100∧
q = (“Our … janitor.”)) ∨

[4] (k ∉ holtab∧ k ∈ dom(fortab) ∧ fortab+(k) = z ∧
free(z) ∧ (z ≠ n) ∧ u′ = u ∧ o = NO ∧ q = OK ∧
w′ = (calls ∪ {n |→ z}, fortab, holtab)) ∨

[5] (k ∈ holtab∧ k ∈ dom(fortab) ∧ fortab+(k) = z ∧
free(z) ∧ (z ≠ n) ∧ u′ = u ∧ w′ = w ∧ o = NO ∧
q = (“Our … janitor.”)))) (7.11)

Using the same technical tricks as before, this time[2] and
[3] are spurious; with[1], [4], [5] agreeing with[3], [1], [5] re-
spectively of (7.6). Note that the spurious clauses in t
two calculations are not the same. They result from th
propagation of inappropriate information in different di
rections.

As before, forbreakn we find:

RCH›CF,breakn(u, w) = true (7.12)

ECH›CF,breakn(u′, w′; u, w) = false (7.13)

With these calculations completed, we can consider wh
the details of the retrenchment would look like if we buil
both enhanced services into the plainPHONE model si-
multaneously. It is not hard to see that this retrenchme
would be given firstly by:

GCH/CF(u, w) = (u = calls ∧
w = (calls, fortab, holtab)) (7.14)

and secondly forconnectnwe would get the within relation:

PCH/CF,connectn(i, k, u, w) = (i = k) (7.15)

while for the concedes relation we would need merely
record the cases in which the simplePHONE model differs
from thePHONECF/CH model, thus:

CCH/CF,connectn(u′, w′, o, q; i, k, u, w)  =
(busy(k) ∧ u′ = u ∧ o = NO ∧
((k ∉ holtab∧ k ∈ dom(fortab) ∧
fortab+(k) = z ∧ free(z) ∧ (z ≠ n) ∧ q = OK ∧
w′ = (calls ∪ {n |→ z}, fortab, holtab)) ∨
(k ∈ holtab∧ (k ∉ dom(fortab) ∨
(k ∈ dom(fortab) ∧
fortab+(k) = z ∧ (busy(z) ∨ (z = n)))) ∧
w′ = w ∧ q = (“Our … hold.”)100) ∨
(k ∈ holtab∧ k ∈ dom(fortab) ∧
fortab+(k) = z ∧ free(z) ∧ (z ≠ n) ∧ w′ = w ∧
q = (“Our … janitor.”)))) (7.16)

For breakn we would find as usual:

PCH/CF,breakn(u, w) = true (7.17)

CCH/CF,breakn(u′, w′; u, w) = false (7.18)

With these formulae in place, we are in a position to com
pare the various retrenchments we have derived. The o
places in which they differ are the various concedes re

5. One can accept this situation as it stands; i.e. one can, if a more precise
solution is desired, add any necessary information about the outputs in
those cases where the retrieve relation is reestablished (and the concedes
clause is not otherwise verified) as a top level disjunct in the concedes
clause, making it true always; we have finessed this possibility. Alterna-
tively to improve matters regarding outputs, one can move to a more
expressive if more complicated formulation of retrenchment eg. sharp
retrenchment or its close relatives [9, 10]. Among these possibilities,
output retrenchment replacesG in the consequent of the operation PO by
G ∧ O, whereO(o, p) relates higher and lower level outputs for the case
thatG is maintained, (in our case reducing to just (o = p)). Then a sound
law of composition supplements (7.1)-(7.3) with the composition ofO
relations for successive retrenchments.
10
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tions for theconnectn operation. A little thought shows that
CCH/CF,connectn is a subrelation of bothECF›CH,connectn and
of ECH›CF,connectn. See Fig. 2.

It is not hard to see why this is the case. The law of com-
position (7.3) isinclusive, in that all the behaviours permit-
ted by the component concedes relations are effectively
preserved and combined in all possible ways in the com-
posed concedes relation. As noted previously this is a con-
sequence of the proof technique adopted to establish the
soundness of the definition of the composed retrenchment,
which just manipulates the conjunction of the component
PO consequents. This is insensitive to whether in any par-
ticular situation, there are in fact any before-states, after-
states, inputs, outputs and transitions, that inhabit all the
clauses allowed for in the composition. Inevitably, this can
sometimes give more than is needed, as happened here.

The kind of composition of concedes clauses we have
used is appropriate for anadequately descriptiveapproach
to system description, in which it is the job of the concedes
clauses to place safe constraints on what the systems actu-
ally do. In a moreprescriptiveapproach, in which the con-
cedes clauses mustdefinewhat the systems ought (and
ought not) to do, a semantically more incisive law of com-
position, where spurious behaviour is eliminated, is more
appropriate. We describe possible improved composition
laws in the next section.

8. Stronger Compositions for Retrenchments

Suppose we are given three systems, a top level system
with datau, i, u′, o, an intermediate system with datav, j, v′,
p, and a lowest level system with dataw, k, w′, q. Let there
be a retrenchment from top level to intermediate system
characterised by relationsG(u, v), Pm(i, j, u, v), Cm(u′, v′, o,
p; i, j, u, v), and a retrenchment from intermediate to lowest
level system characterised by relationsH(v, w), Qm(j, k, v,
w), Dm(v′, w′, p, q; j, k, v, w).

Consider the top level to intermediate system retrench-
ment. We define the following predicates for an abstract
operationm:

preRet
m(u, i, v, j) = (∃ u′, o, v′, p •

G(u, v) ∧ Pm(i, j, u, v) ∧
stpmA

(u, i, u′, o) ∧ stpmC
(v, j, v′, p) ∧

G(u′, v′)) (8.1)

preCon
m(u, i, v, j) = (∃ u′, o, v′, p •

G(u, v) ∧ Pm(i, j, u, v) ∧
stpmA

(u, i, u′, o) ∧ stpmC
(v, j, v′, p) ∧

Cm(u′, v′, o, p; i, j, u, v)) (8.2)

preRetA
m(u, i) = (∃ v, j • preRet

m(u, i, v, j)) (8.3)

preRetC
m(v, j) = (∃ u, i • preRet

m(u, i, v, j)) (8.4)

preConA
m(u, i) = (∃ v, j • preCon

m(u, i, v, j)) (8.5)

preConC
m(v, j) = (∃ u, i • preCon

m(u, i, v, j)) (8.6)

We say that a retrenchment is tidy iff for all abstract op
erationsm:

preRetA
m(u, i) ∧ preConA

m(u, i) = false (8.7)

and

preRetC
m(v, j) ∧ preConC

m(v, j) = false (8.8)

This says that the combinations of before-states and inp
at both levels that characterise the transitions that can
establish the retrieve relation, are disjoint from those th
merely establish the concedes relation.

Analogously for the intermediate to lowest level re
trenchment, we have the predicates preRet

m(v, j, w, k), pre-
Con

m(v, j, w, k), preRetA
m(v, j), preRetC

m(w, k), preConA
m(v, j),

preConC
m(w, k).

Two adjacent retrenchments like these, which are bo
tidy, are said to be compatibly tidy iff for all abstract oper
ationsm:

preRetA
m(v, j)2 ⇒ preRetC

m(v, j)1 (8.9)

and

preConA
m(v, j)2 ⇒ preConC

m(v, j)1 (8.10)

hold for the intermediate system. In (8.9) and (8.10) the a
tecedent pre clauses come from the intermediate to low
level retrenchment, which is subscripted 2 to distinguish
from the the top level to intermediate retrenchment, whic
is subscripted 1, and from which the consequents come

Theorem 8.1 With the current notations, two compatibly
tidy retrenchments compose to give a single retrenchm
given by the data:

K(u, w) = (∃ v • G(u, v) ∧ H(v, w)) (8.11)

Rm(i, k, u, w) =
(∃ v, j • G(u, v) ∧ H(v, w) ∧

Pm(i, j, u, v) ∧ Qm(j, k, v, w)) (8.12)

Em(u′, w′, o, q; i, k, u, w) =
(∃ v′, p, v, j • Cm(u′, v′, o, p; i, j, u, v) ∧

Dm(v′, w′, p, q; j, k, v, w)) (8.13)

Proof. To show that we have a retrenchment, we must sho

PHONE

PHONECF/CH

PHONECHPHONECF

Fig. 2

⊆⊇
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that the POs for the composed retrenchment follow from
the POs for the individual ones. The initialisation PO fol-
lows immediately by composing the individual initialisa-
tion POs.

For the operation PO, we assume the antecedents.
These givew, k, v, j, u, i, from (8.11), (8.12), withv, j arising
by instantiating the existential quantifier. We also have a
stepw -(k, m, q)-› w′ for some lowest level operationmcor-
responding to an abstract operation. Since from (8.12) we
haveH(v, w) ∧ Qm(j, k, v, w), we satisfy the antecedents of
the intermediate to lowest level retrenchment operation PO,
which gives an intermediate stepv -(j, m, p)-› v′, andH(v′,
w′) ∨ Dm(v′, w′, p, q; … ). Now usingG(u, v) ∧ Pm(i, j, u,
v) from (8.12), we satisfy the antecedents of the top level to
intermediate retrenchment operation PO, which gives a top
level stepu -(i, m, o)-› u′ andG(u′, v′) ∨ Cm(u′, v′, o, p; … ).

Since the intermediate to lowest level retrenchment is ti-
dy, exactly one of preRetC

m(w, k)2 or preConC
m(w, k)2 will

hold, but not both. Suppose the former. ThenH(v′, w′)
holds as does preRetA

m(v, j)2. From (8.9) we deduce pre-
RetC

m(v, j)1. By the fact that the top level to intermediate re-
trenchment is tidy we deduce that preConC

m(v, j)1 is impos-
sible, whereuponG(u′, v′) holds as does preRetA

m(u, i)1.
Thus in this case we have established thatK(u′, w′) holds.

Alternatively suppose that preConC
m(w, k)2 is true. Then

analogous reasoning establishes in turnDm(v′, w′, p, q;
… ), preConA

m(v, j)2, preConC
m(v, j)1, Cm(u′, v′, o, p; … ), and

preConA
m(u, i)1. ThusEm(u′, w′, o, q; … ) holds. The two

cases together verify the operation PO for the composed re-
trenchment with retrieve, within and concedes relations
given by (8.11)-(8.13).

The structure of the above result is very appealing. The
data that specifies the combined retrenchment is built in an
especially simple way from the component clauses. De-
spite this, note that the composed retrenchment is not nec-
essarily tidy. Subscripting its pre clauses 12 to distinguish
them from those hitherto, we observe that for somew, k, we
might have preRetC

m(w, k)12 ∧ preConC
m(w, k)12 due to the

way that the composed dataK, Rm, Em connected top level
valuesu, i, u′, o (satisfyingstpm(u, i, u′, o)) to lowest level
valuesw, k, w′, q (satisfyingstpm(w, k, w′, q)) using inter-
mediate valuesv, j, v′, p for whichstpm(v, j, v′, p) was sim-
ply not valid. We therefore see that this composition is not
automatically compositional without additional conditions;
evidently it cannot be associative as it stands either.

Let us check whether the provisions of this result apply
to the feature interaction case study. Consider any of the re-
trenchments we have described. In every case the follow-
ing hold. For a call to theconnectn operation, the input data
to abridged and completedconnectn operations are the
same, and the abridged before-state is a part of the complet-
ed before-state. The latter means that the retrieve relation

is a projection from the completed to abridged state, o
tained by discarding the additional data in the complet
state. Consequently, for an (almost) arbitrary abridg
state, one can conceive an input value for which connect
at the abridged level is blocked, and furthermore: (a) the
exists a value for the additional data in the completed sta
for which connection at the completed level is still blocked
(b) there exists a value for the additional data in the com
pleted state for which connection at the completed level (
other successful outcome) is now possible. So in gene
there will be someu, i for which we can make preRetA

m(u,
i) ∧ preConA

m(u, i) valid, and the retrenchments will not be
tidy. On the other hand, we know that possibilities (a) an
(b) are mutually exclusive in the sense that it is always tr
thatdifferentadditional data are needed to establish the tw
different possibilities. We will use this clue to drive a
wedge between the possibilities aggregated in preRetA

m(u, i)
∧ preConA

m(u, i), deriving an even sharper compostion law.
Let us say that a retrenchment is neat iff for all abstra

operationsm:

preRet
m(u, i, v, j) ∧ preCon

m(u, i, v, j) = false (8.14)

The neat condition keeps retrieve relation preserving b
haviour apart from concedes relation establishing beha
iour, as does the tidy condition, but it does it in a technical
more finegrained way. The price we pay for proving the a
alogue of Theorem 8.1 is that a more complicated structu
requiring contributions from the pre- clauses introduce
above, is needed in the combined concedes relation.

Theorem 8.2 With the current notations, two neat re
trenchments compose to give a single retrenchment giv
by (8.11), (8.12) and:

Em(u′, w′, o, q; i, k, u, w) =
(∃ v′, p, v, j •

(G(u′, v′) ∧ Dm(v′, w′, p, q; j, k, v, w) ∧
preRet

m(u, i, v, j) ∧ preCon
m(v, j, w, k)) ∨

(Cm(u′, v′, o, p; i, j, u, v) ∧ H(v′, w′) ∧
preCon

m(u, i, v, j) ∧ preRet
m(v, j, w, k)) ∨

(Cm(u′, v′, o, p; i, j, u, v) ∧
Dm(v′, w′, p, q; j, k, v, w) ∧
preCon

m(u, i, v, j) ∧ preCon
m(v, j, w, k)))

(8.15)

Furthermore, any intermediate level transitionv -(j, m, p)-›
v′ that witnesses the composed operation PO, can valid
either at most one the disjuncts of (8.15), or the compos
retrieve relation (8.11).

Proof. The proof starts by repeating the first two para
graphs of the proof of Theorem 8.1, after which we argue
follows.

Since the intermediate to lowest level retrenchment
neat, exactly one of preRet

m(v, j, w, k)2 or preCon
m(v, j, w, k)2

will hold, but not both. Suppose the former. ThenH(v′, w′)
12
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holds and we call this caseRet-2. (The latter will be case
Con-2.)

By the fact that the top level to intermediate retrench-
ment is neat we know that exactly one of preRet

m(u, i, v, j)1
or preCon

m(u, i, v, j)1 will hold, but not both. This subdi-
vides caseRet-2 into two subcases,Ret-2/Ret-1andRet-2/Con-

1 respectively. InRet-2/Ret-1we have preRet
m(v, j, w, k)2 and

preRet
m(u, i, v, j)1 and we reestablish the retrieve relation

G(u′, v′) in the after-state. InRet-2/Con-1we have preRet
m(v,

j, w, k)2 and preCon
m(u, i, v, j)1. In this case we establish

Cm(u′, v′, o, p; i, j, u, v) ∧ H(v′, w′).
In like manner we can considerCon-2and its two subcas-

es Con-2/Ret-1and Con-2/Con-1which respectively establish
the other two possibilities permitted by (8.15). These four
cases verify the operation PO for the composed retrench-
ment with retrieve, within and concedes relations given by
(8.11), (8.12), (8.15).

Moreover, the preceding proof shows that at most one of
the four subcasesRet-2/Ret-1, Ret-2/Con-1, Con-2/Ret-1, Con-2/

Con-1can be witnessed by any intermediate level stepv -(j,
m, p)-› v′, as postulating that any two or more of them are
witnessed by the samev -(j, m, p)-› v′ quickly yields a con-
tradiction of the neatness of either the top level to interme-
diate, or intermediate to lowest level retrenchment (or
both).

Corollary 8.3 With the current notations, two neat re-
trenchments satisfying:

preCon
m(u, i, v, j) ∧ preCon

m(v, j, w, k) = false (8.16)

compose to give a single retrenchment given by (8.11),
(8.12) and:

Em(u′, w′, o, q; i, k, u, w) =
(∃ v′, p, v, j •

(G(u′, v′) ∧ Dm(v′, w′, p, q; j, k, v, w) ∧
preRet

m(u, i, v, j) ∧ preCon
m(v, j, w, k)) ∨

(Cm(u′, v′, o, p; i, j, u, v) ∧ H(v′, w′) ∧
preCon

m(u, i, v, j) ∧ preRet
m(v, j, w, k)))

(8.17)

Proof. Immediate.

We observe that just as in the previous case, the notion of
neat retrenchment is not compositional, and it is even easier
to imagine how the required condition might fail for the
composite. Thus for the sameu, i, w, k we might both have
preRet

m(u, i, w, k)12established via subcaseRet-2/Ret-1above
and witnessed byva, ja, v′a, pa, and also preCon

m(u, i, w, k)12
established via one of the other subcases and witnessed by
vb, jb, v′b, pb. These different intermediate values get ex-
istentially quantified away, and we are left with a failure of
(8.14).

Let us now consider the extent to which the retrench-
ments of our case study turn out to be neat.

PHONE to PHONECF: The concedes relation is:

CCF,connectn(u′, v′, o, p; i, j, u, v) =
(busy(j) ∧ j ∈ dom(fortab) ∧

fortab+(j) = z ∧ free(z) ∧ (z ≠ n) ∧
u′ = u ∧ v′ = (calls ∪ {n |→ z}, fortab) ∧
o = NO ∧ p = OK) (5.3)

We note that for a fixedfortab, if u andv agree on thecalls
component, and we havei = j, then whenever the concede
relation holds,v′ andv differ in thecallscomponent where-
asu′ = u. Consequentlyv′ andu′ differ in thecalls com-
ponent. Moreoveru′ andv′ agree on thecalls component
whenever the retrieve relation is reestablished. Since b
cannot be true simultaneously, the retrenchment is nea

PHONE to PHONECH: The concedes relation is:

CCH,connectn(u′, v′, o, p; i, j, u, v) =
(busy(j) ∧ j ∈ holtab∧ u′ = u ∧ v′ = v ∧
o = NO ∧ p = (“Our … hold.”)100) (5.8)

This time for fixedholtab, if u andv agree on thecallscom-
ponent, and we havei = j, then whenever the concedes re
lation holds,v′ = v andu′ = u, i.e.u′ andv′ agree on thecalls
component too; the outputs contain the only indication th
an abnormal situation obtains. Alsou′ andv′ agree on the
calls component whenever the retrieve relation is reesta
lished. So we can have both true, and the retrenchmen
not neat as it stands.

This is attributable to the lack of sensitivity of (8.1) to
outputs. In the general case we can overcome the prob
by using a notion of retrenchment that is sensitive to pro
erties of outputs in the case where the retrieve relation is
established, as we pointed out in footnote 5. With such
amplification of the notion of ‘reestablishing the retriev
relation’ fed into both the operation PO and (8.1), all our re
sults concerning tidiness and neatness carry over, and
present retrenchment also becomes neat.

(As we also pointed out in footnote 5, for simplicity we
finessed the alternative, of suitably reformulating the co
cedes relation to also carry the output properties in the w
behaved case, but such a concedes relation becomes un
sally true in the models of interest (and in the context of th
operation PO antecedents). When, as now, we are look
to separate behaviour that reestablishes the retrieve rela
from behaviour that establishes the concedes relation, s
universal validity of the concedes relation is unhelpfu
though even this can be overcome by suitably dissecting
inevitably more complex concedes relation that results. W
omit the technical details which would distort this pape
unduly.)

PHONECF to PHONECF/CH: The concedes relation is:

CCF›CH,connectn(u′, v′, o, p; i, j, u, v) =
(busy(j) ∧ j ∈ holtab∧
13



on.
s
re-

’

ns
ns
,
e-
n-
tly
s

e-
ys-

e-

is
e-
e-
nd
ed

at
r-
n
f-
ap-

is
nt
nce
ur

s
n-

dy
at-
in

er-
ss.
a

(((j ∉ dom(fortab) ∨ (j ∈ dom(fortab) ∧
(busy(fortab+(j)) ∨ (z = n)))) ∧
u′ = u ∧ v′ = v ∧ o = NO ∧
p = (“Our … hold.”)100) ∨
(j ∈ dom(fortab) ∧ fortab+(j) = z ∧ free(z) ∧
(z ≠ n) ∧ u′ = (calls ∪ {n |→ z}, fortab) ∧
v′ = v ∧ o = OK ∧
p = (“Our … janitor.”)))) (6.7)

This retrenchment displays both of the behaviours dis-
cussed above. In theu′ = u ∧ v′ = v alternative we see a dif-
ference in the outputs to which the retrieve relation is in-
sensitive, so neatness fails in the strict sense; while in the
other alternative we have a bona fide modification of the
state component in one model but not the other, so this al-
ternative exhibits neatness.

PHONECH to PHONECF/CH: The concedes relation is:

CCH›CF,connectn(u′, v′, o, p; i, j, u, v) =
(busy(j) ∧ j ∈ dom(fortab) ∧

fortab+(j) = z ∧ free(z) ∧ (z ≠ n) ∧
((j ∉ holtab∧ u′ = u ∧ o = NO ∧ p = OK ∧
v′ = (calls ∪ {n |→ z}, fortab, holtab)) ∨
(j ∈ holtab∧ u′ = u ∧ v′ = v ∧
o = (“Our … hold.”)100∧
p = (“Our … janitor.”)))) (6.16)

This is similar to the preceding case, in having both a neat
alternative, and one that is not.

We conclude overall that though some of the retrench-
ments of our case study are not neat in the strict sense, the
deficit would be easy to remedy, and neatness provides a
good intuition for understanding the case study’s behav-
iour; we will see just how good in Sections 10 and 11.

Furthermore we can illustrate that the tighter composi-
tion of concedes relations for neat retrenchments in (8.15)
has the capacity to eliminate spurious clauses such as those
arising in (7.6) and (7.11). We do so by examining the one
case in which neatness holds unreservedly. This is clause
[4] of ECF›CH,connectn in (7.6) which is:

[4] (busy(k) ∧ k ∈ holtab∧ k ∈ dom(fortab) ∧
fortab+(k) = z ∧ free(z) ∧ (z ≠ n) ∧
u′ = calls ∪ {n |→ z} ∧ w′ = w ∧
o = OK ∧ q = (“Our … janitor.”)))) (8.19)

This arises from theG∧D term in (7.3) applied to the com-
position order in which call forwarding is introduced first.
Suppose this term were inhabited in the models of interest.
Then we would have to have preRet

m(u, i, v, j) ∧ preCon
m(v, j,

w, k) true (for the only possiblej and a suitablev). Since we
know that preCon

m(u, i, v, j) holds, because the call forward-
ing clauses of (3.7) only hold in the busy(i) case i.e. when
POTS connection is impossible, we would have preRet

m(u,
i, v, j) ∧ preCon

m(u, i, v, j) which contradicts the neatness of
thePHONE to PHONECF retrenchment. So clause (8.19)

can be safely elided from the composed concedes relati
Similar arguments would deal with the other spuriou
clauses in (7.6) and (7.11) if it were the case that these
trenchments were entirely neat.

9. Layered Feature Engineering

Zave, in [Zave (2001)], describes afeatureof a software
system as ‘an optional or incremental unit of functionality
and afeature-oriented descriptionas comprising ‘a base
description and feature modules’. Telecommunicatio
systems are conventionally given using such descriptio
[Calder and Magill (2000), Kimbler and Bouma (1998)]
and this is not the only application domain that can be d
scribed in terms of features and their composition. In ge
eral, features are neither perfectly modular nor perfec
compositional. This is the case in telecommunication
practice, where not only must feature interaction be d
signed for and managed, but it can also be useful to the s
tem specifier.

Zave proposes a formal method for feature-oriented d
scriptions which she callsfeature engineering. Working
from partial (and in general inconsistent) requirements, th
involves four stages: (a) describe new features as if ind
pendent, (b) understand all potential interactions, (c) d
cide which interactions are desirable and which are not, a
(d) adjust features and their composition to select desir
interactions and avoid those not desired.

In the remaining sections of this paper we will see th
retrenchment offers a stepwise method of ‘layering in’ pa
tial requirements (features), whilst managing interactio
handling. We will therefore suggest that retrenchment o
fers a feature engineering approach to feature-oriented
plications.

The layering approach to requirements specification
familiar from the object-oriented paradigm: new, consiste
requirements on a class are expressed (via the inherita
relation) in the subclass, by adding structure and behavio
in a manner consistent with the superclass.6 Layering, in
this object-oriented style, is not new in the formal method
world; Back has proposed layering through interpreting i
heritance assuperposition refinement[Back (2002), Back
and Sere (1996)].

10.Feature Engineering the Case Study

In this section we reorganise our telephony case stu
along feature engineering lines. Layering emerges as a n
ural technique in sympathy with retrenchment. We focus
the sequel exclusively on theconnectn operation as the only
6. This is as opposed to inheritance by method overriding, where sup
class behaviour is altered, in an inconsistent manner, in the subcla
This alteration could be described using the concedes relation in
retrenchment based formulation of the inheritance relation.
14
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one for which nontrivial issues arise. To lighten the nota-
tion, we no longer use ‘connectn’ as a subscript, reserving
subscripts to distinguish between different variants of the
operation. Before we start we introduce a couple of items
of notation for combinators on relations.

The relational override combinator <+, is familiar from
the preceding sections and will be used a lot.

The relational ‘union asserted disjoint’ combinator∪ is
defined for two relationsRandS(both fromX toY say) by:

R ∪ S = R ∪ S providedR ∩ S = ∅ (10.1)

and is otherwise undefined. ThusR∪ Sasserts (rather than
enforces) thatRandSare disjoint. (In this respect it is dif-
ferent from conventional disjoint union, which is always
well defined, and which in effect enforces the distinctness
of its arguments, if necessary by introducing some tagging
mechanism behind the scenes, so that the originating set of
any element of the disjoint union can always be discerned.
In our model based reasoning, where elements of the model
are supposed to correspond to aspects of the real world,
such surreptitious tags can have no place and we use the un-
conventional∪ to advertise that a union is in fact formed
from two disjoint sets.) Note that valid uses of∪ can al-
ways be replaced by <+, resulting in equivalent if slightly
less overtly informative expressions.

Finally we will use conventional union∪ on relations
too. This combinator is applicable when the relations in
question are in an appropriate sense not in conflict with
each other on a nontrivial intersection. (One plausible area
for using the conventional union combinator is given by the
calling number delivery feature, in which the caller trans-
mits his number to the callee, who may or may not display
it and choose to react accordingly. This behaviour may co-
exist benignly with almost every other feature, making un-
ion an appropriate combinator to contemplate.)

We now rebuild the operations we discussed previously
out of smaller grained features. The original operations
from the preceding sections will be refered to by using their
previous names, eg.connectn, while the individual features
we will discuss will typically be calledstpf, wheref is the
feature name, and we have lifted the generalstp notation
for transition relations to highlight that we define a feature
by giving a presentation of the relevant transition relation.
Of particular note is the fact that the original operations
must be model complete (as they were before), while the
individual features that comprise them need not be.

We start with thePHONE model. In line with our fea-
ture engineering goals, we split the original POTSconnectn
operation into two features,stpP andstpP, representing re-
spectively the connection capability and the non-connec-
tion capability:

stpP,n = free(n) ∧ free(i) ∧ (n ≠ i) ∧
o = OK ∧ calls′ = calls ∪ {n |→ i} (10.2)

stpP,n = free(n) ∧ o = NO ∧ calls′ = calls (10.3)

so the original POTSconnectn operation (3.2) is given by:

connectP,n = stpP,n <+ stpP,n (10.4)

Here we have renamed theconnectn of (3.2) asconnectP,n,
thePsubscript emphasising the POTS aspect. Note that
override combinator is definitely needed in (10.4) as th
non-connection capability is in principle always available

Now we consider call forwarding. The call forwarding
featurestpCF,n can be defined by:

stpCF,n = free(n) ∧ busy(i) ∧ i ∈ dom(fortab) ∧
fortab+(i) = z ∧ free(z) ∧ (z ≠ n) ∧
o = OK ∧ calls′ = calls ∪ {n |→ z} (10.5)

We wish to combine this with thePHONE model of
course. The first thing to note is that the state space
PHONECF is larger than that forPHONE, so we cannot
utilise the <+ and∪ operations directly to combinestpCF,n
with the previous system. This is where our programmin
convention comes to the fore. As previously, whenever t
definition of a state transition operation (via a relation
does not mention some state variables, it is to be und
stood that the part of the state described by such state v
iables is to remain unchanged during the transition. Th
gives us a means of defining thePHONE model’s state
space in aPHONECF model’s context (since not all of the
PHONECF state is mentioned in aPHONE transition).
But this does not cover all that we have to contend with

We note that the various features we engineer gener
outputs not shared by other features, so we have to de
mine what is to be done about reconciling those output v
ues. Hitherto we have not specified precisely what the v
ious spaces of output values are; we have merely me
tioned some individual values as needed. We can th
assume that all such values are already present in a co
mon space of output values.

Finally, we must consider the input values. By implica
tion the input spaces are identical in all cases, as all inp
are arbitrary phone numbers. Therefore no special me
ures are needed to reconcile these.

To summarise: identical input spaces are trivially ident
fied; output spaces are implicitly identified by considerin
the union of all values ever used for output; state spac
which are the cartesian products of the sets of values p
mitted for the various state variables, are combined
identifying the state variables themselves where possib
(Eg. the state space for an abridged model whose states
just the values for thecallsvariable, can be combined with
the state space for a completed model whose states
(pairs of) values for thecallsandfortabvariables, by iden-
tifying the calls variables. This results in an overall stat
space of pairs of values for thecalls andfortab variables,
where the value ofcalls is common, and in the abridged
15
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model, the value offortab is irrelevant but unchanged dur-
ing any abridged state transition.)

With all of this in mind, we can regard (10.2) and (10.3)
as implicitly defining an extension ofstpP,n andstpP,n to ap-
propriately larger state spaces, in particular to ones includ-
ing a forwarding table, and to all the necessary output val-
ues. Regarding <+ and∪ as now refering to these enlarged
sets of values also, we can define the call forward connect
operation by:

connectCF,n = stpP,n <+ (stpCF,n ∪ stpP,n)
= stpP,n <+ stpP>CF,n (10.6)

where we definestpP>CF,n as the contents of the parenthe-
ses on the preceding line. TheP>CF notation of the sub-
script ofstpP>CF,n indicates the feature precedence we have
in mind. (Note that this is distinct from theCF›CH nota-
tion used earlier, which merely indicated temporal order of
combination of features.)

It is not hard to see that (10.6) agrees with the original
call forward connect operation (3.7). It is also easy to see
that we are vindicated in our use of∪, asstpP,n requires
free(i) to hold whereasstpCF,n requires busy(i). Of course
the override tostpP,n is still needed asstpP,n provides a re-
sponse for all busy(i) cases.

We can deal with call holding similarly. Assuming the
same conventions, we define the call holding feature by:

stpCH,n = free(n) ∧ busy(i) ∧ i ∈ holtab∧
o = (“Our advisor is busy. Please hold.”)100∧
calls′ = calls (10.7)

and now we get:

connectCH,n = stpP,n <+ (stpCH,n ∪ stpP,n)
= stpP,n <+ stpP>CH,n (10.8)

which agrees with (3.12).
Now when we consider combining the two features, our

layering strategy and use of override suggests a possibility
not considered before, namely of simply allowing one fea-
ture to take precedence over the other when both are appli-
cable. Noting that we will not be able to use∪ between the
two features, and also replacing the previous uses of∪ by
<+ to simplify the bracketing, we get two models, depend-
ing on which order of precedence we select:

connectCF>CH,n = stpP,n <+ stpCH,n <+ stpCF,n <+ stpP,n
= stpP,n <+ stpP>CF>CH,n (10.9)

connectCH>CF,n = stpP,n <+ stpCF,n <+ stpCH,n <+ stpP,n
= stpP,n <+ stpP>CH>CF,n (10.10)

As should be clear from the preceding remarks, neither of
these operations coincides with theconnectCF/CH,n opera-
tion of (6.4) since that operation depended on novel design
for cases when call forwarding and call holding both ap-
plied. However an operation like (6.4) can be handled in
our layered feature engineering approach by inventing a

fresh feature for the precise purpose of describing wh
should happen in the overlapping cases, and then incor
rating it into the feature hierarchy at the appropriate poin

This idea forms a key ingredient of the general approa
described below. Whenever features are in conflict and
straightforward prioritisation does not give an adequate s
lution to the problem, we design a new feature — an inte
action feature — intended to take precedence over both
them, and defining the behaviour required. For featuresA
andB in conflict, we systematically name the relevant in
teraction featureA+B.

Using the interaction feature strategy, we reengineer t
overlapping call forwarding and call holding case with th
interaction featureCF+CH:

stpCF+CH,n = free(n) ∧ busy(i) ∧ i ∈ dom(fortab) ∧
fortab+(i) = z ∧ free(z) ∧ (z ≠ n) ∧ i ∈ holtab∧
o = (“Our advisor is busy. Please press 1

to speak to the janitor.”)∧ calls′ = calls
(10.11)

With stpCF+CH,n to hand, we recover theconnectCF/CH,n
operation of (6.4) by:

connectCF/CH,n = stpP,n <+ (stpCH,n ∪ stpCF,n) <+
(stpCF+CH,n ∪ stpP,n)

= stpP,n <+ stpP>CF+CH>(CF,CH),n (10.12)

In the first line of (10.12) we have been quite explicit in se
ting out the layering in a way that exposes the dependenc
and independencies between adjacent features in detail
could, more lazily, have just used override throughou
ThusstpCF+CH,n andstpP,n are combined in union asserted
disjoint, because one of them requires busy(i) and the other
its negation. These must in turn overridestpCH,n and
stpCF,n for reasons that have already been discussed. Ho
everstpCH,n andstpCF,n must be combined using conven
tional union rather than∪, because they are certainly no
disjoint. In fact (stpCH,n ∪ stpCF,n) offers a nondetermin-
istic choice in the overlap region, a fact which has no d
sign significance in the context of (10.12) as the overlap
immediately overridden by thestpCF+CH,n feature.

The preceding leads us to a stepwise method for feat
composition with static resolution of interactions in th
spirit of the feature engineering of [Jackson and Zav
(1998)].

Procedure 10.1

1. Describe each featuref independently using a relation
stpf. Include a default featurefD to ensure model com-
pleteness.

2. Choose a precedence order between features.
3. Start with the topmost featuref0 and the default feature

fD, to build the operationop0 = stpfD
 <+ stpf0

.
4. For successivei, layer in featurefi after featurefi–1giv-

ing:
16



es
se
but
ip

he
n-
ed

ure
la-

re-

ded
s
e-
-
n-

e-

de
f

d

e of

d

-

r.

in
e
en

ual-
nts;

s

opi = stpfD
 <+ stpfi

 <+ stpfi–1
 <+ … <+ stpf0

= stpfD
 <+ stpfi

 <+ stpf0>…>fi–1
= stpfD

 <+ stpf0>…>fi
(10.13)

5. If featurefi interacts with featurefj for j < i, design an
‘interaction feature’fi+j to resolve the problem, giving
it precedence over bothfi andfj thus:

opi = stpfD
<+ stpfi

… <+ stpfj
<+ stpfi+j

<+ … <+ stpf0
= stpfD

 <+ stpfi
 <+ stpf0>…>fi+j>fj>…>fi–1

= stpfD
 <+ stpf0>…>fi+j>fj>…>fi

(10.14)

6. Repeat until all features have been handled.

Procedure 10.1 only considers the possibility of binary in-
teractions between features, but this is clearly not the only
possibility. Ultimately if there aren features, there are up
to 2n possibile interactions (one for each possible subset of
then). All interactions can give rise to interaction features,
and these can be layered in as above. The objective of pri-
oritisation is of course to minimise the number of interac-
tions that have to be handled ‘out of line’, by choosing an
ordering such that the interactions naturally subsume one
another as far as possible.

Of course we have not yet related the various layers to
one another. The technique for doing this will be retrench-
ment, and will form the subject of the next section.

11.Layered Feature Engineering by
Composition of Retrenchments

Now that we have defined the features of interest and their
composites, it might be thought that the retrenchments be-
tween them are just the ones we have already dealt with.
This is almost true, but we must remember that the oper-
ations of the last section are defined on subtly different
spaces than previously, so we must also adapt our previous
retrenchments accordingly.

Our feature layering of the last section simply imposed
new functionality on operations, so just as in Section 3, we
used the same variable names for all the different models.
However just as in Section 5, when we come to discuss re-
trenchments between the models, we must use distinct
names for distinct models (but with a tacit understanding of
which distinct names are distinct names for the same
thing). This is rendered potentially more confusing be-
cause, recalling the discussion after (10.5), all the models
are assumed to share the same spaces of values.

Thus all the input spaces are trivially the same; all the
ouputs are assumed to also belong to the same space of val-
ues; and there is a common state space, the cartesian prod-
uct of all the sets of values permitted for any of the state
variables occurring in any of the models to be considered.

We have remarked that in defining transitions we adhere
to the programming convention whereby any variable not
explicitly altered by the transition is to remain at its previ-

ous value. However for the retrieve, within, and conced
relations of a retrenchment this is not appropriate. The
relations do not describe a state change of some system,
comprise the description of the retrenchment relationsh
between two distinct systems. This is a predicate in t
conventional sense, and it is therefore the logical conve
tion that is appropriate here; i.e. any variable not mention
is unconstrained within its range of permitted values.

With this understood, we can describe the general nat
of the retrenchments to come. In all cases the within re
tions will be of the form:

(i = j) (11.1)

because the input spaces will always be the same. The
trieve relations will be of the form:

(u = v) (11.2)

because the state spaces of all models have been exten
to be the same7. Since these facts hold for all the system
of interest, we need not mention the retrieve or within r
lations any more. Finally the concedes relations will fea
ture the variables intrinsic to the models at issue, on the u
derstanding that all other variables are unconstrained.

As an example of the preceding, we consider the r
trenchment fromconnectP,n = stpP,n <+ stpP,n in (10.4), to
connectCF,n = stpP,n <+ stpP>CF,n = stpP,n <+ stpCF,n <+ stpP,n
in (10.6). Note that we have reverted to using the overri
combinator throughout, as we will do for the remainder o
this section for notational simplicity8.

The two models differ only when call forward is enable
so we can write the concedes clause as:

CP>CF,n(u′, v′, o, p; i, j, u, v) =
((u, i) ∈ (dom(stpCF,n) – dom(stpP,n)) ∧

stpP,n(u, i, u′, o)) ∧
((v, j) ∈ (dom(stpCF,n) – dom(stpP,n)) ∧

stpCF,n(v, j, v′, p)) (11.3)

In (11.3), (u, i) ∈ (dom(stpCF,n) – dom(stpP,n)) refers to the
part of the abridged before-state and input spaces outsid
dom(stpP,n) but inside dom(stpCF,n) (the latter viewed
through the within and retrieve relations (11.1)-(11.2)), an
acting as a constraint onstpP,n(u, i, u′, o); while (v, j) ∈
(dom(stpCF,n) – dom(stpP,n)) refers to the same thing
viewed in the other direction through the within and re
trieve relations, and acting as a constraint onstpCF,n(v, j, v′,
p), all in line with the semantics of the override combinato
Although (11.3) is syntactically different from (5.3), in the
intended context of use (i.e. when the retrieve and with
7. We could have opted for a variant in which components of th
extended common state which are not intrinsic to the model at a giv
layer were unconstrained, generating retrieve relations which were eq
ities in some components and universal relations in other compone
but (11.2) is simper and leads to equivalent results.
8. Readers will be able to rework what follows for operation definition
involving ∪ and∪ without difficulty.
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relations are assumed, and a completed level step is posited
together with a suitable abridged level step infered from all
of these), the two are equivalent. The formulation in (11.3),
while including some redundant clauses, is more system-
atic, and its structure reflects closely the layering in of fea-
tures used in the construction ofconnectCF,n.

Lemma 11.1 Let opl = stpfD
<+ stpf0>…>fl

and letopl+1 =
stpfD

<+ stpfl+1
<+ stpf0>…>fl

be given by layering in feature
fl+1 as in Procedure 10.1. Suppose thatstpf0>…>fl

andstpfl+1
have no transitions in common that differ only on outputs
(on the common space of values on which they are both de-
fined). LetCfl>fl+1

(u′, v′, o, p; i, j, u, v) be given by:

Cfl>fl+1
(u′, v′, o, p; i, j, u, v) =

((u, i) ∈ (dom(stpfl+1
) – dom(stpf0>…>fl

)) ∧
stpfD

(u, i, u′, o)) ∧
((v, j) ∈ (dom(stpfl+1

) – dom(stpf0>…>fl
)) ∧

stpfl+1
(v, j, v′, p)) (11.4)

Then with within and retrieve relations (11.1)-(11.2),
Cfl>fl+1

defines a neat retrenchment fromopl to opl+1.

Proof. We consider first the view in which bothopl and
opl+1 are regarded as transition relations on the same space
of values. Then we can partition the common domain of
these relations into three pieces: (1) the set of (u, i) pairs in
dom(stpf0>…>fl

); (2) the set of (u, i) pairs in (dom(stpfl+1
) –

dom(stpf0>…>fl
)); (3) the remainder. On piece (1) bothopl

andopl+1 behave asstpf0>…>fl
. On piece (3) bothopl and

opl+1 behave asstpfD
. On piece (2) they differ,opl behaving

like stpfD
andopl+1 behaving likestpfl+1

; moreover these be-
haviours are incompatible, having no transitions in com-
mon that differ only on outputs, by hypothesis.

Now in the view whereopl is the abridged system, and
uses variablesu, i, u′, o, andopl+1 is the completed system,
and uses variablesv, j, v′, p, pieces (1) and (3) describe
points at which the retrieve relation is reestablished, and
piece (2) describes points at which the concedes relation
(11.4) is established. Since there are no transitions in com-
mon that differ only on outputs starting from points in piece
(2), the retrieve relation cannot hold there, and the neatness
condition (8.14) is proved.

Note that the phrase ‘no transitions in common that differ
only on outputs’ is connected with the insensitivity of the
reestablished retrieve relation to outputs in the present for-
mulation of retrenchment. With a more incisive version,
this could be strengthened to ‘no transitions in common’.

Lemma 11.2 Let opl andopl+1 be as in Lemma 11.1, and
similarly foropl+1 andopl+2. Then condition (8.16) of Cor-
ollary 8.3 holds.

Proof. Considering as before the view in whichopl, opl+1,
andopl+2 are regarded as transition relations on the same
space of values, we can partition the common domain into

four pieces: (1) the (u, i) pairs in dom(stpf0>…>fl
); (2) the (u,

i) pairs in (dom(stpfl+1
) – dom(stpf0>…>fl

)); (3) the (u, i)
pairs in (dom(stpfl+2

) – dom(stpf0>…>fl
) – dom(stpfl+1

)); (4)
the remainder. On piece (1)opl, opl+1, andopl+2 behave
like stpf0>…>fl

. On piece (4)opl, opl+1, andopl+2 behave
like stpfD

.
On piece (2) they differ, withopl behaving likestpfD

, and
opl+1 andopl+2 both behaving likestpfl+1

. On piece (3) they
also differ, withopl andopl+1 behaving likestpfD

, andopl+2
behaving likestpfl+2

. Moreover these behaviours, wher
different, are incompatible, having no transitions in com
mon that differ only on outputs, by hypothesis.

So on each piece, at least two consecutive operations
of opl, opl+1, andopl+2 behave identically, i.e. in the re-
trenchment view, on each piece at least one retrenchm
reestablishes the retrieve relation. Since both retren
ments are neat, so that we have (8.14) for both, there can
no triples of transitions from the transition relations ofopl,
opl+1, andopl+2 which make preCon

op(u, i, v, j) ∧ preCon
op(v,

j, w, k) true.  So we get (8.16).

The preceding immediately admits the applicability of Co
ollary 8.3 which declares that the composed concedes
lation has the structureG∧Dop ∨ Cop∧H. Noting that all
retrieve relations are identities, and using the one point ru
to eliminate intermediate variables as previously, we ge

Cfl>fl+2
(u′, w′, o, q; i, k, u, w) =

(((u, i) ∈ (dom(stpfl+1
) – dom(stpf0>…>fl

)) ∧
stpfD

(u, i, u′, o)) ∧
((w, k) ∈ (dom(stpfl+1

) – dom(stpf0>…>fl
)) ∧

stpfl+1
(w, k, w′, q)))

∨
(((u, i) ∈ (dom(stpfl+2

) – dom(stpf0>…>fl+1
)) ∧

stpfD
(u, i, u′, o)) ∧

((w, k) ∈ (dom(stpfl+2
) – dom(stpf0>…>fl+1

)) ∧
stpfl+2

(w, k, w′, q))) (11.5)

Noting that the retrieve and within relations are identitie
and taking advantage of the antecedents of the retren
ment operation PO as we have done before, we manipu
(11.5) to obtain something not logically equivalent t
(11.5), but equivalent to it in the context of its use, and of
shape that we prefer:

Cfl>fl+2
(u′, w′, o, q; i, k, u, w) =

stpfD
(u, i, u′, o) ∧

(((w, k) ∈ (dom(stpfl+1
) – dom(stpf0>…>fl

)) ∧
stpfl+1

(w, k, w′, q)) ∨
((w, k) ∈ (dom(stpfl+2

) – dom(stpfl+1
) –

dom(stpf0>…>fl
)) ∧ stpfl+2

(w, k, w′, q)))
(11.6)

This displays the expected behaviour, namely that in the
gion of disagreement betweenopl, opl+1, andopl+2, opl be-
18
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haves like the default featurestpfD
throughout, whileopl+2

behaves likestpfl+1
at points in dom(stpfl+1

) and likestpfl+2
at

points in dom(stpfl+2
).

The structure of the general case should now be evident.
If we have an operationopn structured by layering features
f1 … fn into a defaultstpfD

<+ stpf0
operation, then the tran-

sition relation foropn can be displayed as:

opn = stpfD
 <+ stpfn

 <+ stpfn–1
 <+ … <+ stpf0

= stpf0
∪

   ((dom(f1) – dom(f0)) <| stpf1
) ∪

   ((dom(f2) – dom(f1) – dom(f0)) <| stpf2
) ∪

… …
((dom(fn) – dom(fn–1) – … – dom(f0)) <| stpfn

) ∪
   ((dom(fD) – dom(fn) – … – dom(f0)) <| stpfD

)
(11.7)

where <| is domain restriction. The concedes relation from
op1 to opn can now be written as:

Cf1>fn
(u′, w′, o, q; i, k, u, w) =

stpfD
(u, i, u′, o) ∧

(((w, k) ∈ (dom(stpf2
) – dom(stpf1

)) ∧
stpf2

(w, k, w′, q)) ∨
((w, k) ∈ (dom(stpf3

) – dom(stpf2
) – dom(stpf1

)) ∧
stpf3

(w, k, w′, q)) ∨
… …

((w, k) ∈ (dom(stpfn
) – … – dom(stpf1

)) ∧
stpfn

(w, k, w′, q))) (11.8)

Note that unlike the cases covered by Lemmas 11.1 and
11.2, expressions (11.7) and (11.8) were built by analogy
and are not directly based on the results of Section 8. To
have attempted to get (11.7) and (11.8) formally would
have entailed a digression into the multiple composition-
ality and associativity properties of tidy and neat retrench-
ments. Given the counterexamples to tidiness and neatness
of composed tidy and neat retrenchments indicated in Sec-
tion 8, this would have proved to be a lengthy exercise.

The regular structure of expressions (11.7) and (11.8),
and the fact that feature interaction can be dealt with by in-
troducing interaction features which are handled just like
any other features, means that (11.7) and (11.8) can do duty
for the general case of interacting features, simply by rela-
belling the features that occur, in line with (10.14). The ap-
proach just outlined is certainly the simplest method for
handling feature interaction in the present layered architec-
ture.

An alternative route to the same thing, treats feature in-
teraction not as a fresh feature, but as a new kind of phe-
nomenon, utilising not Corollary 8.3, but the full force of
Theorem 8.2. However, a moment’s thought reveals that in
both approaches ultimately the same process of partition-
ing the before- and input spaces is going on under different
guises, and the lack of a specific ‘interaction feature’ is

counterbalanced by theC∧D term in (8.15) and corre-
sponding manipulations in the remainder of the theory;
we do not pursue this option in detail.

The same insight informs the treatment of the other fe
ture combinators: union, and union asserted disjoint. Arb
trarily complicated feature expressions may be analysed
discern the regions of enabledness of the constituent sub
pressions, and from there we partition the before- and inp
spaces into regions in which a single feature or collectio
of features is enabled. Furthermore, the same appro
will deal with ‘partial interaction features’, where the de
sire is to introduce a new feature on only part of the regio
in which two other features interact, and in the remaind
to deal with the interaction by other means, eg. by priorit
sation; one has simply to generate a finer partition. On
the appropriate partition of the before- and input spaces h
been arrived at, the definitions of various staged versio
the operation of interest, given by adding the behaviour r
evant to individual regions one by one, follows readily.

12.Conclusions

Feature interaction in telephony has attracted a fair amo
of attention in recent years, eg. [Calder and Magill (2000
Kimbler (1999)]. The burgeoning telecoms industry is a
ways introducing new capabilities into its systems, main
because of the flexibility afforded by digital electronics an
programmed interconnection exchanges. However, eve
a telecoms provider can make a rational reconciliation
all of the enhanced services that it provides itself, it is by n
means clear that when one provider’s network is interfac
to another provider’s network, the results will be as eith
provider envisaged. This kind of thing has posed a ch
lenge to development techniques (both formal and not
formal).

Amongst these various efforts, refinement has been u
to address the problem [Cansell and Mery (2000)], but t
use of refinement in an area where previously establish
properties have to be overridden, is frequently an exerc
in perversity. One has to search for a way of formulatin
the problem so that the contradictions inherent in a typic
development step do not become exposed during the refi
ment process, the sophistication of the notion of refineme
used notwithstanding. This is principally because refin
ment allows only the accumulation of properties in a co
junctive manner, a trait which although immensely appea
ing and mathematically robust, is often at odds with re
world experience in system development. The Append
below illustrates this phenomenon concretely to some e
tent in a very simple context.

In contrast, the recording of the development decisio
made via retrenchment would, we would claim, appe
much more natural, and in the preceding sections we ha
19
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considered a simple illustration of this via a stripped down
telephony case study. By necessity, such a simple example
cannot display many of the facets of inconsistency in spec-
ification that we claim may be usefully described by re-
trenchment. Instead we showed in Section 6 how a simple
functional interaction between features could be resolved
by design and described by retrenchment. It is noteworthy
that our chosen features can be handled very much in the
manner of the prioritised ‘busy treatments’ of [Zave
(2001)], where features available to deal with a call request
to a busy subscriber are applied in a guarded and prioritised
manner.

The work in this paper represents a new methodological
departure for retrenchment. The notion was conceived as a
liberalisation of classical refinement for the situation where
the idealised description was incompatible with finite, dis-
crete computational models. Retrenchment was thus con-
ceived as an ‘approximate’ refinement, or refinement with
exceptions. In the case of feature-oriented descriptions, the
thesis is that retrenchment offers a framework for the step-
wise, layered construction of a requirements specification,
accounting for both beneficial and harmful interactions.
For harmful, or interfering, interactions, the framework al-
lows incorporation of design to resolve the interaction in
the layered construction process.

This retrenchment approach to feature interaction can be
located in the taxonomy of formal methods for feature in-
teraction in [Calder et al. (2001)] asproperty-based. That
is, the description is in terms of feature properties and their
relations to one another. The description is in first-order
logic, and as for other property-based approaches, tools
such as PVS [Crow et al. (1995)] can be brought to bear to
mechanise the process, and to bring the additional assur-
ance that mechanical checking can give.

However it must be emphasised that since the denial of
previously established properties is fraught with danger if
adopted in a development path, the use of retrenchment for
these purposes must be adopted in a completely transparent
and conscious manner. System designers must be aware
that the abstract and concrete models in a retrenchment step
must coexist in an open dialogue about the evolution of the
functional requirements of the desired system, which are
recorded via the retrenchment POs. They must not assume
that just because the retrenchment technique is formal, that
it is therefore some miraculous panacea, the adherence to
the formal structure of which automatically guarantees suc-
cess. In other words, designers must not think that re-
trenchment absolves them from taking responsibility for
design decisions. With such a proviso, retrenchment can
help to both document and to justify the design arrived at.

On purely technical grounds, it must be admitted that we
were limited somewhat in this paper by the fact that the re-
trenchments we used related a single step at the upper level

to a single step at the lower level. This is certainly the ea
iest formulation of the retrenchment concept to understa
and to work with. However our models were thereb
doomed to be rather unrealistic as regards accurately
flecting real world telephone systems, as we pointed out
the time. In reality, call connection and the other featur
we alluded to, are all multistep operations, and the temp
ral aspects cannot be neglected in an accurate model.
undertake a more convincing retrenchment based study
feature interaction, we would have to resort to a formul
tion of retrenchment that allowed more than one step a
single level to play a role in the retrenchment relationshi
Some aspects of such a formulation of retrenchment ha
been studied in [Banach and Poppleton (2000b)] where o
abstract step is retrenched to several concrete steps, a
retrenchment version of Schellhorn’sm:n refinement
would also be relevant in this context [Schellhorn (1999
Schellhorn (2001)].

While doing such a more detailed study of feature inte
action remains for future work, and would undoubtedly b
worthwhile, we have concentrated in this paper on maki
the case for retrenchment not only as a means of progre
ing approximate and requirements incomplete models
wards a more definitive contracted model, but also as a u
ful formal tool for reengineering and design evolution situ
ations (since mathematically, there is little to distinguis
the two activities). We used feature interaction as a per
nent illustrative vehicle. We have seen that as well as p
viding an encompassing milieu for such activity, retrench
ment can comfortably accomodate more ad hoc custom
proaches such as layered feature engineering. There
we regard the case as well made.
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Appendix: PHONE Development via Refinement

In this section we examine the prospects for doing at lea
some of the development of the telephone case study us
refinement. We had better start by saying what we mean
refinement in this context.

We are working in a straightforward transition system
based framework. For this reason, notions of potent
nontermination and attendant complexities, often tak
into account in refinement formalisms, just do not aris
there are transitions that initiate and terminate successfu
as described in an operation’s transition relation, and the
is nothing else. We revert to the usual convention of spea
ing about an abstract and a concrete system, as is preva
in the refinement literature.

With the notational conventions we have been using
20
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to now, we define the precondition for say an abstract oper-
ationmA, whose transition relation isstpmA

, by:

premA
(u, i) = ∃ u′, o • stpmA

(u, i, u′, o) (A.1)

(So premA
is just what we called dommA

before, but we now
conform to the terminology more common in refinement.)

Now we define refinement from an abstract system to a
concrete system to be characterised by the following Z-re-
finement-like conditions:

OpsA = OpsC (A.2)

premA
(u, i) ∧ G(u, v) ⇒ premC

(v, i) (A.3)

G(u, v) ∧ stpmC
(v, i, v′, o) ⇒

(∃ u′ • stpmA
(u, i, u′, o) ∧ G(u′, v′)) (A.4)

Note that we are being strict here about I/O. The inputs and
outputs must be identical at the two levels of abstraction.
This is in line with viewing refinement as an implementa-
tion mechanism which can silently replace an abstract
model with an implementation, without the user’s aware-
ness. (Also it finesses a couple of minor logical niggles.)

What are now the prospects of doing eg. thePHONE to
PHONECF development step via refinement? Immediate-
ly we saynil, because (A.2) is violated by the additional ta-
ble management operations ofPHONECF. Let us agree to
ignore this for the sake of not falling at the first fence. We
next examine one model forPHONE that has prospects for
refinement.

PHONE′: In this system the state space is just as for the
original PHONE model:

calls : NUM ›+—› NUM  where
dom(calls) ∩ rng(calls) = ∅ (A.5)

The two operations,connectn andbreakn look like:

calls -(i, connectn, o)-› calls′  where
free(n) ∧ free(i) ∧ (n ≠ i) ∧
o = OK ∧ calls′ = calls ∪ {n |→ i} (A.6)

calls -(breakn)-› calls′  where
busy(n) ∧ calls′ = {n} <−| calls |−> { n} (A.7)

Note that this differs fromPHONE in that the specification
of connectn has nothing corresponding to the ‘else’ clause
of (3.2). It is thus a partial operation since in the busy(i) ∨
(n = i) case, we are outside the precondition ofconnectn.
Some strategem like this is forced on us however, because
if PHONECF’s connectCF,n operation is to be a valid re-
finement ofconnectn, then up to the latitude permitted by
the retrieve relation (which will continue to be (5.1) and
thus effectively affords no latitude whatsoever), the actions
of connectCF,n and connectn must agree in the busy(i) ∨
(n = i) case should they both be defined, otherwise (A.4)
will fail. This effect is rendered even more acute when we
remember that in refinement, outputs must agree.

Unfortunately this kind of partiality of operations is not

acceptable in a high level model that purports to capture
coherent set of user requirements, and is a manifestation
the model incompleteness described in the Introductio
User requirements at this level must express a defensiv
drawn and complete model, as it is quite unreasonable
assume that users can flawlessly adhere to the need to n
call aconnectn operation from a before-state/input combi
nation for which there exists noconnectn transition.

(It is thus clear that model incompleteness is unavoid
bly a user level or meta level issue, not deducible from th
mathematics of the model alone. Eg. whereas it is certain
the case that there are never anyconnectn transitions when
busy(n) holds, this is not a symptom of model incomplete
ness due to the different significance ofn andi at user level
— users accept that it is semantically self contradictory
expect a transition in the busy(n) case.)

Since this refinement attempt has spawned some un
isfactory features, we give an alternative construction, e
ploiting nondeterminism rather than partiality this time.

PHONE′′: In this system the state space is just as before

calls : NUM ›+—› NUM  where
dom(calls) ∩ rng(calls) = ∅ (A.8)

The operationsconnectn andbreakn this time look like:

calls -(i, connectn, o)-› calls′  where
free(n) ∧
if free(i) ∧ (n ≠ i)
theno = OK ∧ calls′ = calls ∪ {n |→ i}
else eithero = NO ∧ calls′ = calls

or o = OK ∧ {n} <−| calls′ = calls (A.9)

calls -(breakn)-› calls′  where
busy(n) ∧ calls′ = {n} <−| calls |−> { n} (A.10)

In this version of events, in the busy(i) ∨ (n= i) case, the op-
erationconnectn has the capacity to nondeterministically
connect to some unspecified location.9 The nondetermin-
ism is resolved in the refinement toPHONECF (still using
the same retrieve relation), in which theconnectCF,n oper-
ation specifies when and where a connection can be m
in the busy(i) ∨ (n = i) case.

The abstract operation is now total, overcoming the o
jection in the previous version. However the price for th
is the nondeterministic else clause in (A.9). For sure t
PHONE′′ model is a more abstract entity than th
PHONECF model, but when one asks the question as
what extentPHONE′′ deserves to be called a specificatio
of the POTS model — in the sense thatPHONE′′ captures
a coherent set of functional requirements of the POTS s
tem — the answer is less than satisfactory. Is thespecific
nondeterminism present inPHONE′′ a requirementof the
9. Actually the location cannot be entirely unspecified. It must be chos
in such a way that the invariant in (A.5) is preserved. One could add
clause to (A.9) to ensure this.
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POTS model? The answer is surely that it is not. The
PHONE′′ model was specifically construed to withhold
those features fromPHONECF that could neatly be rein-
stated by the definition of refinement that we are using; i.e.
it was reverse engineered fromPHONECF. Thus the ab-
stract and concrete levels have become entangled in this de-
velopment, and vestiges of properties of the envisaged low-
er level model have had to migrate to the higher level one
in order to satisfy the exigencies of refinement. This is the
kind of reverse engineering we alluded to in the introduc-
tion; and while it might not be too problematic in such a
small example, in larger systems it can become a serious
nuisance. The pollution of the perspicuity of the higher
level models, arising from the forced incorporation of very
specific perspectives on inappropriate lower level detail
forced upwards by the demands of refinement, can merely
serve to bring an otherwise blameless refinement based
specification development methodology into disrepute
among designers.

Thus refinement based developments of the evolution of
a more complex specification from a simpler one (each of
which captures a coherent set of functional requirements of
the system at a suitable level of abstraction), are replete
with difficulties. We have illustrated these just in the case
of thePHONE to PHONECF development step; however
extending the same approach to the other parts of the fea-
ture interaction case study would simply cause the illustrat-
ed difficulties to proliferate.
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