
ORIGINAL ARTICLE

Julio Cesar Sampaio do Prado Leite

Jorge Horacio Doorn Æ Graciela D. S. Hadad

Gladys N. Kaplan

Scenario inspections

Received: 15 February 2002 / Accepted: 19 September 2003 / Published online: 29 January 2004
Ó Springer-Verlag London Limited 2004

Abstract Scenarios help practitioners to better under-
stand the requirements of a software system as well as its
interface with the environment. However, despite their
widespread use both by object-oriented development
teams and human–computer interface designers, sce-
narios are being built in a very ad-hoc way. Departing
from the requirements engineering viewpoint, this article
shows how inspections help software developers to bet-
ter manage the production of scenarios. We used
Fagan’s inspections as the main paradigm in the design
of our proposed process. The process was applied to case
studies and data were collected regarding the types of
problems as well as the effort to find them.

Keywords Inspections Æ Requirements verification Æ
Scenarios Æ Scenario quality

1 Introduction

The word scenario, defined as ‘‘the plot of a motion
picture’’ in the Merriam-Webster Dictionary, has been

used in different disciplines. However, the software
community has provided a new meaning for scenario: ‘‘a
description technique that is both process-focussed and
user-centric’’. The literature has been prolific in pro-
viding different representations, interpretations, and
processes to implement the scenarios concept [1, 2], but
the major emphasis is on narrative description and on
the usage of examples or cases. In the object-oriented
community [3, 4], the accepted term for these descrip-
tions is use cases, the word scenario being used to detail
conditions of a particular use case.

CREWS (Cooperative Requirements Engineering
with Scenarios), a European Esprit project on scenarios
[5, 6], conducted a survey of research and industrial
practice. The survey pointed out that although several
representations and techniques have been proposed and
used in industrial settings, there is a lack of knowledge in
managing scenario construction and evolution. This lack
of precision about when and how scenarios should be
used has spread to the engineers who are using these
techniques in the field. Thus, most developers see sce-
nario creation as a craft more than an engineering task.
The industrial part of the survey [6] clearly showed this
lack of discipline in producing scenarios. It also pointed
out the necessity of more detailed definitions about
scenario construction as an unavoidable factor to in-
crease their use and productivity in real situations.

We believe that a scenario description is a means to
elicit application knowledge as well as to register elicited
information. As such, it acts as a complementary
description in the process of requirements definition. In
this context, our work [7] has paid special attention to
the lack of processes for scenario construction. One of
the aspects we researched was a quality assurance
strategy for scenarios. How can one guarantee that
scenario descriptions are of good quality?

We meet this challenge by relying on a review pro-
cess. We understand that one of the most effective
methods to achieve productivity with quality in pro-
ducing software is the usage of a review process. The
idea is simple and several reports confirm its usefulness.

J. C. S. P. Leite (&)
Pontifı́cia Universidade Católica do Rio de Janeiro – PUC-Rio,
Rua Marquês de São Vicente 255,
22451-041 Gávea-RJ Rio de Janeiro, Brazil
E-mail: julio@inf.puc-rio.br
Fax: +55-21-31141530

J. H. Doorn
INTIA, Universidad Nacional del Centro de la Provincia
de Buenos Aires, FRBA,
Universidad Tecnológica Nacional,
Pinto 399, 7000 Tandil, Argentina

G. D. S. Hadad
FRBA, Universidad Tecnológica Nacional,
LINTI, Universidad Nacional de La Plata,
Buenos Aires, Argentina

G. N. Kaplan
FRBA, Universidad Tecnológica Nacional,
LINTI, Universidad Nacional de La Plata,
Buenos Aires Argentina

Requirements Eng (2005) 10: 1–21
DOI 10.1007/s00766-003-0186-9

Reviewing is an old tradition in the publication industry
and has been in practice for centuries. Some people write
and others read the written document for the purpose of
correcting mistakes and shaping the text according to
predefined policies.

In software engineering, several authors have pro-
posed reviews: the author/reader cycle of SADT [8], the
structured walkthrough [9, 10], design reviews [11], and
inspections [12, 13]. Only more recently [14, 15, 16, 17]
have software developers become convinced that reviews
are a necessity. Nonetheless, most of the processes in use
today still base their quality assurance on testing.

In our scenario construction process [7], we chose
inspections as a way of assuring quality for scenarios.
This idea of applying inspections to improve scenario
quality is intuitive and has been applied before [18]. In
the industrial CREWS survey [6], it was reported that
nine out of 15 projects had used some kind of review
process. Our proposal addresses the major weaknesses
of the inspection process [11, 19] by focussing attention
on the preparation step. Our preparation step uses a
reading technique known as ‘‘scenario-based reading’’1

[19], which provides a strong systematization for this
step.

Our contribution is to provide a detailed verification
process for ‘‘scenario analysis’’ based on a reading
technique. We believe that our strategy will help
researchers and practitioners addressing aspects of
quality assurance for very early software representa-
tions. It is important to stress that we are reporting on a
proposal designed for a specific scenario construction
process (Sect. 2.1), but which is general enough to be
adapted to other scenario-based methods [20]. Our
proposal for quality assurance, called ‘‘scenario analy-
sis’’, uses a combination of verification and validation
steps. However, our paper is limited to the verification
step. It is independent of other quality assurance meth-
ods, but may, in addition, be used in combination with
other analysis processes. Verification is performed
among developers, contrary to validation, which re-
quires the involvement of customers. By verifying sce-
narios we are improving situation descriptions, and as
such improving the overall requirements process.

This paper aims to contribute to issues that may, in
the future, be handled semi-automatically with proper
tools. Our focus is on method and its use. We foresee
that tools will be necessary to make our processes more
efficient and easy to use.

It is important to say that our proposal is performed
before the validation of scenarios and should be done by
requirements engineers. We focus our attention on a
detailed description of a verification process. Although
we include data from case studies, this paper does not
describe an experiment. We list the case studies to pro-
vide for the reader an idea of how the method is used,
the effort required to use it, as well as an indication of
what could be improved. The method, as described here,
includes the feedback we received from the case studies
detailed in Sect. 5.

The article is structured as follows: our scenario rep-
resentation schema along with a summary of our scenario
construction process (Sect. 2), a review of inspections
(Sect. 3), details of the proposed strategy (Sect. 4), the
case studies (Sect. 5), and conclusions (Sect. 6).

2 Scenarios

We adopt a requirements engineering view of scenarios.
We are using the term scenario to name descriptions of
situations [21], and this is in accordance with its use by
the human–computer interface community [22]. To us,
scenarios describe situations taking into account usage
aspects, allowing us: to define the problem, to unify
criteria, to gain clients/users compromise, to organize
the involved details, to train new participants [22], and
to provide an anchor for traceability [1]. The use of
scenarios as a technique to understand the problem to be
solved using a software system has been recommended
by several authors [21, 23, 24].

The kind of knowledge we are dealing with is what
Rolland et al. classified as organizational context [5],
which aims at the ‘‘broad picture of how the work gets
done’’. Our conjecture, confirmed by several case studies
as well as by the literature, is that scenarios provide an
attractive communication means among stakeholders in
the universe of discourse (UofD). Here scenarios become
important, since they may hold much information in a
way that stakeholders could recognize.

A scenario is a partial description of the application
behaviour that occurs at a given time within a certain
geographical context, i.e. a situation [21]. We use a nat-
ural language structured description as its basic repre-
sentation. To this definition, we added two concepts [1]:

– A scenario evolves as we progress in the software
construction process.

– Scenarios are naturally linked to the Language
Extended Lexicon (LEL) (see Sect. 2.2).

To us, a scenario describes a particular situation of
the UofD showing the main course of action but also
including variations or possible alternative cases. The
use of natural language, in particular the client/user

Fig. 1 The scenario representation (from [7])

c

1As it has been well noted by Regnell in [17, p. 142]: ‘‘There is
considerable risk for terminology confusion here, as the term sce-
nario also is used within requirements engineering to denote a se-
quence of events involved in an envisaged usage situation of the
system under development. A use case is often said to cover a set of
related (system usage) scenarios. In scenario-based reading, how-
ever, the term scenario is a meta-level concept, denoting a proce-
dure that a reader of a document should follow during inspection.’’
This note clearly shows the confusion; when we use the term sce-
nario-based we are saying what Porter defined in [19]: ‘‘Scenarios –
collections of procedures for detecting particular classes of faults.’’

2

3

vocabulary, in well-bounded situations and the benefits
of the sub-scenario concept (a hierarchical relationship)
improve the readability of our scenarios.

When there is a growth in the number of scenarios,
the global perception of the UofD will decrease. We
overcame this inconvenience by introducing integration
scenarios, which collect several related situations in a
larger scenario. Integration scenarios share with sce-
narios the representation and the links. Integration
scenarios and scenarios are also bound in a hierarchical
way.

2.1 Describing scenario components

Our scenario representation language [7](Fig. 1) is
composed of static and dynamic components. The static
components establish the settings of the scenario and
are: title, goal, context, resources, actors, and con-
straints. The dynamic components express behavioural
aspects through episodes and exceptions entities.

A scenario, univocally identified by its title, must
satisfy a specific goal, occurs within a context and re-
quires the availability of certain resources, and the
participation of one or more actors. The context is de-
scribed detailing a geographical location, a temporal
location, and preconditions. The constraint attribute is
used to characterize non-functional requirements
applied to context, resources, and episodes.

Episodes are a set of actions that allow goal
achievement. They are one of three types: simple, con-
ditional, and optional. Simple episodes are those neces-
sary to complete the scenario. Conditional episodes are
those whose occurrence depends on a specified condi-
tion. Optional episodes are those that may or may not
occur.

Independently of its type, an episode can be expressed
as a single action or can itself be a scenario, thus
allowing the possibility of decomposition of a scenario in
sub-scenarios.

Our scenario representation provides the description
of behaviour with different temporal orders. A sequence
of episodes implies a precedence order, but a non-
sequential order is provided by a special syntax
(#<episode series>#), used to express a parallel or in-
distinct sequential order. A scenario may be interrupted
by exceptions. Each exception is described using a sim-
ple sentence that specifies the cause of the interruption
and where it may take place. If we include the title of
another scenario, this one will treat the exception and
may or may not satisfy the original goal.

Figure 2 exemplifies a scenario of the Saving Plan for
Automobile Acquisition System [25]. This system will be
used further throughout this article to exemplify the
inspection process.

A seller of brand new vehicles offers long-term plans
of payment in instalments. A group of customers is

constituted to acquire a vehicle each paying monthly
instalments. Every month, two vehicles are assigned
to participants, one vehicle by drawing lots and the
other by bidding. Drawing lots means that all par-
ticipants have the chance to obtain a vehicle early by
random assignment. Bidding means that those par-
ticipants who want to get the vehicle immediately
offer to pay several instalments in advance. The
system manages the monthly vehicle assignment, the
cashing of instalments, the constitution of groups,
the substitution, abandon or cancellation of partici-
pants, the trace of debtors, and the recalculation of
instalments in case of a factory change in vehicle
models or prices. Therefore, this complex system
requires many legal management and economical
controls and enough flexibility to support constant
changes in market and company policies.

2.2 Our scenario construction process

The general idea of our process, detailed in [7], is to
anchor the scenario description on the vocabulary of the
UofD. As such, we start from a pre-existing lexicon in
order to build scenarios. The lexicon describes the
application vocabulary and the set of scenarios describes
the application.

The lexicon was first proposed in [26] and is called
Language Extended Lexicon (LEL). It is a representa-
tion of the symbols in the application language, and it is
anchored on a very simple idea: understand the language
of the problem without worrying about understanding the
problem. The Lexicon’s goal is to register signs (words or
phrases) that are peculiar to the domain. Each entry in
the lexicon is identified by a sign or signs (in case of
synonyms) and has two descriptions. The first, called
notion, is the denotation (defines ‘‘what the symbol is’’)
of the word or the phrase. The second, called behavioural
response is the connotation (describes ‘‘ how the symbols
acts in the system’’) of the word or the phrase. Entries
are classified into four types according to their general
use in the UofD. The types are: subject, object, verb, and
state.

Below, we exemplify an entry of LEL for a symbol
based on the Saving Plan for Automobile Acquisition
System (Fig. 3).

While describing the symbols, two principles are to be
followed: the principle of circularity, also called the
‘‘principle of closure’’, and the principle of minimal
vocabulary [26]. The first principle aims to maximize the
use of signs in the description of other signs. The second
one aims to minimize the use of symbols external to the
lexicon. These rules stress the description of the vocab-
ulary as a self-contained and highly connected hypertext
[7].

The scenario construction process starts with the
application domain lexicon. These scenarios are later
improved using other sources of information and orga-

4

nized in order to obtain a consistent set of scenarios.
During this process, the scenarios are verified and vali-
dated and discrepancies, errors, and omissions (DEO)
are detected. Figure 4 [7], using an SADT model, de-
scribes the construction process. The SADT activities
(boxes) are described below:

1. Derive activity consists of identifying actors, identi-
fying candidate scenarios, and creating scenarios
using LEL. These three steps are performed extract-
ing information only from the lexicon by applying
derivation heuristics.

2. Describe activity consists of completing the derived
scenarios adding information from the UofD, from
the previous lexicon elicitation process, and from the

lexicon itself. During this activity, new scenarios
might be discovered and the scenarios’ content
should be improved.

3. Organize activity consists in reorganizing scenarios,
defining relations among scenarios, and finally
grouping them together in integration scenarios. The
reorganize step is based on the composition and
decomposition of scenarios in order to improve sce-
nario comprehension and management. Two or more
scenarios are put together when a unique situation
became artificially separated. A scenario is divided
when it contains more than one situation. Scenario
relationships are identified in order to be able to
integrate scenarios; they are: hierarchical, overlap,
order, and exception relationships. Integration sce-
narios are built based upon the detected relation-
ships.

Fig. 2 An example of a scenario

Fig. 3 An example of a lexicon
symbol

5

4. Verify activity aims to obtain consistent scenarios by
defect detection and is performed by means of two
different verification processes and an evaluate
activity. Figure 5 shows, in detail, the verify activity
whose main output is the verification DEO list. The
intra-verify activity provides a systematized review of
individual scenarios while the inter-verify activity
takes into account the set of scenarios as a whole. The
evaluate activity generates a final disposition report,
which indicates final acceptance or the next step to be
taken: a new verification once scenarios have been
repaired. Scenario corrections are done as part of the
describe activity based on the verification DEO list
produced here.

5. Validate activity mainly aims to confirm elicited
information and to detect defects and, as a side effect,
to elicit new information. This activity is carried out
performing interviews or meetings where clients and
users are in charge of reading and discussing the
scenarios.

The SADT depicted in Fig. 5 helps to clarify the
idea of verification. It divides the verification into
three parts; the first two are a consequence of the
scenario model, that is, we can verify a given scenario
or we can verify the relationship among scenarios. It
can be seen that in both activities 1 and 2, the control
arrows intra-verification heuristics and inter-verifica-
tion heuristics are present. The fact that we have
chosen inspections as our verification paradigm means

that those control arrows will be defined by our
inspection method, which is described in detail in
Sect. 4.

3 Inspections

An ad-hoc reading of scenarios finds defects. However,
if there are available tips about where defects may be
located and how they can be perceived, the task of
finding them becomes easier and reader productivity
increases. Experienced readers find more defects than
novice ones. In all areas of human knowledge, experi-
ence can be condensed into tools, methods, rules, or
procedures to help inexperienced persons in complex
tasks.

Reviews applying different procedures have been
formalized. Among those, inspections have emerged as
one of the most effective quality assurance techniques in
software engineering [15, 16]. Fagan [12] was the
inventor of software inspection as a formal process
composed of six well-defined steps: planning, overview,
preparation, meeting, rework, and follow-up.

The actual use of the inspection technique in the
field led to the development of several variants of
inspections. An example is the N-fold technique [27,
28], which uses multiple inspection teams. Schneider
reported that his research pointed out that a nine-fold
replication of the inspection process raised the fault-
detection rate from 35% (single independent team) to
78%. Kantorowitz et al. [29] proposed a simple prob-
abilistic model to predict the fault detection ratio based

Fig. 4 SADT of the scenario building process (adapted from [7])

6

on two variables: level of expertise of the inspectors
and the number of inspection teams.

Reading techniques for the preparation step may be
classified into four groups. They were classified in [17]
as: ad hoc, checklist, scenario-based, and constructive
reading. The checklist is the closest to Fagan’s proposal.
Figure 6 depicts the taxonomy of the preparation step
reading approaches.

– Ad hoc reading is done in an unstructured fashion,
whereby the inspector receives very little support. This
does not mean that inspection participants do not
scrutinize the artefact systematically. It only means
that no previous plan is available and everything is left
to the inspector’s experience.

– Checklist reading gives the inspector strong support in
the formof a list of questions and checks that have to be
answered and verified in a certain pre-established order.
The checklist approach has several weaknesses such as
the lack of help in understanding the artefact and poor
tailoring to a given development environment.

– Scenario-based reading moves the centre of the
inspection from the meeting towards the preparation
step. This technique provides the inspector with
detailed guidance about how to find specific defects.
Examples are: Basili [30] on perspective reading,
Porter [19] on defect-based reading, and Cheng [31] on
function point reading.

– The term constructive reading means that the inspec-
tion process goes further than merely reviewing an
artefact and producing a list of defects. During con-
structive reading, the inspector produces a new rep-
resentation of the inspected material, which is

Fig. 6 Taxonomy of reading
approaches

Fig. 5 SADT of the verify activity

7

analysed later. Variants of this technique are: active
design review [32] and stepwise abstraction [33].

Several experiments have been carried out comparing
different inspection techniques applied to requirements
documents: [19, 30, 34, 35, 36, 37, 38, 39]. Table 1
summarizes the findings of these experiments. Scenario-
based inspections performed better than ad-hoc inspec-
tions in ten experiments and better than checklist in five
experiments. We should keep in mind that not all
experiments surveyed compared scenario-based with
ad-hoc or checklist.

In some experiments, the experience of the inspector
was followed more carefully [37] and the results showed
that the importance of the procedure definition de-
creases when the inspector experience increases. One
experiment [17] showed, in two cases, no difference be-
tween defect-based reading and perspective reading. The
role played by the different participants involved in the
inspection process also changes from one incarnation to
another of the inspection notion. Actually, it seems that
there are no changes in the effectiveness of the process
due to variations in the specific task each person has
been assigned.

The inspection process described throughout this
paper is close to Porter’s [19], since the main idea is to
make use of the available knowledge about scenarios
and their defects. In fact, the scenario structure may
look naive at first sight; however, its structure, even
when flexible, gives many anchors for consistency and
completeness checks.

Defect-based reading requires a set of detailed heu-
ristics reflecting the knowledge about what is being read.
Our proposal concentrates all available knowledge
about scenario properties in forms, so it could be called
form-based reading. However, to keep it within the
mainstream of the inspection literature it is called sce-
nario-based. The first version of our inspection strategy
was introduced in [40].

4 Our inspection strategy

The aim of the scenario inspection is to guarantee the
best possible quality of the scenario set under produc-
tion. The flexibility and simplicity of the scenario
structure allows the existence of several defects such as:

– Missing information in scenarios
– Scenarios with erroneous information

– Scenarios with ambiguities
– Scenarios holding contradictions
– Partially or totally overlapping scenarios

Knowing the type of the defects beforehand im-
proved the detection process. Since we deal with differ-
ent types of defects, a brief taxonomy is given in
Sect. 4.1.

Our inspection strategy is a way of conducting the
verify activity in the scenario construction process
(Figs. 4 and 5). Thus, its main purpose is to provide
feedback to the process in order to improve its quality.
The outputs of the verify activity are the DEO lists,
which, in our case, will be produced by means of a de-
fect-based inspection. Section 4.2 describes this strategy.

As mentioned before, our defect-based inspection is
based on forms. Section 4.3 describes these forms in
detail. Section 4.4 gives insight on the management
viewpoint of our inspection process. It focusses on forms
that we have used to collect data on the process itself.
This information should empower moderators and help
with the production of feedback information about the
inspection process. Section 4.5 refers to the fact that,
following Parnas [41] advice, we have presented our
method with the improvements made after the case
studies. Therefore, this section reports on how we de-
signed our method using the feedback from the case
studies.

4.1 Defects taxonomy

Many terms can be used in relation to the type of defects
found during a review, for example, contradictions,
discrepancies, errors, inconsistencies, ambiguities,
omissions, and conflicts. They may be arranged in three
groups:

1. Conflict, contradiction, and inconsistency share, in
this field, their meaning with discrepancy, which can
be outlined as ‘‘the presence of two or more elements
showing different and incompatible issues’’. At least
one of the issues is not true.

2. Error is simply a statement that is not true.
3. Omission involves missing facts. An ambiguity is a

special kind of omission where the defect is seen as a
minor lack of information that can be avoided
choosing one of several possible interpretations.

We define

– D to be the set of all discrepancies
– E to be the set of all errors
– O to be the set of all omissions

What we call a defect throughout this article is
D[E[O. Since D\E „ ˘, a part of a discrepancy is also
an error. In the data collected from the case studies, they
were counted once, as discrepancies. From now on, the
terms defects and DEOs are used interchangeably
throughout the text.

Table 1 Number of experiments comparing the performance of
scenario-based with ad hoc and checklist reading

Scenario-based reading
performance

Ad hoc Checklist

Better than 10 5
Same as 4 5
Worse than – –

8

Besides the classification DEO for defect type, we
also use another sorting criterion related to defect
severity, which is composed of three types: fundamental,
organizational, and presentation. Severity defects are
detailed in Sect. 4.4.

4.2 Scenario inspection

Our inspection process relies on Fagan’s proposal [12]
with some carefully defined changes to better suit both
our scenario construction process and the inspected
product.

The overview phase has been deliberately removed
from our proposal. In this phase, authors should present
a global vision of their product. Since the set of docu-
ments the inspector receives (scenario set, LEL, forms
and instructions) has to be self-explanatory, any
incomprehension that arises at this point is an indica-
tion that either there are problems with the documents
or the inspector failed to read them. Suppressing the
overview phase has the extra advantage of keeping away
from the author’s bias. This initial independence be-
tween inspector and authors increases the relevance of
meeting.

We also do not have the follow-up phase as a step in
our inspection strategy since we deal with it in the

context of our own scenario construction process. Fig-
ure 4 shows the feedback from the verify activity to the
describe activity. Section 4.4 details some of the man-
agement issues related to the outputs of the inspection
process.

The entire preparation phase is devoted to identify
defects rather than obtaining knowledge of the inspected
material and it is biased to a filling in the blanks in pre-
designed forms, since the inspector reads the document
in order to complete the provided forms.

This activity schema is based on what Porter [19]
calls scenario-based reading, since the inspector uses
several systematic techniques to find different types of
defects. Meeting aims are to validate the preparation-
detected defects with the authors and to find new de-
fects.

As it is shown in Fig. 7, our inspection process
comprises four activities: planning, preparation, meet,
and rework.

The planning activity consists of selecting the mate-
rial to be inspected, selecting the participants, defining
their roles (inspector, moderator, and scribe), and
delivering the material to the inspector (scenario set,
LEL, forms, and instructions). The requirements engi-
neers produce an inspection plan containing the fol-
lowing data: name of participants and their roles, date
when the material is delivered to the inspector, esti-
mated preparation deadline, and estimated meeting
date.

Preparation consists of reading to understand LEL
and reading the instructions, followed by the filling in ofFig. 7 SADT of our inspection process

9

forms, registering DEOs, and raising questions about
doubts. Instructions contain general guides to help fill in
the forms. For every form, instructions define the form
objective and give detailed filling guides and defect
analysis guides.

During the meeting activity, the inspector and the
scenario authors discuss every preparation-detected
point while the scribe takes notes of every conclusion
reached. Each point confirmed as a defect or as an
unanswered question is registered in the inspection DEO
list. Eventually, during meeting, the inspector or the
authors need to review other portions of the scenario set
to support their point of view. In this way, they may
come across other defects. The moderator drives meet-
ing to ensure that every point is adequately treated. He/
she produces an inspection report document with some
advice regarding the final disposition of the scenario set.

Afterwards, authors carry out the rework activity.
New and more precise information is elicited from the
UofD when the questions are answered and an improved
version of the scenario set is obtained. This activity is
not done as part of the inspection process, but it is an
integrated part of the overall feedback involving verify
and describe activities as depicted in Fig. 4. Since we
preferred to keep Fig. 7 as close to the Fagan model as
possible, Figs. 4 and 7 show some degree of overlap,
precisely in the rework activity.

4.2.1 Intra- and inter-scenario inspection

The scenario inspection strategy presented in this article
is actually composed of three independent processes.
They are intra-scenario inspection, inter-scenario
inspection, and evaluation (see Fig. 5). Planning, prep-
aration, meeting, and rework activities are carried out
for both intra- and inter-scenario inspection. Evaluation
defines the next step to be taken: a re-inspection after
rework or final acceptance.

The intra-scenario inspection verifies each component
in every scenario to confirm its consistency with other
components and adherence to the scenario model. The
inter-scenario inspection checks the relationship among
different scenarios looking for overlaps or gaps.

The intra-scenario inspection is carried out at least
once. When the severity of the defect included in the
DEO list justifies it, a new intra-scenario inspection may
be required after the rework activity. When the intra-
scenario inspection is finished, the inter-scenario
inspection is performed one or more times if necessary.

The intra-scenario inspection focusses on the analysis
of each scenario using LEL and the scenario model as
guides; once the process is finished, an improved sce-
nario set is obtained.

As it was mentioned above, our inspection approach
extensively uses pre-designed forms during the prepa-
ration phase. This is the most time-consuming and most
effective activity to detect defects in the inspection. The

Fig. 8 SADT of the inter-scenario inspection prepare activity

10

forms belonging to the intra-scenario inspection are
grouped into four sets, as follows:

1. Syntactic verification
2. Relationship with LEL
3. Relationship among components
4. Inspection summary

Section 4.3.1 describes in detail the forms used in the
intra-scenario inspection.

The inter-scenario inspection is performed when the
scenario set has been organized (see Sect. 2.2) and the
intra-scenario inspection finished; again, when this
process is completed, an improved scenario set is ob-
tained.

As it can be seen from the data presented in Sect. 5,
the prepare activity of the inter-scenario inspection is the
most important one. It also uses pre-designed forms,
which are grouped into:

– Scenario relationship
– Scenario overlap
– LEL coverage
– Inspection summary

Sect. 4.3.2 describes in detail the forms used in the
inter-scenario inspection.

Every form related to the activities 1–3 in Fig. 8 is
filled in independently from the others. Summary forms
are completed based on the previous ones. The actual
defect detection is carried out in activities 1–3 while the
last activity collects their findings.

4.3 Inspection forms

Every form has a complete set of attached instructions.
They specify how the forms should be completed and
which aspects of the scenarios should be analysed to
capture defects.

During the filling in of any form, the inspector
sometimes comes across defects whose detection is not
the objective of the form itself. This sort of unplanned
defect detection is called spontaneous detection and,
according to our experience (see Sect. 5), accounts for
about 15% of the total number of defects.

Table 2 Description of the
intra-scenario inspection forms

a If this was to be automated,
a simple parser could detect
most of these defects.

FormDescription

I Front page: identifies the project, the scenarios to be inspected, LEL version, the scenario
set author or authors, and the inspector. Relevant dates, scenario construction effort,
and preparation effort are also registered.

II Scenario quantitative summary: gives a general overview of the information volume
present in every inspected scenario. It holds the number of actors, resources, episodes,
LEL symbols used, constraints, and exceptions among other figures.

III Scenario syntactic check: aims to verify whether the scenario components, excluding episodes,
are correctly written. The allowed syntax is displayed in the form.

IV Episode syntactic check: aims to verify whether the episodes of a given scenario are correctly
written. A row of the form is filled for each episode failing to accomplish the syntax.
Columns to register the missing or surplus information are available for the main body
of the episode and for the constraint if present.

V Episode Ppragmatic Ccheck: is used to detect irrelevant episodes or episodes with omissions
of actors or resources.

VI Lexicon compliance: aims to detect incorrect use of LEL symbols in a given scenario.
Two possible wrong uses are considered: a) when one symbol is used, whether it
is emphasized or not, with a meaning different from the one registered in LEL, and b)
when the symbol is correctly used without being identified as an LEL symbol.

VII Scenario actors occurrence check: aims to verify the coherence among the persons and
organizational structures that have a role in the scenario with the actual list included
in the actors component. Candidate actors are checked to see if they are LEL symbols or not.

VIII Scenario resources use check: is very similar to form VII since it helps to check the coherence
of the passive elements, support media, and artefacts listed in the resources component
against those used along the scenario. Their inclusion in LELis also checked.

IX Episode types syntactic check: is designed to help the detection of defects in the use of the
special characters (#, [,]) and keywords (if, then) needed to represent conditional and
optional episodes or to group them to denote lack of temporal ordering (Fig. 1). It helps
with checking the syntax of the scenario model (Fig. 1), in particular the episode grammar.a

X Candidate DEOs list: is divided into two sections. The first one is designed to hold the
corrections suggested because of the defects detected during the preparation activity,
and the second one contains those items that require extra information from the UofD.
In other words, DEOs are grouped into two sets based on the possibility of solving
them using the available information. Every detected defect or question is tagged with the
form number and page where it was discovered.

XI General comment: gives a summary of the scenario quality based on the DEOs detected,
the corrections proposed, and the unanswered doubts.

11

In the following sections, all inspection forms are
presented together with some data taken from the case
study, saving plan for automobile acquisition system.

4.3.1 Intra-scenario inspection forms

The intra-scenario inspection is simpler than the inter-
scenario inspection but requires a greater effort. It is
simpler since every verification step has a small scope
and few issues to be concerned with. The effort required
to fill in these forms is mainly related to the huge
amount of small details to be taken into account.

The forms for syntactic verification (see forms III,
IV, and IX in Table 2) check the syntax for all the
components of a scenario. To make a scenario comply
with LEL means to ensure that LEL symbols are
properly used and that every phrase emphasized as a
LEL symbol is actually part of LEL (see form VI).
Every subject in an episode must be listed in the actors
component and any actor must play a role in an epi-
sode. This is checked in the relationship among com-
ponents step (see form VII). Resources and episodes
require a similar check. A semantic-biased relationship
among components is the one existing between the
goal and episodes components. The set of episodes
must fulfil the scenario goal. This is also verified using
the relationship among component forms (see forms V
and VIII). The inspection summary forms (see forms I,

Fig. 9 Examples of intra-inspection forms linked to a scenario

12

II, X, and XI) collect all detected defects and unan-
swered questions as a guide to scenario update. A new
knowledge elicitation from the UofD occurs during the
rework activity.

A brief description of each intra-scenario inspection
form is given in Table 2 while Fig. 9 shows examples of

three of these forms. Figure 10 exemplifies the instruc-
tions attached to the intra-inspection form VI.

Form VI in Fig. 9 lists the lexicon symbols and their
role in the lexicon (subject, object, verb, or state) to-
gether with a reference to which scenario component has
the problem. For instance, ‘‘group of adherents’’ (Fig. 9)

Fig. 10 Instructions for the intra-inspection form VI: lexicon

Table 3 Description of the inter-scenario inspection forms

Form Description

I Front page: provides the same information as the one used in the intra-scenario inspection.
II Scenario quantitative summary: is very similar to the one used in the intra-scenario inspection.

It gives a general overview of the information volume present in the scenario set, such as number of scenarios
by type, number of actors, resources, episodes, LEL symbol references, constraints, and exceptions among other figures.

III Integration scenario cross check: is used to verify that those scenarios tagged as integration scenarios
are correctly classified and described.

IV Scenario and sub-scenario cross check: allows verification of the existence of sub-scenarios mentioned in episodes or
exceptions and, conversely, the correct classification of sub-scenarios never mentioned by other scenarios.

V Context precondition cross check: aims to detect errors and discrepancies in scenario preconditions and omissions
of information in other scenarios that would satisfy those preconditions.

VI Sub-scenario preconditions check: aims to detect errors in sub-scenario preconditions or omitted data in those scenarios
that mention sub-scenarios, taking into account the hierarchical links established between scenarios and sub-scenarios
and between integration scenarios and scenarios.

VII Scenario overlap control: is used to detect the overlap of information among scenarios. To reduce comparisons among
scenarios, a scenario proximity index is calculated based on the coincidence of actors, resources and context; when a
high index is obtained, comparisons between goals and episodes are performed.

VIII Actors occurrence check: aims to detect actors not included as LEL symbols but having great participation in scenarios.
IX Resources use check: aims to detect resources not included as LEL symbols but whose availability is required in many scenarios.
X Unused LEL symbols: is used to detect omissions in scenarios by checking the level of coverage of LEL.
XI LEL behavioural response coverage check: aims to detect omitted situations and discrepancies between behavioural

responses of LEL subjects and scenarios/episodes involving the corresponding actors.
XII Candidate DEOs list: provides the same kind of information as the one used in the intra-scenario inspection, so it is also

divided into two sections. The first one is designed to hold the corrections suggested because of the defects detected during
the inspection, and the second one contains those items that require extra information from the UofD. In other words,
DEOs are grouped intp two sets based on the possibility of solving them using the information available. Every
detected defect is tagged with the form and page number where it was discovered.

XIII General comment: gives a summary of the scenario set quality, based on detected DEOs, suggested corrections, and
emerged doubts.

13

is used in the scenario goal and in the second episode,
but it is not underlined as it should be.

Form VII in Fig. 9 lists: words understood as actors
in the scenarios, where these words appear, and if they
are properly listed in the component actors of the sce-
nario model. The last column of the form indicates
whether the actor is in the lexicon and its role.

4.3.2 Inter-scenario inspection forms

The inter-scenario inspection deals with more complex
issues than intra-scenario inspection since it handles all
scenarios at the same time.

Hierarchical relationships among scenarios and sub-
scenarios are verified using scenarios relationship forms
(see forms III, IV, V, and VI in Table 3). Scenario
overlap form (see form VII) deals with obscure and
poorly defined borders among scenarios that share
common portions. Gaps are the most difficult defects

and they are partially detected in LEL coverage forms
(see forms VIII, IX, X, and XI) since those symbols,
when never used or used with low frequency, are indi-
cation of possible gaps among scenarios. The inspection
summary forms (see forms I, II, XII, and XIII) collect all
relevant data from previous forms.

Table 3 contains a short description of each inter-
scenario inspection form. Figures 11, 12, and 13 show
examples of these forms with data extracted from the
saving plan for automobile acquisition system. Fig-
ure 14 exemplifies the instructions attached to the inter-
inspection form VI, which is depicted in Fig. 11.

Figure 12 depicts an example of form VII, which
aims to calculate a matching index between any two
scenarios. If the index is higher than 0.5, then there is
an indication that scenarios need to be compared in
more detail. That is, it compares goals and episodes to
determine whether there is an overlap or not. Columns
Si and Sj in Fig. 12 are filled with pairs of scenarios.
For each pair the union of actors (A[ij), the number of

Fig. 11 Form VI: sub-scenario preconditions check

Fig. 12 Form VII: scenario
overlap control

Fig. 13 Form XI: LEL
behavioural response coverage
check

14

actor coincidences (A\ij), the union of resources (R[ij),
the number of resource coincidences (R\ij), the union of
context statements (C[ij), and the number of context
statement coincidences (C[ij) are calculated. The prox-
imity index is calculated in order to reduce the
searching space of scenario pairs to be analysed for
overlapping.

4.4 Managing the inspection process

Meeting is the control point in the management of the
inspection process. During the meeting, the participants
develop a common view of the inspected material. Each
DEO is examined, the reader’s approach is evaluated, and
the overall quality of the scenario set is brought to bear.

Fig. 14 Instructions for the inter-inspection form VI: sub-scenario preconditions check

Table 4 Description of the
management forms Form Description

I Front page: identifies the project, the scenario set, LEL version, the scenario set
author or authors, the inspector, the moderator, and the scribe. Relevant dates, amount
of information obtained after preparation, scenario construction effort, preparation effort,
and meeting effort are also registered. The final disposition of the scenario set is put
down here.

II DEOs summary: shows a summary of the forms. It contains three tables where the defects
are organized by type (discrepancy, error, or omission), by severity, by component,
and by way of detection. An observation cell allows the moderator to take down notes
about the meeting and the scenario set quality.

III Inspection process evaluation: organizes defects by severity, by detection mechanism, and
by inspection form. Defects are also classified in two categories: those ones whose repair
can be done by the scenario author/s and those that require going back to the UofD.
The form is mainly used to evaluate the design of the inspection process.

IV DEOs by component: shows defect totals by component, by type of defect, by type of
detection, and by severity. The form is mainly used to evaluate the scenario defects found.

V Rejected DEOs by form: deals with inspection defects, initially identified as scenario
defects at preparation but dismissed in the meeting. The form shows the rejected
defects by source of generation (the process or the inspector) and by form.

15

Two results are obtained as a consequence of meet-
ing. The first one is the information required to decide
about the final disposition of the scenario set, meaning
that it may need rework and it may eventually require
new inspection. The second one is a set of forms, called
management forms, filled in with information to be used
as a process feedback. These forms are described in
Table 4.

The management forms are filled in based on the
information from candidate DEOs list form. During
meeting, scenario authors and readers get together with
the scribe and the moderator to ratify or dismiss can-
didate DEOs. New defects may also be found in the
process. Every piece of information collected during the
preparation phase is reviewed, organized, and evaluated.

A severity level is assigned to every defect, taking into
account the following possible values: fundamental,
organizational, and presentation.

1. Fundamental DEOs are the ones related to the overall
semantics of a scenario, for example, lack of a sub-
scenario, scenario overlap, lack of compatibility
among title and goal, lexicon behavioural responses
not covered by any scenario, and lack of precondi-
tions.

2. Organizational DEOs are the ones related to prob-
lems with syntax and structure such as: episode
splitting, episode factoring, lack of supporting actors
or resources, lack of a scenario component, actors/
resources that appear in the episodes but are not
presented in the actors/resources component.

Fig. 15 Form IV: DEOs by component

Table 5 Description of case studies

Case study Set of scenarios

Name Number of authors

1 MSCH-1 2
2 SPAAS-1 1
3 SPAAS-2 3
4 SPAAS-3 4
5 SPAAS-4 4
6 MSCH-2 2
7 MSCH-1, v.2 2
8 CPTPPWS 1
9 CPTPPWS 1

Table 7 Total number of defects

Case study Discrepancies Errors Omissions Total DEOs

1 0 7 8 15
2 4 121 2 127
3 10 15 40 65
4 10 33 165 208
5 4 5 11 20
6 13 7 16 36
7 0 1 6 7
8 0 107 36 143
9 0 18 12 30

Table 6 Case studies sizes
Case
study

Type of
inspection

Number of
scenarios

Number of
episodes

Number of
filled forms

Number of
filled lines

Preparation
time (h)

Meeting
time (h)

1 Intra 13 56 104 1,002 9 1/2 1 1/2
2 Intra 19 92 171 1,135 7 1/2 –
3 Intra 12 44 84 585 5 1/2 –
4 Intra 17 76 181 1,234 15 –
5 Intra 16 51 95 529 9 –
6 Intra 17 63 170 849 12 1/2 2
7 Inter 13 63 25 299 6 1
8 Intra 45 235 380 1,519 11 1/2 2
9 Inter 45 235 60 691 14 1 1/2

16

3. DEOs which neither affect the comprehension nor the
consistency of the scenario are labelled as presenta-
tion DEOs, for instance, due to badly written sen-
tences or LEL symbols used but not marked. Spelling
and grammar mistakes were not considered as de-
fects.

The moderator indicates the defect severity and
how it was detected while the scribe registers this
information in the forms. If there is any doubt, it is
discussed with the other meeting participants. The
moderator resolves possible conflicts. This approach
allows for evaluating the inspection process, inspector
efficiency, and the overall quality of the inspected
scenarios.

The management forms described in Table 4 are ap-
plied to both the intra- and inter-inspection processes.
Figure 15 presents an example of form IV with organi-
zational defects of case study 1 (see Table 5) picked up
at meeting. The numbers in the form represent the sce-
nario numbers where defects were found.

4.5 Observations about the inspection process design

The construction of the inspection process went over five
phases.

1. Design of the inspection forms
2. Redaction of the instructions
3. Preliminary use of forms and instructions
4. Design and fill in of management forms
5. Full application of the inspection process

Earlier steps of the inspection design process required
more and deeper changes than later steps. Three
researchers with experience in building LEL and sce-
narios worked during the design of the inspection forms.
The design of forms was centred on the difficulties found
while building scenarios. In addition, the detection of
other defects to ensure scenario consistency was later
included.

The goal of the instructions were to be self-contained
and easy to use. Usage of the instructions should be such

Table 8 Total number of
defects at preparation and
meeting

Case study Discrepancies Errors Omissions Total DEOs

Prepare Meeting Prepare Meeting Prepare Meeting Prepare Meeting

1 0 2 7 17 8 3 15 22
6 13 0 7 23 16 8 36 31
7 0 0 1 1 6 5 7 6
8 0 0 106 1 35 1 141 2
9 0 0 16 2 12 0 28 2

Table 9 Number of defects detected during preparation classified
by type of detection

Case
study

Process
detection

Spontaneous
detection

% Process/
total

% Spontaneous/
total

1 15 0 100% 0%
2 121 6 95% 5%
3 52 13 80% 20%
4 179 29 86% 14%
5 20 0 100% 0%
6 15 21 42% 58%
7 7 0 100% 0%
8 141 7 95% 5%
9 28 1 97% 3%

Table 10 Number of defects detected during meeting by type of
detection

Case
study

Process
detection

Spontaneous
detection

% Process/
total

% Spontaneous/
total

1 17 5 77% 23%
6 12 19 39% 61%
7 6 0 100% 0%
8 2 0 100% 0%
9 2 0 100% 0%

Table 11 Number of defects detected at preparation by severity

Case
study

Fundamental
DEOs

Organizational
DEOs

Presentation
DEOs

1 0 4 11
2 3 122 2
3 5 46 14
4 9 111 88
5 5 13 2
6 1 35 0
7 2 0 5
8 1 41 99
9 1 23 4
Total 27 395 225

Table 12 Number of defects detected at meeting by severity

Case
study

Fundamental
DEOs

Organizational
DEOs

Presentation
DEOs

1 1 17 4
6 0 16 15
7 2 3 1
8 1 1 0
9 0 2 0
Total 4 39 20

17

that neither previous knowledge of the scenarios to be
inspected nor experience on the inspection process itself
were necessary. The instruction guides contain a
description of each form with the following structure:
the form objective, the steps to complete the form, and
the analysis to be performed. Figures 10 and 14 exem-
plify those instructions.

Afterwards, a preliminary use of forms and instruc-
tions was performed over four case studies. This step
allowed the improvement of the forms and of the
instruction guides. Changes mainly referred to details
that helped in the understanding of the instructions.

Once four candidate DEO list forms were filled in, the
necessity of new forms to organize the information
already produced became evident. Thus, the design and
fill of management forms step was performed.

After forms and guides were corrected we performed
the full application of the inspection. The intra-scenario
inspection was applied to two case studies and the inter-
scenario inspection was performed once.

A different inspector performed each case study.
Forms and instructions were delivered to inspectors and
they were advised to avoid asking about the scenarios
and the inspection process (plan activity). After reading
carefully the instruction guides they started to fill in
forms (prepare activity). Once forms were completed,
a meeting was established among scenario authors,
inspector, scribe, and moderator for each case study.
During the meeting activity the candidate DEO list was
analysed and, when necessary, the involved scenario was

read to clarify the DEO found. Some defects recorded in
the candidate DEO list were rejected since they were the
inspector’s errors and other defects were confirmed,
assigning the corrections to authors.

During form completion, inspectors recorded com-
ments about inspection and those considered improve-
ments to the process where taken into account. We
observed that people without knowledge of the UofD
and of the scenarios could fill in the forms but the
knowledge of the scenario representation was a
requirement. Inspections performed by people without
the scenario representation knowledge presented prob-
lems because of the inspector’s errors. These problems
were perceived during meeting. So, although a reading
technique is a plus, as per Sect. 3, we conclude that
meeting should not be overlooked. Our observations
agree with Fagan’s regarding the critical aspect of
meeting.

As mentioned in the opening of Sect. 4, we have
followed a learning process in building the method. The
forms were changed when necessary, from the feedback
of the process, adding new ways for the detection of
defects and getting rid of form components that were
not important.

5 Data from case studies

In order to obtain information from our strategy we
conducted nine case studies overall. Each case study is

Table 13 Number of defects detected at preparation by scenario componenta

Case
study

Title Goal Context Resources Actors Episodes Exceptions Constraints General

1 2 3 0 1 5 4 0 0 0
2 1 3 1 42 15 33 3 8 21
3 7 1 10 25 18 4 0 0 0
4 0 11 18 46 15 55 0 0 63
5 0 3 0 2 5 4 0 2 4
6 1 1 2 19 5 8 0 0 0
7 0 0 0 0 0 3 0 0 4
8 11 2 43 15 3 66 0 0 0
9 1 0 15 0 0 6 0 0 7
Total 23 24 89 150 66 182 3 10 99

Table 14 Number of defects
detected at meeting by scenario
component

Case
study

Title Goal Context Resources Actors Episodes Exceptions Constraints General

1 4 3 1 2 3 9 0 0 0
6 1 0 3 13 2 12 0 0 0
7 0 0 0 0 0 2 0 0 4
8 1 0 0 1 0 0 0 0 0
9 0 0 1 0 0 1 0 0 0
Total 6 3 5 16 5 24 0 0 4

a It is worth explaining why the component exception is not much
used. We understand that most of the writers were not using a
modelling strategy where exceptions become explicit. However,
some scenarios did use the ‘‘if then’’ statement of the scenario

model (Fig. 1), which in part explains this situation. Overall we
have stressed in our scenario writing instruction the importance of
exceptions. On the other hand, exceptions are generally detected
under validation, and here we are performing just verification.

18

defined by applying the intra- or inter-scenario inspec-
tion process to a set of scenarios. There were six different
sets of scenarios produced by different people2. In [7] we
detailed how each of these sets was constructed. Table 5
gives an overall description of each case study.

In Table 5, each set of scenarios is identified by a
unique name. A different group for a given application
produced each set. We used three applications:

MSCH Meeting scheduler system [42], the case study
proposed by van Lamsweerde [43] applied to Universi-
dad de Belgrano. The goal of the system is to manage the
scheduling of meetings for a given organization.

SPAAS Saving plan for automobile acquisition system
[25]. The goal of this system is to manage saving plans
for the acquisition of brand new vehicles. A group of
physical or legal persons is constituted and, monthly,
participates in an adjudication process organized by a
general manager in order to deliver a vehicle.

CPTPPWS Ceramic Paving Tiles Production Plant
warehouse system. The goal of this system is to manage
the inventory of Ceramic Paving Tiles Production Plant
including machinery spare parts. The system handles
suppliers and internal customers.

Since we applied both intra- and inter-scenario
inspection to the set of scenarios MSCH-1, we generated
the MSCH-1v.2, which is the set of scenarios MSCH-1
with changes due to the intra-inspection process (the
rework activity, Fig. 7).

The case studies involved ten different kinds of peo-
ple, including the authors of MSCH-1, MSCH-2, and
CPTPPWS. Five people were faculty members and five
were students. The number of scenarios subject to the
inspection process was 195, 22 being the average number
of scenarios in a set of scenarios. Table 6 describes each
case study regarding effort, measured in hours, in
preparation as well as the time used during meeting.

The process requires the filling in of a special form
with information about DEOs. This is done in two
stages of the process: at the end of preparation and at
the end of meeting (see Fig. 5). The data for the total
DEOs for each case study are given in Table 7. Fol-
lowing, Table 8 shows the DEOs detected at both stages.

From Tables 7 and 8 we have an overall idea of the
improvement in quality made possible by applying sce-
nario inspections. Table 8 shows a comparison of DEOs
found after preparation and after the inspection meet-
ing. DEOs found at the preparation stage are carried
through to meeting, where some DEOs may be dis-
missed or new DEOs could be included.

We also measured, by asking the inspectors, whether
the DEOs were found due to the process or were found

by a side effect of applying the process. We have called
the latter case a spontaneous detection in opposition to
process detection. Tables 9 and 10 show the data gath-
ered for the Preparation and Meeting stages. It is
important to point out that more than 80% of the DEOs
were found by the detection process.

Case study 6 was the only one where the inspector
was not familiar with the scenario representation and
loosely followed the instructions spending too much
time, compared to the others, in reading the set of sce-
narios before applying the process. Even though there is
no confirmation of this, it strongly suggests that the
knowledge of the scenario model is an unavoidable
requirement to become an efficient reader.

Severity of DEOs was ranked in three levels: funda-
mental, organizational, and presentation, as described in
Sect. 4.4.

Tables 11 and 12 provide severity data for each case
study. The classification of a DEO into a severity level is
performed by the inspector and registered in the man-
agement forms. Most of the DEOs detected during the
intra-scenario inspection process are of an organiza-
tional level. The only case study that performed the in-
ter-inspection process was case 7. We noticed here that
the fundamental severity was predominant; this was
expected since taking into account relationships among
scenarios gives more opportunity to find fundamental
DEOs.

We also gathered the DEOs by scenario component
(see Fig. 1) at preparation and at meeting. Tables 13
and 14 present the data. Most of the DEOs (65%) did
occur in the resources, actors, and episodes compo-
nents. General DEOs are the ones not directly limited
to a specific component. We believe that the data dis-
played is a solid argument for using an inspection
process as a verify activity in the process of scenario
construction. In general, the effort for the inspection
process is 25% of the total effort time for the scenario
construction. We firmly believe that it is a reasonable
overhead for the quality improvement achieved. It is
also important to stress that if automated tools were
available, the total effort time will be greatly reduced
because of the amount of effort necessary to fill in the
forms (Table 6).

6 Conclusions

This article presents a strategy for scenario inspections
to be performed by requirements engineers as a verifi-
cation process before validation with clients. This
strategy was designed to be integrated with a specific
construction process [7] and was applied in nine case
studies. The data collected soundly support our claim
that scenario inspections do improve scenario quality.
We have also reported elsewhere [20], in detail, that our
proposed strategy can be used, with some adaptations,
in other processes and representations based on sce-
narios.

2Graduate and undergraduate students performed most of the
writing of the scenarios, but case 1 and 7 were performed by
software professionals.

19

Although scenario inspection is not a new idea [18],
our proposal is based on an inspection strategy not
employed before. Our reading of Gough’s process is
that an ad-hoc approach to preparation was used.
Based on experimentation data available [17, 19, 29,
30, 34, 35, 36, 37, 38, 39], we believe that our pro-
posal, a scenario-based one, is more effective.

The lack of the overview phase joint with the self-
explanatory characteristic of all documents involved
(scenario set, LEL, forms, and instructions) avoid initial
bias and enhance the importance of the meeting. People
without knowledge of the UofD and of the scenarios to
inspect could fill in the forms but they had to be familiar
with the scenario representation.

We see our contributions being useful not just for
researchers but for practitioners, as well. For practitio-
ners, we believe that our work, which has matured over
the years with several case studies, provides yet addi-
tional convincing arguments that a verification process
can and should be done as early as possible in the
software construction process. We also understand that
our processes, based on forms, can be adapted to dif-
ferent scenario production processes in use in different
organizations. For researchers, we understand that our
model does advance the state of the art with respect to
applying verification concepts of inconsistency to natu-
ral language-based descriptions as well as integrate an
extended lexicon to anchor semantic aspects of the
descriptions.

The drawbacks of our proposal, too schematic and
labour intensive, can be softened by the use of intelligent
editors and verification agents. However, we should not
forget that the main effectiveness factor of applying
inspection methods is that a human being is in control of
the process. The techniques and tools will help, but they
will have a supporting role.

References

1. Leite JCSP, Rossi G, Balaguer F, Maiorana V, Kaplan G,
Hadad G, Oliveros A (1997) Enhancing a requirements baseline
with scenarios. Req Eng J 2(4):184–198

2. Rolland C, Ben Achour C, Cauvet C, Ralyté J, Sutcliffe A,
Maiden M, Jarke M, Haumer P, Pohl K, Dubois E, Heymans P
(1998) A proposal for a scenario classification framework. Req
Eng J 3(1):23–47

3. Jacobson I, Christerson M, Jonsson P, Overgaard G (1992)
Object-oriented software engineering—a use case driven ap-
proach. Addison Wesley, Reading, Mass., ACM Press, New
York

4. Wirfs-Brock R (1995) Designing objects and their interactions:
a brief look at responsibility-driven design. In: Carroll J (ed)
Scenario-based design: envisioning work and technology in
system development. Wiley, New York, pp 337–360

5. Rolland C, Ben Achour C (1998) Guiding the construction of
textual use case specifications. Data Knowledge Eng 25:125–160

6. Weidenhaupt K, Pohl K, Jarke M, Haumer P (1998) Scenarios
in system development: current practice. IEEE Softw 15(2):34–
45

7. Leite JCSP, Hadad GDS, Doorn JH, Kaplan GN (2000) A
scenario construction process. Req Eng J 5(1):38–61

8. Ross D, Schoman A (1977) Structured analysis for require-
ments definition. IEEE Trans Softw Eng (Special issue on
requirements analysis) 3(1):6–15

9. Gilb T (1987) The principles of software-engineering manage-
ment. Addison-Wesley, Reading, Mass.

10. Yourdon E (1989) Structured walkthroughs, 4th edn. Prentice
Hall, New York

11. Parnas DL, Weiss D (1985) Active design reviews: principles
and practices. In: Proceedings of the 8th international confer-
ence on software engineering, pp 132–136

12. Fagan ME (1976) Design and code inspections to reduce errors
in program development. IBM Syst J 15(3):182–211

13. Fagan ME (1986) Advances in software inspections. IEEE
Trans Softw Eng 12(7):744–751

14. Ackerman AF, Buchwald LS, Lewsky FH (1993) Software
inspections: an effective verification process. IEEE Softw
6(3):31–36

15. Gilb T, Graham D (1993) Software inspection. Addison-Wes-
ley, Reading, Mass.

16. Laitenberger O, DeBaud JM (2000) An encompassing life-cycle
centric survey of software inspection. J Syst Softw 50(1):5–31

17. Regnell B, Runesom P, Thelin T (1999) Are the perspectives
really different? Further experimentation on scenario-based
reading of requirements. Requirements engineering with use
cases – a basis for software development. Technical Report 132,
Paper V, Department of Communication Systems, Lund Uni-
versity, pp 141–180

18. Gough PA, Fodemski FT, Higgins SA, Ray SJ (1995) Sce-
narios—an industrial case study and hypermedia enhance-
ments. In: RE95: proceedings of the international symposium
on requirements engineering. IEEE Computer Society Press,
Los Alamitos, Calif., pp 10–17

19. Porter AA, Votta LG Jr, Basili VR (1995) Comparing detection
methods for software requirements inspections: a replicated
experiment. IEEE Trans Softw Eng 21(6):563–575

20. Leite JCSP, Doorn JH, Hadad GDS, Kaplan GN (2003) Using
scenario inspections on different scenarios representations.
Monografias em Ciência da Computação, Departamento de
Informática, PUC-Rio, N33/03

21. Zorman L (1995) Requirements envisaging by utilizing scenarios
(rebus). PhD dissertation, University of Southern California

22. Carroll J (1995) Introduction: the scenario perspective on system
development. In: Carroll J (ed) Scenario-based design: envi-
sioningwork and technology in systemdevelopment.Wiley,New
York, pp 1–18

23. Booch G (1991) Object oriented design with applications.
Benjamin Cumming, Redwood City

24. Potts C (1995) Using schematic scenarios to understand user
needs. In: Proceedings of DIS’95 - symposium on designing
interactive systems: processes, practices and techniques. ACM
Press, University of Michigan, pp 247–256

25. Mauco V, Ridao M, del Fresno M, Rivero L, Doorn J (1997)
Ingenierı́a de requisitos, proyecto: sistema de planes de ahorro.
Technical Report, ISISTAN, UNCPBA, Tandil, Argentina

26. Leite JCSP, Franco APM (1990) O uso de hipertexto na elici-
taçao de linguagens da aplicaçao. In: Anais de IV Simpósio
Brasilero de Engenharia de Software. SBC, Brazil, pp 134–149

27. Martin J, Tsai WT (1990) N-fold inspection: a requirements
analysis technique. Commun ACM 33(2):225–232

28. Schneider G, Martin J, Tsai WT (1992) An experimental study
of fault detection in user requirements documents. ACM Trans
Softw Eng Method 1(2):188–204

29. Kantorowitz E, Guttman A, Arzi L (1997) The performance of
the N-fold inspection method. Req Eng J 2:152–164

30. Basili V, Green S, Laitenberger O, Lanubile F, Shull F, So-
rumgard S, Zelkowitz M (1996) The empirical investigation of
perspective-based reading. J Empirical Softw Eng 2(1):133–164

31. Cheng B, Jeffrey R (1996) Comparing inspection strategies for
software requirements specifications. In: Proceedings of the
1996 Australian software engineering conference, pp 203–211

32. Parnas DL (1987) Active design reviews: principles and prac-
tice. J Syst Softw 7:259–265

20

33. Dyer M (1992) Verification-based inspection. In: Proceedings
of the 26th annual Hawaii international conference on system
sciences, pp 418–427

34. Ciolkowski M, Differding C, Laitenberger O, Münch J (1997)
Empirical investigation of perspective-based reading: a repli-
cated experiment. ISERN report no. 97-13

35. Fusaro P, Lanubile F, Visaggio G (1997) A replicated experi-
ment to assess requirements inspection techniques. Empirical
Softw Eng 2(1):30–57

36. Miller J, Wood M, Roper M (1998) Further experiences with
scenarios and checklists. Empirical Softw Eng 3(1):37–64

37. Porter AA, Votta LG Jr (1998) Comparing detection methods
for software requirements inspections: a replication using pro-
fessional subjects. Empirical Softw Eng 3(4):355–380

38. Sandall K, Blomkvist O, Karlsson J, Krysander C, Lindvall M,
Ohlsson N (1998) An extended replication of an experiment for
assessing methods for software requirements. Empirical Softw
Eng 3(4):381–406

39. Shull F (1998) Developing techniques for using software doc-
uments: a series of empirical studies. PhD thesis, Computer
Science Department, University of Maryland

40. Doorn J, Kaplan G, Hadad G, Leite JCSP (1998) Inspección de
Escenarios. In: Proceedings of WER’98, workshop en enge-
nharia do requisitos, Maringá, Brazil, pp 57–69

41. Parnas DL, Clements PC (1996) A rational design process: how
and why fake it. IEEE Trans Softw Eng 12(2):251–257

42. Hadad G, Kaplan G, Leite JCSP (1998) Léxico extendido del
lenguaje y escenarios del meeting scheduler. Technical Report
no. 13, Departamento de Investigación, Universidad de Belgr-
ano, Buenos Aires

43. van Lamsweerde A, Darimont R, Massonet P (1993)The
meeting scheduler system—preliminary definition. Internal
Report, Université Catholique de Louvain

21

